傅喜泉
我的位置在: 首页 > 学院概况 > 师资力量 > 傅喜泉
教师介绍

无照片

湖南大学信息科学与工程学院教授,博士生导师。
从事量子信息技术、空间光通信、光电信号检测和信号处理等方面的研究。2006年入选“教育部新世纪优秀人才”支持计划;2011年入选湖南省普通高等学校学科带头人培养计划;2016年获湖南省杰出青年基金资助;中国光学学会及中国电子学会高级会员。
研究工作主要围绕国防科技中量子信息技术的需求,以激光技术和光子信息技术为基础和手段,抓住“光电信号检测和处理”这个共性基础问题,着重进行量子信息技术、空间光通信及信号处理等方面的研发。招收学生只需要在数学、物理、通信、光学、电子、计算机、软件编程等方面之中有基础即可。能提供良好的科研条件,依据工作性质和态度能力坚持按月发放津贴或补助。课题组毕业的学生能力强,学生毕业单位好。
Email:fuxq@hnu.edu.cn;fuxiquan@gmail.com
中文名: 傅喜泉 英文名:
学历: 职称: 教授
联系电话: 电子邮件: fuxq@hnu.edu.cn fuxiquan@gmail.com
研究方向: 量子信息技术、空间光通信、光电信号检测和信号处理
联系地址: 湖南省长沙市岳麓区麓山南路2号,湖南大学信息科学与工程学院(410082)
所属机构:  通信工程系  学院领导  学院教师
个人简历

从事量子信息技术、空间光通信、光电信号检测和信号处理等方面的研究。2006年入选“教育部新世纪优秀人才”支持计划;2011年入选湖南省普通高等学校学科带头人培养计划;2016年获湖南省杰出青年基金资助;中国光学学会及中国电子学会高级会员。

研究工作主要围绕军口项目量子信息技术和光通信的需求,以非线性光学和光子学技术为基础和手段,抓住“激光信号检测和处理”这个共性基础问题,着重进行量子信息技术和空间光通信及信号处理等方面的研究,有较好的实验条件,能够开展本课题的实验研究。瞄准国家重大战略需求和国际科技发展的新兴前沿方向,以“光子学技术和量子信息技术”为载体,从激光传输与调控-->激光的测量与控制-->量子成像技术-->先进光通信和信息处理技术等各层面,曾圆满完成多项国家863课题、国家自然科学基金以及国家重大专项的课题任务,在激光传输与调控、激光测量与控制技术、鬼成像技术以及光通信技术等方面取得了一系列基础研究成果。

5年来,主持国家重点研发计划战略高技术重点专项1项,重大专项军口项目2项,原863计划军口项目2项以及国家自然科学基金面上项目等项目多项;发表SCI论文90余篇,申请专利10余项,其中授权4项,取得软件著作权1项。

欢迎对科研有兴趣的同学加入我们攻读硕士或博士学位!课题组有如下优势:

1.项目和经费充足,研究目标和研究内容明确,每年进账可供研究利用经费超过150万,能为学生的学习和科研活动提供充足的科研经费和良好的科研条件,也能依据工作性质和态度能力坚持按月额外发放学生津贴和补助(不算学校发放的津贴内)。

2.招收学生面向来源广泛,只需要在数学、物理、通信、光学、电子、计算机、软件编程等任意一个方面有较扎实的基础即可,特别希望对科研有兴趣的同学加入团队,课题组有能力保证根据学生能力和需求进行培养,能够做到因材施教,不忘初心、共同进步。

3.与北京大学、国防科技大学、北京邮电大学的相关课题组联系交流密切,团队培养的毕业生能力强且毕业后工作单位好,基本都在华为、腾讯、中兴及三大电讯公司等通讯开发和运营的公司就业。

欢迎对科研有兴趣的同学加入我们,联系方式

Email:fuxq@hnu.edu.cn

办公室:湖南大学信息科学与工程学院,院楼(软件大楼)227房间

电话:0731-88824527






学术论文

(1)代表性论文列表

[1] “Image quality enhancement inlow-light-level ghost imaging using modified compressive sensing method”, LaserPhys. Lett. 15, 045204 (2018).    

[2] “Negative influence of detector noise on ghost imaging based on thephoton counting technique at low light levels”Appl.Opt. 56(25), 7320-7326 (2017).

[3]  “Point-spread function in ghostimaging system with thermal light”, Opt. Express 24(22), 25856 (2016).

[4]  “Propagation Factors ofPartially Coherent Model Beams in Oceanic Turbulence”IEEE Photonics J. 9(5), 2747601 (2017).

[5] “Experimental investigation of ghost imaging of reflective objectswith different surface roughness”, Photon. Res. 5(4), 372-376 (2017).

[6] “Reduction of thedefocusing effect in lensless ghost imaging and ghost diffraction withcosh-Gaussian modulated incoherent sources”, Appl. Opt. 57(7), B20-B24(2018).

[6] “Effects of a modulated vortex structure on the diffraction dynamicsof ring Airy Gaussian beams”, J. Opt. Soc. Am. A 34(9), 1720-1726(2017).

[7] “Ghost Imaging for a Reflected Object with Large Incident Angles”, IEEEPhotonics J. 9(3), 7500107 (2017).

