科学研究
聚焦于设计和开发人工智能算法对大规模生物医学数据进行处理、挖掘和分析,探索疾病的机理,为加速新药研发提供重要研究方案,主要包括:
一、疾病发现
随着高通量测序技术的不断发展,积累了大量DNA序列,高效且更准确的DNA序列数据处理和分析对疾病发现有着至关重要的作用。以构建高完整性、高质量、高分辨率的基因组序列为目标,研究内容包括序列匹配、序列纠错、单倍型基因组组装等。
二、药物设计
药物设计是一门涵盖生物学、化学、药理学等多学科领域的综合性研究过程,旨在寻找并开发可用于治疗特定疾病的药物。这一过程是建立在疾病发现基础之上,是实现“精准医疗”的核心内容。研究内容包括药物靶点预测、药物性质预测、分子生成等。
科研项目
学生培养
学术论文
主要论文 (*为通讯作者)
Xixi Yang, Yanjing Duan, Zhixiang Cheng, Kun Li, Yuansheng Liu*, Xiangxiang Zeng, and Dongsheng Cao*, MPCD: A multi-task graph Transformer for molecular property prediction by integrating common and domain knowledge. Journal of Medicinal Chemistry, 2024, 67(23), 21303-23316. (药物化学顶级期刊、中科院一区)
Yuansheng Liu, Yichen Li, Enlian Chen, Jialu Xu, Wenhai Zhang, Xiangxiang Zeng, Xiao Luo*, Repeat and haplotype aware error correction in nanopore sequencing reads with DeChat. Communications Biology. 2024, 7 1678. (Nature旗下期刊、中科院一区)
Wen Tao, Xuan Lin, Yuansheng Liu*, Li Zeng, Tengfei Ma, Ning Cheng, Jing Jiang, Xiangxiang Zeng, Sisi Yuan*, Bridging chemical structure and conceptual knowledge enables accurate prediction of compound-protein interaction. BMC Biology, 2024, 22, 248. (中科院一区)
Tao Tang, Tianyang Li, Weizhuo Li, Xiaofeng Cao, Yuansheng Liu*, Xiangxiang Zeng, Anti-symmetric-based framework for balanced learning of protein–protein interaction. Bioinformatics, 2024, 40(10): btae603.
Yuansheng Liu, Zhenran Zhou, Xiaofeng Cao*, Dongsheng Cao, Xiangxiang Zeng*, Effective drug-target affinity prediction via generative active learning. Information Sciences, 2024, 679, 121135. (中科院一区)
Xiangzhen Shen, Zimeng Li, Yuansheng Liu*, Bosheng Song, Xiangxiang Zeng, PEB-DDI: A Task-Specific Dual-View Substructural Learning Framework for Drug-Drug Interaction Prediction. IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 569-579. (中科院一区)
Yuansheng Liu, Xiangzhen Shen, Yongshun Gong, Yiping Liu, Bosheng Song, Xiangxiang Zeng, Sequence Alignment/Map format: A comprehensive review of approaches and applications. Briefings in Bioinformatics, 2023, 24(5): bbad320.
Wen Tao, Yuansheng Liu*, Xuan Lin, Bosheng Song, Xiangxiang Zeng, Prediction of multi-relational drug-gene interaction via Dynamic hyperGraph Contrastive Learning. Briefings in Bioinformatics, 2023, 24(5): bbad371.
Xixi Yang, Li Fu, Yafeng Deng, Yuansheng Liu*, Dongsheng Cao*, Xiangxiang Zeng*, GPMO: Gradient perturbation-based contrastive learning for molecule optimization. IJCAI, 2023: 4940-4948. (CCF A类会议)
Xiangxiang Zeng, Xinqi Tu, Yuansheng Liu*, Xiangzheng Fu, Yansen Su. Toward better drug discovery with knowledge graph, Current Opinion in Structural Biology, 2022, 72, 114-126. (中科院二区) ESI高被引论文,ESI热点论文
Yuansheng Liu, Jinyan Li. Hamming-Shifting graph of genomic short reads: efficient construction and its application for compression. PLOS Computational Biology, 2021, 17 (7), e1009229. (生物信息学顶刊,中科院小类一区)
Yuansheng Liu, Xiaocai Zhang, Quan Zou, Xiangxiang Zeng. Minirmd: accurate and fast duplicate removal tool for short reads via multiple minimizers. Bioinformatics, 2021, 37 (11), 1604-1606. (生物信息学顶刊,中科院小类一区)
Yuansheng Liu, Limsoon Wong, Jinyan Li. Allowing mutations in maximal matches boosts genome compression performance. Bioinformatics, 2020, 36(18): 4675-4681. (生物信息学顶刊,中科院小类一区)