课题组2026年剩余招生指标:硕士研究生3人
小样本学习是当前深度学习领域的重要研究方向之一,在计算机视觉、自然语言处理等多个领域具有广泛的应用前景。研究小样本学习方法,不仅能提升深度学习模型在数据受限环境下的鲁棒性,还能促进深度学习技术在更多实际应用中的落地。
欢迎对计算机视觉、人工智能、小样本学习领域有兴趣的同学加入。
国家自然科学基金青年项目,度量学习框架下的小样本图像分类方法研究,No.62506123,2026.01-2028.12,在研,主持
Zhenyu, Zhou; Lei, Luo; Qing, Liao; Xinwang, Liu; En, Zhu ; Improving Embedding Generalization in Few-Shot Learning With Instance Neighbor Constraints, IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32: 5197-5208
Zhenyu, Zhou; Lei, Luo; Sihang, Zhou; Wang, Li; Xihong, Yang; Xinwang, Liu; En, Zhu ; Task-Related Saliency for Few-Shot Image Classification, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35(8): 10751-10763
Zhenyu, Zhou; Lei, Luo; Tianrui, Liu; Qing, Liao; Xinwang, Liu; En, Zhu ; Category Alignment Mechanism for Few-Shot Image Classification, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024
Zhenyu, Zhou; Qing, Liao; Lei, Luo; Xinwang, Liu; En, Zhu ; ProtoRefine: Enhancing Prototypes with Similar Structure in Few-Shot Learning, Acm Transactions On Multimedia Computing Communications and Applications, 2024