学术报告
我的位置在: 首页 > 学术报告 > 正文
Exponential Chaotic Model for Generating Robust Chaos
浏览次数:日期:2019-11-21编辑:信科院 科研办

时间:2019. 12. 5上午10:00

地点:院楼220(原106)

报告摘要

Robust chaos is defined as the inexistence of periodic windows and coexisting attractors in the neighborhood of parameter space. This characteristic is desired because a chaotic system with robust chaos can overcome the chaos disappearance caused by parameter disturbance in practical applications. However, existing chaotic systems fail to consider the robust chaos. This talk presents an exponential chaotic model to produce new one-dimensional (1D) chaotic maps with robust chaos. ECM is a universal framework and can produce many new chaotic maps employing any two 1D chaotic maps as base and exponent maps. As examples, we present nine chaotic maps produced by ECM, discuss their bifurcation diagrams and prove their robust chaos. Performance evaluations also show that these nine chaotic maps of ECM can obtain robust chaos in a large parameter space. To show the practical applications of ECM, we employ these nine chaotic maps of ECM in secure communication. Simulation results show their superior performance against various channel noise during data transmission.

讲座人简介

花忠云哈尔滨工业大学(深圳)副教授,深圳市海外高层次人才,哈尔滨工业大学青年拔尖人才。2016年8月获澳门大学计算机科学系博士学位。2016年11月至2017年12月任哈尔滨工业大学(深圳)助理教授,2018年起任哈尔滨工业大学(深圳)副教授。

主要研究领域包括非线性理论、多媒体信息安全等。主持参与国家重点研发计划,国家自然科学基金,深圳市技术攻关,基础研究项目多项。在IEEE TCYB、IEEE TIE、IEEE TII、IEEE TCASI、IEEE TSMC-S等国内外高水平学术期刊会议发表论文20多篇,其中6篇论文入选ESI全球1%高被引论文。同时担任多个国际知名学术期刊审稿人。