当前位置: 学术报告 >> 基于深度神经网络的逆半色调方法
发布于:2017-11-10  作者:研究生教务办1

报告时间:  20171114  周二 15:30

报告地点:  湖南大学信息科学与工程学院 542 报告厅

报告人简介:朱贤益,湖南大学信息科学与工程学院2016级博士生,导师为肖懿教授。主要研究兴趣为三维建模,图像语义,深度学习。目前已有成果发表在国际期刊Multimedia Tools and Applications和国际会议International Conference on Virtual Reality and Visualization以及 International Workshop on Trust, Security and Privacy for Big Data


报告主要内容Inverse halftoning is a kind of technologywhich transforms binary images composed of black and white pixels tocontinuous-tone images. Many scholars have studied this problem so far, but theresults are not satisfactory. In this paper, we propose an end-to-end deepconvolutional neural network composed of two parts. The first part is thefeature extraction part which consists of 4 convolution layers and 4 poolinglayers to extract feature from the halftoning images. The second part is thereconstruction part which contains 4 deconvolution layers to reconstruct thecontinuous-tone images. A U-Net structure which concatenates the outputs fromthe feature extraction layers with deconvolution layers is used for betterrestoring the detail information of the original images. Experimental resultsshow that our method outperforms the state-of-arts in terms of both visualquality and numerical evaluation.