周四望
我的位置在: 首页 > 学院概况 > 师资力量 > 周四望
教师介绍

无照片

周四望,博士,教授,博士生导师。本科毕业于复旦大学,分别在湘潭大学和湖南大学获得硕士、博士学位,新加坡南洋理工大学访问学者,湖南省青年骨干教师,获教育部“新世纪优秀人才计划”资助。在国内外重要学术期刊上发表了多篇研究论文,出版了学术专著“无线传感器网络中的小波方法”。目前在湖南大学信息科学与工程学院从事教学和科研工作。
E-mail:swzhou@hnu.edu.cn
中文名: 周四望 英文名:
学历: 博士 职称: 教授
联系电话: 电子邮件: swzhou@hnu.edu.cn
研究方向: 1)物联网数据处理; 2)图像处理; 3)深度学习。
联系地址: 湖南省长沙市岳麓区麓山南路2号,湖南大学信息科学与工程学院(410082)
所属机构:  可信计算与网络省重点实验室  软件工程系  学院教师
研究方向

主要研究方向:

(1) 物联网数据处理 (Data processing for Internet of Thing)

(2) 图像处理 (Image processing)

(3) 深度学习与压缩感知 (Deep learning and compressing sensing)

学术论文

近期研究论文(第一作者/通信作者*)

1. J. Li and S. Zhou*. Block-Based Multi-Scale Image Rescaling, The 39th Annual AAAI Conference on Artificial Intelligence (AAAI), 2025

2. Y. Li, S. Zhou*, L. Ouyang, J. Liu, and D. Tang. GFPNet: Generalizable Face Privacy Network with Dynamic Defense Training, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2025

3. S. Zhou, X. Zhang, Y. Liu, H. Jiang, and K. Li. Decentralized and Compressed Data Storage for Mobile Crowdsensing, IEEE Transactions on Mobile Computing (TMC), 23(5): 4694-4708, 2024

4. J. Peng, S. Zhou*, L. Ouyang, X. Liu. Volatility-Based Diversity Awareness for Distributed Data Storage of Mobile Crowd Sensing, Computer Networks, 248: 110466, 2024

5. X. Liu, S. Zhou*, J. Peng, W. Zhang, D. Tang, and K. Li. Stopping Criteria for Distributed Data Storage in Compressive Crowdsensing Systems, IEEE Internet of Things Journal (IOTJ), 11(7): 11767-11778, 2024

6. X. Liu, S. Zhou*, J. Peng, J. Yu, Y. He, and W. Zhang. Adaptive Sampling Allocation for Distributed Data Storage in Compressive Crowdsensing, IEEE Internet of Things Journal (IOTJ), 11(7): 12022-12032, 2024

7. W. Gao and S. Zhou*. Privacy-Preserving for Dynamic Real-Time Published Data Streams Based on Local Differential Privacy, IEEE Internet of Things Journal (IOTJ), 11(8): 13551-13562, 2024

8. X. Liu, S. Zhou*, J. Luo, J. Yu, and W. Zhang. Region-based compressive distributed storage in Mobile CrowdSensing, Future Generation Computer Systems, 158(2024) 200-209, 2024

9. S. Zhou, X. Deng, C. Li, Y. Liu, and H. Jiang. Recognition-Oriented Image Compressive Sensing with Deep Learning, IEEE Transactions on Multimedia (TMM), 2023

10. J. Peng, S. Zhou*, and X. Liu. Volatility-Based Measurements Allocation for Distributed Data Storage in Mobile Crowd Sensing, IEEE Systems Journal, 17(4): 6665-6675,2023

11. X. Liu , S. Zhou*, W. Zhang , T., and K. Li. Privacy-Preserving Truth Discovery for Collaborative-Cloud Encryption in Mobile Crowdsensing, IEEE System Journal, 17(3): 4990-5001, 2023

