王树林
我的位置在: 首页 > 学院概况 > 师资力量 > 王树林
教师介绍

无照片

博士后,教授,博士生导师。1989年参军入伍来到中国核武器试验基地工作,从事核武器试验的安全保障技术研究与核试验数据处理工作,全程参加了代号为2187的地下核武器试验建井任务,期间获得部委级科研进步奖5项。2000年转业到湖南大学信息科学与工程学院,从事科研与教学工作。主要讲授软件工程、分布式数据库原理、计算机组成原理、计算理论、形式语言与自动机理论、ACM国际大学生程序设计、生物信息学基础等核心课程。近些年来,在国内外有影响的学术刊物上发表五十余篇科研论文,同时还是《新一代信息技术》杂志的编委,主持完成国家自然科学基金面上项目三项,并主持完成国家重点研发计划课题一项。2013年与李肯立教授等合作申报了湖南省自然科学基金二等奖项目《可扩展高性能计算的若干基础理论与方法》;2018年与彭绍亮教授和李肯立教授等进一步合作申报了CCF自然科学二等奖《基于超算的精准医学技术研究》。2019年参与制定了《智能医疗影像辅助诊断系统技术要求和测试评价方法》行业标准,该标准规定了计算机视觉领域的智能医疗影像辅助诊断系统的基本功能结构和要求、影像数据要求和临床测试评价方法等。目前主要从事生物医学大数据的挖掘与分析研究。
中文名: 王树林 英文名:
学历: 职称: 教授
联系电话: 13787125196 电子邮件: books@hnu.edu.cn
研究方向: 生物信息学、人工智能、数据挖掘和软件工程
联系地址: 湖南省长沙市岳麓区麓山南路2号,湖南大学信息科学与工程学院, 邮编:410082
所属机构:  学院教师  智能计算系
个人简历

教育经历:

119859月至19897月在中国地质大学计算机科学系计算机应用专业学习,获学士学位。

219949月至19976月在国防科技大学计算机系计算机应用专业学习,获工学硕士学位。

320033月至200712月在国防科技大学计算机学院学习,师从陈火旺院士和王戟教授,获博士学位。

工作经历:

(1)     19898月至200010月在位于新疆马兰的中国核武器试验基地工作,从事核试验安全保障技术研究与核武器试验数据计算机处理工作。

(2)     200010月至今在湖南大学信息科学与工程学院从事科研与教学工作。

(3)     20084月至20108月在中国科学院合肥物质科学研究院博士后流动站工作。

(4)     20125月至20135月获美国资助在美国Kansas大学应用生物信息学实验室做博士后研究。

主持科研项目:

(1)国家重点研发计划课题: 基于超级计算的肿瘤大数据分析技术与人工智能诊断标准研究(2017YFC1311003),主持,起止时间: 2018.1.1至2021.06.30。

(2)国家自然科学基金: 体细胞突变影响癌症进程的随机动力学模型研究(61672011), 主持,起止时间:2017.1.1至2020.12.31。

(3)国家自然科学基金: 基于新一代肿瘤测序数据的驱动通路发现与综合分析方法研究(61472467), 主持,起止时间:2015.1.1至2018.12.31。

(4)国家自然科学基金:基于启发式信息的肿瘤基因表达谱降维与分析方法研究(60973153),主持,起止时间:2010.01.01至2012.12.31。

(5)中国博士后科学基金 (20090450825),主持,起止时间:2009.01.01至2010.12.31。



学术论文

(1)      WeiZhang, Shu-Lin Wang*, Inference ofCancer Progression With Probabilistic Graphical Model From Cross-SectionalMutation Data, IEEE ACCESS, vol.6, Pages: 22889-22898, 2018.

(2)      WeiZhang, Shu-Lin Wang,  An IntegratedFramework for Identifying Mutated Driver Pathway and Cancer Progression,IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, vol.16, no.2,Pages:455-464, 2019.

(3)      WeiZhang, Shu-Lin Wang*, An efficientstrategy for identifying cancer-related key genes based on graph entropy,COMPUTATIONAL BIOLOGY AND CHEMISTRY, vol.74, Pages:142-148, 2018.