[8] “The robustness of truncated Airy beam in PT Gaussian potentialsmedia”, Opt. Commun. 410, 717-722 (2018).

[9]  “Plasma optical modulation forlasers based on the plasma induced by femtosecond pulses”, Opt. Express 25(13),14065-14076 (2017).

[10] “Graphene Oxide: A Perfect Material for Spatial Light ModulationBased on Plasma Channels”, Materials 10, 3549 (2017).

[11]  “Reflective ghost imaging freefrom vibrating detectors”, Chin. Phys. B 26(10), 104204 (2017).

[12] “Propagation characteristics of ring Airy beams modeled byfractional Schrodinger equation”, J. Opt. Soc. Am. B 34(10), 2190-2197(2017).

[13] “Dynamic propagation of symmetric Airy pulses with initial chirps inan optical fiber”, Opt. Commun. 399, 16-23 (2017).

[14] “The influence of the positiveand negative defocusing on lensless ghost imaging”, Opt. Commun. 382(1),415–420 (2017).

[15] “The noise analysis of ghost imaging in transparent liquid”, Opt.Quant. Electron. 49(6), 1075 (2017).

[16] “Multi-Solitons Shedding FromTruncated Airy Beam in Nonlocal Nonlinear Media”IEEEPhoton. Tech. Lett. 28(15), 1621-1624(2106).

[17] “Impacts of cross-phase modulation on modulation instability of Airypulses”, J. Mod. Opt. 63(19), 1173245 (2016).

[18] “Reversible conversion between optical frequencies of probe andidler waves in regime of optical event horizon”, J. Opt. Soc. Am. B 33,857-863 (2016).

[19] “Trapping and controlling the dispersive wave within a solitonicwell”, Opt. Express 24(10), 10302-10312 (2016).

[20] “Dynamics of finite energy Airy beams modeled by the fractionalSchrodinger equation with a linear potential”, J. Opt. Soc. Am. B 34(5),976-982 (2017).

[21]“Ghost telescope imaging system from the perspective of coherent-moderepresentation”, Opt. Commun. 358, 88-91 (2016).

[22] “Noise analysis in ghost telescope and ghost Fourier telescopeimaging systems with shaped incoherent light”, Opt. Quant. Electron. 48,78 (2016).

[23]  “Dressed dynamics of twotime-reversed shapes of Airy pulses in a relaxing nonlinear medium” J.Opt. Soc. Am. B 32(9), 1816-1823 (2015).

[24] “Modulation instability dynamics of coupling pulses with differentpowers in nonlinear fibers”, J. Mod. Opt. 62(11),908-917 (2015).

[25] “Diffraction modulation evolution from a knife-edge for small-scaleself-focusing”, Opt. Quant. Electron. 47(8), 2697-2707 (2015).

[26] “Wide spectral and wavelength-tunable dissipative soliton fiberlaser with topological insulator nano-sheets self-assembly films sandwiched byPMMA polymer”, Opt. Express 23(6), 7681-7693 (2015).

[27] “Drop-Casted Self-Assembled Topological Insulator Membrane as anEffective Saturable Absorber for Ultrafast Laser Photonics” IEEEPhotonics J. 7(2), 1500911 (2015).

[28] “A Method for Measuring thePulse width at Different Spatial Positions of Ultrashort Laser Pulses”, IEEEPhoton. Tech. Lett. 26(12), 1263 (2014).

[29] “Investigation for symmetric orasymmetric trapped soliton by the high-power pulse”, J. Mod. Opt. 61(12),994-1001 (2014).

[30] “Topological insulator Sb2Te3as an optical media for the generation of ring-shaped beams”, Opt.Mater. Express 4(10), 2016-2025 (2014).

[31] “Experimental investigation ofspatiotemporal evolution of femtosecond laser pulses during small-scaleself-focusing” Appl. Phys. B 114(3), 449-454 (2014).

[32] “Experimental measurement ofultrashort pulse evolution at different spatial positions in nonlinear media”, Opt.Laser Technol. 59, 47-51 (2014).

 

(2)专利及软件著作权如下:

[1]  基于激光等离子体通道的空间光调制器, 申请号:ZL201310749787.7; 授权公告日:20161123

[2] 基于噪声小尺度自聚焦增长的非线性系数测量装置及方法,申请号: ZL201410223737.X; 授权公告日:20170125

[3]  一种基于非局域介质的空间频率分束器,申请号:201510397066.3;公开日:2015-9-23

[4]  可控形状长寿命激光等离子体通道的发生装置, 申请号: 201310403002.0; 公开(公告)日: 2013.12.25

[5]  基于渐变折射率等离子体透镜产生空心光束的装置及方法,专利号:201310182069.6 ; 公开(公告)日:2013.08.14

[6]  基于长弛豫时间光纤的无集居数反转的激光能量放大系统,申请号:201210544220.1; 公开日:2013.04.10

[7]  非线性液体介质微流动恢复时间的测量系统及其测量方法,申请号-: CN201210544530; 授权公告日:2014-07-09

[8] 超短脉冲不同空间位置的时间脉宽测量系统及其测量方法,申请号: CN201110300782; 授权公告日:2012-12-19

[9]  激光传输模拟仿真软件,完成日期2012216日,软件著作权登记 20120502日,登记号:2012SR034233 NO:00112794