
Commun Nonlinear Sci Numer Simulat 90 (2020) 105390 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

Research paper 

Chaotic dynamics in a neural network with different types of 

external stimuli � 

Hairong Lin, Chunhua Wang 

∗, Wei Yao, Yumei Tan 

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China 

a r t i c l e i n f o 

Article history: 

Received 7 January 2020 

Revised 18 May 2020 

Accepted 3 June 2020 

Available online 6 June 2020 

Keywords: 

Hopfield neural network 

Multi-scroll chaotic attractors 

Electromagnetic stimulus 

Hamilton energy 

a b s t r a c t 

Biological nervous system is very sensitive to external disturbances, and appropriate stim- 

ulus is beneficial for improving neural function in the neural system. In this paper, the 

effect of different external stimuli on chaotic dynamics in a Hopfield neural network with 

three neurons is explored. Mathematical model of the neural network is respectively es- 

tablished under three different cases, namely without external stimulus, with only electro- 

magnetic radiation stimulus, and with both electromagnetic radiation stimulus and multi- 

level-logic pulse stimulus. Under the three cases, equilibrium points, stabilities, and at- 

tractors of the neural network are investigated carefully. The research results demonstrate 

that the neural network with periodic attractors can induce abundant chaotic attractors 

by imposing electromagnetic radiation on its one neuron. And when this neuron is simul- 

taneously stimulated via electromagnetic radiation and multi-level-logic pulse, the neural 

network can produce complex multi-scroll attractors previously unobserved in Hopfield- 

type neural networks. Numerical results are verified by hardware experiments, effectively. 

Furthermore, based on the Helmholtzâs theorem, the Hamilton energy of the neural net- 

work is calculated and analyzed. It is found that lower average Hamilton energy can be 

detected in the neural network when complexity of external stimuli is enhanced. These 

new findings could offer a new insight into the occurrence mechanism of some neurolog- 

ical diseases. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Neural system which comprises a great mass of biological neurons interconnected is regarded as one of the most in-

tricate networks in nature. Numerous physical and biological experiments corroborated that various dynamical phenomena

associated with neural function can be observed in the neural systems [1–3] . Especially, some neurological diseases like

Epilepsy [4] , Psychosis [5] and Alzheimer [6] are closely related to the dynamics of the neural system [7–9] . Consequently,

the investigation of chaotic dynamics in neural networks is great significance for the precaution and treatment of nervous

diseases. 

Attractor is a nonlinear dynamical phenomenon, and widely exists in various nature fields such as biological systems

[10–12] , physical engineering [13,14] and material science [15] . From the perspective of generation mechanism of attractors,
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it can be divided into self-excited attractors [16] and hidden attractors [17,18] . From the view of Lyapunov exponents, it can

be divided into periodic attractors, transient chaotic attractors [19] , chaotic attractors and hyperchaotic attractors [20,21] .

And from an attractor structure point of view, attractor contains single-scroll attractors and multi-scroll attractors [22–24] .

Since the multi-scroll attractors have more complex dynamics than single-scroll attractors [25–27] , the generation and im-

plementation of multi-scroll attractors have become a hot topic in the research of nonlinear dynamical systems. For example,

Yu et al. [28] designed and implemented n -scroll attractors in a general Jerk circuit by introducing a nonlinear modulating

function. Hu et al. [29] affirmed that an improved Sprott A system can generate hidden multi-scroll attractors based on a

simple sine function. And Hong et al. [30] substantiated the Lorenz system can produce the multi-scroll attractors by us-

ing multi-level-logic pulse excitation technique. Additionally, the original Chua ′ s system can generate multi-scroll attractors

by introducing a multi-piecewise quadratic nonlinear memristor [31] . Indeed, most dynamical systems can easily generate

multi-scroll attractors by introducing appropriate nonlinear functions with multiple breakpoints. However, this approach is 

not suitable for generating multi-scroll attractors in neural network models, because these nonlinear functions have no any

physical interpretations. As a result, the multi-scroll attractor has not been observed in the neural network models so far. 