(4)      ChaoPei, Shu-Lin Wang*, Jianwen Fang, GSMC:Combining Parallel Gibbs Sampling with Maximal Cliques for Hunting DNA Motif,JOURNAL OF COMPUTATIONAL BIOLOGY, vol.24, no.12, Pages:1243-1253, 2017.

(5)      DanLuo, Shu-Lin Wang*, Jianwen Fang, MIMPFC:Identifying miRNA-mRNA regulatory modules by combining phase-only correlationand improved rough-fuzzy clustering, JOURNAL OF BIOINFORMATICS ANDCOMPUTATIONAL BIOLOGY, vol.16, no.1,Article ID: 1750028, 2018.

(6)      WenLi, Shulin Wang*, Junlin Xu, Guo Mao, Geng Tian, Jialiang YangInferringLatent Disease-lncRNA Associations by Faster Matrix Completion on aHeterogeneous Network, FRONTIERS IN GENETICS, vol.10, Article ID:769,2019.

(7)      YueLiu, Shu-Lin Wang*, Jun-Feng Zhang, Prediction ofMicrobe-Disease Associations by Graph Regularized Non-Negative MatrixFactorization, JOURNAL OF COMPUTATIONAL BIOLOGY, vol.25, no.12,Pages: 1385-1394, 2018.

(8)      GuoMao, Shu-Lin Wang*, Wei Zhang, Prediction ofPotential Associations Between MicroRNA and Disease Based on BayesianProbabilistic Matrix Factorization Model, JOURNAL OF COMPUTATIONALBIOLOGY, vol.26, no.9, Pages:1030-1039, 2019.

(9)      Wei Zhang, Shu-Lin Wang*, A NovelMethod for Identifying the Potential Cancer Driver Genes Based on MolecularData Integration, BIOCHEMICAL GENETICS, vol.58, no.1, Pages:16-39,2020.

(10)   Su Zhou, Shulin Wang*, Qi Wu, Riasat Azim , Wen LiPredictingpotential miRNA-disease associations by combining gradient boosting decisiontree with logistic regressionCOMPUTATIONAL BIOLOGY AND CHEMISTRYvol. 85,Article ID: 107200, 2020.

(11)   YueLiu, Shu-Lin Wang*, Jun-Feng Zhang, Wei Zhang, and Wen Li, LncRNA-diseaseassociations prediction based on neural network-based matrix factorization,IEEE Access, Digital Object Identifier 10.1109/ACCESS.2017.Doi Number, 2020.

(12)   LeiTian and Shu-Lin Wang*, Exploring MiRNA Sponge Networks of breast cancerby Combining miRNA-disease-lncRNA and miRNA-target Networks, CurrentBioinformatics, vol.16, no.3, Pages: 385-394, 2021.

(13)   LeiTian and Shu-Lin Wang*, Exploring the potential microRNA spongeinteractions of breast cancer based on some known interactions, Journal ofBioinformatics and Computational Biology, vol.18, no.3, Article ID: 2050007 (15pages), 2020.

(14)   RiasatAzim , Shulin Wang*, Su Zhou, Xing Zhong, Purity estimation fromdifferentially methylated sites using Illumina Infinium methylation microarraydata, CELL CYCLE, vol.19, no.16, Pages:2028-2039, 2020.

(15)   YueLiu, Shu-Lin Wang*, Jun-Feng Zhang, Wei Zhang, Su Zhou and Wen Li,DMFMDA: Prediction of microbe-disease associations based on deep matrixfactorization using Bayesian Personalized Ranking, IEEE-ACM TRANSACTIONS ONCOMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021.

(16)   YueLiu, Shu-Lin Wang*, Jun-Feng Zhang, Wei Zhang and Wen Li. A neuralcollaborative filtering method for identifying miRNA-disease associations, Neurocomputing,vol.422, Pages: 176-185, 2021.

(17)   Wen Li,Shu-Lin Wang*, Junlin Xu, and Jialiang YangIdentificationof Human LncRNA-Disease Association by Fast Kernel Learning-Based KroneckerRegularized Least SquaresICIC 2020: Intelligent Computing Theories andApplicationvol.12464Pages: 302-315Bari, Italy,2020.

