荣誉与获奖
学术著作
出版书籍
宋弢,曾湘祥,王爽,王建民,智能药物研发,清华大学出版社,2022(国内首本人工智能药物研发教材,京东购买链接)
Pan Zheng, Shudong Wang, Xun Wang and Xiangxiang Zeng, Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications. 2022.
Xiangxiang Zeng, Alfonso Rodríguez-Patón, Molecular Computing and Bioinformatics, MDPI, 2019.
邹权,陈启安,曾湘祥,刘向荣,系统生物学中的网络分析方法,西安电子科技大学出版社,2015.
潘林强,曾湘祥,宋弢,膜计算导论,华中科技大学出版社,2012.
2025年论文
[26] Zixu Wang, Yangyang Chen, Pengsen Ma, Zhou Yu, Jianmin Wang, Yuansheng Liu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Image-Based Generation for Molecule Design with SketchMol, Nature Machine Intelligence, 2025. (Nature子刊)
[25] Tengfei Ma, Chen Yujie, Liang Wang, Xuan Lin, Bosheng Song, Xiangxiang Zeng, S2DN: Learning to Denoise Unconvincing Knowledge for Inductive Knowledge Graph Completion, AAAI 2025. (CCF A)
[24] Yiping Liu, Jiahao Yang, Xuanbai Ren, Zhang Xinyi, Yuansheng Liu, Bosheng Song, Xiangxiang Zeng, Hisao Ishibuchi, Multi-Objective Molecular Design Through Learning Latent Pareto Set, AAAI 2025. (CCF A)
2024年论文
[23] Pengyong Li, Kaihao Zhang, Tianxiao Liu, Ruiqiang Lu, Yangyang Chen, Xiaojun Yao, Lin Gao, Xiangxiang Zeng, A Deep Learning Approach for Rational Ligand Generation with Toxicity Control via Reactive Building Blocks, Nature Computational Science. 2024. (Nature子刊,基金委报道,NCS评论)
[22] Hongxin Xiang, Li Zeng, Linlin Hou, Kenli Li, Zhimin Fu, Yunguang Qiu, Ruth Nussinov, Jianying Hu, Michal Rosen-Zvi, Xiangxiang Zeng, Feixiong Cheng, A Molecular Video-derived Foundation Model Streamlines Scientific Drug Discovery, Nature Communications, 2024. (Nature子刊,机器之心报道)
[21] Tingting Li, Xuanbai Ren, Xiaoli Luo, Zhuole Wang, Zhenlu Li, Xiaoyan Luo, Jun Shen, Yun Li, Dan Yuan,Ruth Nussinov, Xiangxiang Zeng, Junfeng Shi, Feixiong Cheng, A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection, Nature Communications, 2024, doi.org/10.1038/s41467-024-51933-2. (Nature子刊,湖南日报报道)
[20] Houtim Lai, Longyue Wang, Ruiyuan Qian, Junhong Huang, Peng Zhou, Geyan Ye, Fandi Wu, Fang Wu, Xiangxiang Zeng, Wei Liu. Interformer: an interaction-aware model for protein-ligand docking and affinity prediction. Nature Communications 15, 10223, 2024. (Nature子刊)
[19] Xuanbai Ren, J. Wei, X. Luo, Y. Liu, K. Li, Q. Zhang, X. Gao, S. Yan, X. Wu, X. Jiang, M. Liu, D. Cao, L. Wei, Xiangxiang Zeng, Junfeng Shi, HydrogelFinder: A Foundation Model for Efficient Self-Assembling Peptide Discovery Guided by Non-Peptidal Small Molecules. Advanced Science, 2024, 11, 2400829. (IF: 15.1)
[18] Hongxin Xiang, Shuting Jin, Jun Xia, Man Zhou, Jianmin Wang, Li Zeng, Xiangxiang Zeng. An Image-enhanced Molecular Graph Representation Learning Framework, IJCAI, 2024 (CCF A)
[17] Taisong Jin; Xixi Yang; Zhengtao Yu, Han Luo, Yongmei Zhang, Feiran Jie, Xiangxiang Zeng, Min Jiang, WalkGAN: Network Representation Learning With Sequence-Based Generative Adversarial Networks, IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4), 5684-5694.