Hopfield neural network abstracted from human brain is a crucial neural network model in artificial neural network ter-

ritory [32,33] . Due to the prominent nonlinearity of neuron activation function, the Hopfield neural network is often used

to emulate the intricate chaotic dynamics of the brain [34,35] . Over the past few decades, a variety of dynamical attractors

including chaotic attractors [36–38] , hyperchaotic attractors [39] and hidden chaotic attractors [40] have been detected in

some small Hopfield neural networks. Especially, in recent years, some scholars discovered that more complicated chaotic

attractors can be engendered in some memristive Hopfield neural networks through introducing a memristor as a neural

synapse. For instance, Bao et al. [41] demonstrated coexisting asymmetric chaotic attractors can be obtained in the neural

network with a hyperbolic-type memristor synapse. Chen et al. [42,43] proved that the memristor synapse-coupled neural

network with two neurons can display multiple coexisting chaotic attractors. And Li et al. [44] revealed coexisting hyper-

chaotic attractors in a small memristive neural network. What is more, Pham et al. [45] found hidden hyperchaotic attractors

in a memristive neural network with three neurons. 

In fact, dynamics of a neuron or a neural network can be affected by several external stimuli like magnetic field and

electric field. Li et al. [46] firstly found that electromagnetic radiation can inhibit electrical activities of neurons and regu-

late collective dynamics of neural networks. Et ́e m ́e et al. have explored various dynamical phenomena including firing and

synchronization modes [47] , unstable discrete modes [48] , elimination of spiral waves [49] and long-range memory effects

[50] in single neuron model under magnetic field effect. And Ma et al. [51] confirmed that electric field stimulus can induce

mode transition in electrical activities of isolated neuron. Additionally, some neuroscientists have found that bipolar pulse

current stimulus can cause complex coexisting firing in two-dimensional Hindmarsh Rose neuron model [52] . Multi-level-

logic pulse consisted with of multiple bipolar pulse has more rich frequency and amplitude components, which is more

perfectly emulating an electric field stimulus effect on the neural networks. Although the influence of single neuron under

magnetic field stimulus or electric field stimulus has been widely investigated, the neural networks affected by magnetic

field and electric field are rarely studied. Moreover, such external stimuli on neural networks have not been explored from

the view of energy. 

As we all know, energy plays a key role in the information encoding and processing of biological nervous system [53,54] ,

as an example, normal electric activities in neural system need energy supplying. According to the Helmholtzâs theorem

[55] , the Hamilton energy of dynamical systems can be calculated [56–58] . As a consequence, some researchers suggested

that Hamilton energy can be estimated in neuron and neural network models by using Helmholtzâs theorem. And energy

analysis can give helpful clues to understand electrical activities and information encoding in neurons. For example, Song

et al. [59] confirmed that the firing pattern of neuron is connected with the energy release, and bursting and chaotic fir-

ing in neuron can present lower Hamilton energy. Wang et al. [60] believed that the Hamilton energy of neuron is closely

related to its firing modes instead of the external forcing currents. Moreover, Wu et al. [61] unveiled that the transition of

firing mode in neuron is dependent on the exchange of electric field energy and magnetic field energy, and found that field

coupling consumes lower energy than electrical synapse coupling in neural network. As mentioned in the previous works,

the neuronal network can give appropriate responses to energy from electric field and magnetic field. And from the view of

dynamical control, external nonlinear functions can input continuous energy to change the dynamical states in dynamical

systems. Indeed, there is evidence that the chaotic dynamics of the neural network can be changed by external stimulus

effectively [46,47] . Recently, Hu et al. [62] showed that a Hopfield neural network with three neurons subjected to external

electromagnetic radiation can produce chaotic attractors, hidden chaotic attractors and transient chaotic attractors. Similarly, 

Lin et al. [63] confirmed that hidden extremely multistability with hyperchaotic attractors and transient chaotic attractor can

be observed in a small Hopfield neural network under electromagnetic radiation. Additionally, Lin and Wang [64] studied

the chaotic dynamics of the Hopfield neural network with n neurons under electromagnetic radiation. It is found that the

dynamical behaviors of the neural network become more and more complex with the increasing of the number of neurons

affected by external electromagnetic radiation. However, by now, the effects of different types of external stimuli, for ex-

ample, no external stimulus, only electromagnetic radiation stimulus, both electromagnetic radiation and multi-level-logic 

pulse stimulus, on the chaotic dynamics in neural networks have not been explored. 