(18)   Cai,Jie, Huang, Wei, Yang, Sheng, Wang, Shulin, Luo, Jiawei, A SelectionMethod for Denoising Auto Encoder Features Using Cross Entropy, Lecture Notesin Computer Science (including subseries Lecture Notes in ArtificialIntelligence and Lecture Notes in Bioinformatics), 15th InternationalConference on Intelligent Computing, ICIC 2019, vol. 11645, Pages: 479-490, Nanchang,China, 2019.

(19)   Mao,Guo, Wang, Shu-Lin*, A Novel Approach to Predicting MiRNA-DiseaseAssociations, Intelligent Computing Theories and Application, InternationalConference on Intelligent Computing, vol.11644, Pages: 354-365, Nanchang,China, 2019.

(20)   Cai,Jie, Luo, Jiawei, Shulin Wang, Yang, Sheng*, Feature selection inmachine learning: A new perspectiveNEUROCOMPUTINGvol.300, Pages: 70-79, 2018.

(21)   Shu-Lin Wang, Yaping Fang, Jianwen Fang. Diagnostic prediction of complexdiseasesusing phase-only correlation based on virtual sample template.BMCBioinformatics, vol.14(Suppl 8):S11, 2013.

(22)   Shu-LinWang, Yi-Hai Zhu, Wei Jia, Deshuang Huang. RobustClassification Method of Tumor Subtype by Using Correlation Filters. IEEE-ACMTransactions on Computational Biology and Bioinformatics, vol. 9, no.2, Pages:580-591, 2012.

(23)   Shu-LinWang, Xue-Ling Li, Jian-Wen Fang, (2012). Findingminimum gene subsets with heuristic breadth-first search algorithm for robusttumor classification. BMC Bioinformatics, vol.13, Article ID:178, 2012.

(24)    Shu-LinWang, Jie Gui, and Xue-Ling Li, Factor analysis for cross-platform tumorclassification based on gene expression profiles,  Journal of Circuits, Systems, and Computers,vol.19, no.1, Pages: 243-258, 2010.

(25)    Shu-LinWang, Xueling Li,Shanwen Zhang, Jie Gui, and Deshuang Huang, Tumorclassification by combining PNN classifier ensemble with neighborhood rough setbased gene reduction, Computers in Biology and Medicine, vol.40, no.2, Pages: 179-189,2010.

(26)   Shu-LinWang, XueLing Li, Jun-Feng Xia, and Xiao-PingZhang, Weighted neighborhood classifier for the classification of imbalancedtumor dataset, Journal of Circuits, Systems, and Computers, vol.19, no.1, Pages:259-273, 2010.

(27)   王树林王戟,陈火旺, 李树涛,张波云, “肿瘤信息基因启发式宽度优先搜索算法研究,”《计算机学报》,vol.31, no.4, Pages: 636-649, 2008.

(28)   王树林王戟,陈火旺, 张鼎兴,“k-DNA子序列计数算法研究,”《计算机工程》, vol.33, no.9, Pages:40-42, 2007.

(29)   王树林王戟,陈火旺, 张波云,“基于主成份分析的肿瘤分类检测算法研究,” 《计算机工程与科学》,vol.29, no.9, Pages: 84-89, 2007.

(30)   王树林王戟,陈火旺, 张波云,“基于分形的DNA序列可视化表示研究,”《计算机科学》,vol.33, no.7, Pages: 158-163, 2006.

(31)   王树林王戟,陈火旺, 张鼎兴,“k-DNA子序列频数分布研究,”《生物物理学报》,vol.22, no.3, Pages: 177-196, 2006.

(32)   MeilingHou, Shu-Lin Wang*, Xueling Li, Ying-ke Lei. Neighborhood rough setreduction based gene selection and prioritization for gene expression profileanalysis and molecular cancer classification, Journal of Biomedicine andBiotechnology, Article ID: 726413, 12 pages, 2010.

(33)   JieGui,  Shu-Lin Wang, and Ying-ke Lei, Multi-step DimensionalityReduction and Semi-Supervised Graph-Based Tumor Classification Using GeneExpression Data," Artificial Intelligence in Medicine, vol.50, no.3,Pages: 181-191, 2010.

(34)   JieGui, Wei Jia, Ling Zhu, Shulin Wang and Deshuang Huang, LocalityPreserving Discriminant Projections for Face and Palmprint Recognition,Neurocomputing, vol.73, no.13, Pages: 2696-2707, 2010.