[16] Jiacai Yi, Shaohua Shi, Li Fu, Ziyi Yang, Pengfei Nie, Aiping Lu, Chengkun Wu, Yafeng Deng, Changyu Hsieh, Xiangxiang Zeng, Tingjun Hou, Dongsheng Cao. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds, Nature Protocols, 2024, 19(4):1105-1121. (Nature子刊)
2023年论文
[15] Yu Wang, Chao Pang, Yuzhe Wang, Junrui Jin, Jingjie Zhang, Xiangxiang Zeng, Ran Su, Quan Zou, Leyi Wei. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks. Nature Communications 14, 6155 (2023). (Nature子刊)
[14] Shugao Chen, Ziyao Li, Xiangxiang Zeng, Guolin Ke. Amalga: Designable Protein Backbone Generation with Folding and Inverse Folding Guidance, NeurIPS, 2023. (CCF A)
[13] Bin Wu, Jinyuan Fang, Xiangxiang Zeng, Shangsong Liang, Qiang Zhang, Adaptive Compositional Continual Meta-Learning, ICML 2023 (CCF A)
[12] Xixi Yang, Li Fu, Yafeng Deng, Yuansheng Liu, Dongsheng Cao, Xiangxiang Zeng, GPMO: Gradient perturbation-based contrastive learning for molecule Optimization , IJCAI 2023. (CCF A)
[11] Peng Zhou, Zongqian Wu, Xiangxiang Zeng, Guoqiu Wen, Junbo Ma, Xiaofeng Zhu, Totally Dynamic Hypergraph Neural Network , IJCAI 2023. (CCF A)
[10] Chunyan Li, JunfengYao, Jinsong Su, Zhaoyang Liu, Xiangxiang Zeng, Chenxi Huang, LagNet: Deep Lagrangian Mechanics for Plug-and-Play Molecular Representation Learning, AAAI 2023. (CCF A)
[9] Junlin Xu, Jielin Xu, Yajie
Meng, Changcheng Lu, Lijun Cai, Xiangxiang Zeng, Ruth Nussinov, Graph Embedding and Gaussian Mixture Variational
Autoencoder Network for End-to-End Analysis of Single-Cell RNA-Sequencing Data. Cell Reports Methods. 2023. (Cell子刊)
[8] Bosheng Song, Kenli Li, David Orellana-Martín, Xiangxiang Zeng, Mario J. Pérez-Jiménez, Tissue P systems with states in cells, IEEE Transactions on Computers, 2023, 72(9), 2561-2570. (CCF A)
[7] Bosheng Song, Kenli Li, Xiangxiang Zeng, Mario J. Pérez-Jiménez, Claudio Zandron, Monodirectional evolutional symport tissue P systems with channel states and cell division, SCIENCE CHINA Information Sciences, 2023, 66(3), 139104. (CCF A)
2022年论文
[6] Xiangxiang Zeng, Hongxin Xiang, Linhui Yu, J Wang, Kenli Li, R Nussinov, Feixiong Cheng. Accurate prediction of molecular properties and molecular targets usinga self-supervised image representation learning framework. Nature Machine Intelligence.2022. (Nature子刊)
[5] Xiangxiang Zeng, Fei Wang, Yuan Luo, Seung-gu Kang, Jian Tang, Felice C. Lightstone, Evandro F. Fang, Wendy Cornell, Ruth Nussinov, Feixiong Cheng, Deep Generative Molecular Design Reshapes Drug Discovery, Cell Reports Medicine, 2022. (Cell子刊)
[4] Xiaoqin Pan, Xuan Lin, Dongsheng Cao, Xiangxiang Zeng, Phillipe Yu, Lifang He, Feixiong Cheng. Deep learning for drug repurposing:Methods,databases, and applications. WIREs Comput Mol Sci. 2022; e1597. (IF:25.11)
[3] Yanyan Li, Bosheng Song, Xiangxiang Zeng, Rule synchronization for monodirectional tissue-like P systems with channel states, Information and Computation, 2022, 285, 104895. (CCF A)
[2] Bosheng Song, Kenli Li, Xiangxiang Zeng, Monodirectional evolutional symport tissue P systems with promoters and cell division, IEEE Transactions on Parallel and Distributed Systems, 2022, 33(2), 332-342. (CCF A)
[1] Chunyan Li, Junfeng Yao, Wei Wei, Zhangming Niu, Xiangxiang Zeng, Jin Li, Jianmin Wang, Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder, IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2022.3147790.
更多论文请见:https://scholar.google.com/citations?user=B20HBMIAAAAJ&hl=en
科研项目
招生说明
学生培养