12. S. Zhou, Y. Lian, D. Liu, H. Jiang, Y. Liu, and K. Li. Compressive Sensing Based Distributed Data Storage for Mobile Crowdsensing, ACM Transactions on Sensor Networks (TOSN), 18(2): Article 25, 2022

13. D. Tang, S. Zhou*, H. Jiang, H. Chen, and Y. Liu. Gender-Adversarial Networks for Face Privacy Preserving, IEEE Internet of Things Journal (IOTJ), 9(18): 17568-17576, 2022

14. S. Zhou, Y. He, Y. Liu, C. Li, and J. Zhang. Multi-Channel Deep Networks for Block-Based Image Compressive Sensing, IEEE Transactions on Multimedia (TMM), 23: 2627-2639, 2021

15. W. Zhang, S. Zhou*, D. Peng, L. Yang, F. Li, and H. Yin. Understanding and Modeling of WiFi Signal based Indoor Privacy Protection, IEEE Internet of Things Journal (IOTJ), 2020

16. S. Zhou, W. Zhang, D. Peng, Y. Liu, X. Liao, and H. Jiang. Adversarial WiFi Sensing for Privacy Preservation of Human Behaviors, IEEE Communications Letters, 2020

17. S. Zhou, Y. He, S. Xiang, K. Li, and Y. Liu.  Region-Based Compressive Networked Storage With Lazy Encoding, IEEE Transactions on Parallel and Distributed Systems (TPDS), 2019

18. S. Zhou, L. Xu, Y. Liu, L. Yang, and K. Li. A Distributed Compressive Data Gathering Framework For Mobile Crowdsensing, IEEE Internet of Things Journal (IOTJ), 2019

19. W. Zhang, S. Zhou*, L. Yang, L. Ou, and Z. Xiao. WiFiMap+: High-Level Indoor Semantic Inference with WiFi Human Activity and Environment, IEEE Transactions on Vehicular Technology (TVT), 2019

20. D. Tang, S. Zhou*, and W. Yang.  Random-Filtering based Sparse Representation Parallel Face Recognition, Multimedia Tools and Applications, 2019

21. S. Zhou, Q. Zhong, B. Ou, and Y. Liu. Data Ferries Based Compressive Data Gathering For Wireless Sensor Networks, Wireless Networks, 2019

22. S. Zhou, Z. Chen, Q. Zhong, and H. Li. Block compressed sampling of image signals by saliency based adaptive partitioning, Multimedia Tools and Applications, 2019

23. S. Zhou, S. Xiang, X. Liu, and Y. Liu. Compressive networked storage with lazy-encoding, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018

24. S. Zhou, S. Xiang, X. Liu, and H. Li. Asymmetric block based compressive sensing for image signals, IEEE International Conference on Multimedia and Expo (ICME), 2018

25. S. Zhou, Q. Zhong, B. Ou, and Y. Liu. Intelligent compressive data gathering using data ferries for wireless sensor networks, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017

26. S. Zhou, Y. Liu, and W. Zhang. Compressed sensing of image signals with threshold processing, International Journal for Light and Electron Optics, 2017

27. W. Zhang, and S. Zhou*. DeepMap+: Recognizing High-Level Indoor Semantics Using Virtual Features and Samples Based on a Multi-Length Window Framework, Sensors, 2017

28. D. Tang, S. Zhou*, W. Yang, and Y. Liu. A two-phase representation-based face recognition method with ‘random-filtering’ virtual samples, International Joint Conference on Neural Networks (IJCNN), 2017

29. 张君涛, 赵智慧, 周四望*, 矢量任务地图:群智感知任务渐进式分发方法, 计算机学报, 2017


科研项目

 

1. 国家自然科学基金,基于压缩感知理论的群智感知网络去中心化存储方法研究

2. 国家自然科学基金,机会网络小波多分辨数据收集方法

3. 湖南省自然科学基金,传感器网络数据融合时的报头压缩算法研究

4. 湖南省自然科学基金,公众传感机会压缩方法研究