In this work, we study the chaotic dynamics of the neural network under three different cases, namely without external

stimulus, only electromagnetic radiation stimulus, with both electromagnetic radiation and multi-level-logic pulse stimuli. 

Firstly, the mathematical models of the neural network in the three situations are established, and their equilibrium points
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and corresponding stabilities are orderly analyzed and discussed. Afterwards, the dynamical attractors of the neural network

under different cases are numerically investigated by adopting phase plots, bifurcation diagrams, Lyapunov exponents and

Poincar ́e maps. We show that the neural network with periodic attractors can induce abundant chaotic attractors by putting

electromagnetic radiation on its one neuron. And complex multi-scroll attractors including double-scroll attractor, four-scroll

attractor and six-scroll attractor can be observed in the neural network stimulated by electromagnetic radiation and multi-

level-logic pulse simultaneously, which has not been reported in the previous works for the Hopfield type neural system.

In addition, the Hamilton energy function of the neural network is calculated and its energy transition is discussed. It is

found that the energy in neural system is mainly dependent on its dynamical behaviors rather than external stimuli, and

the multi-scroll attractors enjoy lower average Hamilton energy. Finally, the numerical simulation results are verified by

circuital neural network which is realized by using analog electric devices. 

The rest of this article is arranged as follows. In Section 2 , the neural network is modeled under three different cases, and

their equilibrium points and corresponding stabilities are analyzed. The chaotic dynamics of the neural network in the three

cases are respectively researched in Section 3 . Section 4 discussed the Hamilton energy of the neural network. Hardware

experiments based on the designed neural circuit are implemented in Section 5 . The last Section, namely Section 6 summa-

rizes the full text. 

2. A neural network under different external stimuli 

2.1. Scene modeling 

Hopfield neural network which defines a similar network structure to the biological neural system provides a reliable

model to imitate dynamics of brain activities. A original Hopfield neural network which is made up of n neurons can be

described by Hopfield [32] , Lin and Wang [64] 

C i 
. 

x i = −x i / R i + 

n ∑ 

j=1 

w i j tanh ( x i ) + I i (i, j ∈ N 

∗) , (1)

where C i , R i , and x i are the capacitance, resistance, and voltage between the outside and inside of the cell membrane of

the neuron i , respectively. tanh( x i ) is the neuron activation function, and w ij is the synaptic weight value describing the

connection strength between neuron i and neuron j [65] . Besides, I i is bias current, which is usually equal to zero. 

1) Case 1: the neural network without external stimulus 

Based on the original neural network model (1) , a small neural network with three neurons is proposed by selecting

appropriate synaptic weight values, and its expression is given by { 

C 1 
. 

x 1 = −x 1 / R 1 + 1 . 5 tanh ( x 1 ) + 2 tanh ( x 2 ) + 0 . 9 tanh ( x 3 ) + I 1 
C 2 

. 
x 2 = −x 2 / R 2 − 1 . 5 tanh ( x 1 ) + 1 . 5 tanh ( x 2 ) − 0 . 45 tanh ( x 3 ) + I 2 

C 3 
. 

x 3 = −x 3 / R 3 + 3 tanh ( x 1 ) − 2 tanh ( x 2 ) + 1 . 5 tanh ( x 3 ) + I 3 

(2)

Assuming C 1 = C 2 = C 3 = 1, R 1 = R 2 = R 3 = 1, I 1 = I 2 = I 3 = 0, the presented neural network can be modeled as follows: { 

. 
x 1 = −x 1 + 1 . 5 tanh ( x 1 ) + 2 tanh ( x 2 ) + 0 . 9 tanh ( x 3 ) 
. 

x 2 = −x 2 − 1 . 5 tanh ( x 1 ) + 1 . 5 tanh ( x 2 ) − 0 . 45 tanh ( x 3 ) 
. 

x 3 = −x 3 + 3 tanh ( x 1 ) − 2 tanh ( x 2 ) + 1 . 5 tanh ( x 3 ) 

(3)

1. Case 2: the neural network under electromagnetic radiation 

It is well known that the influence of electromagnetic radiation on isolated neuron can be described by fluctuation of

magnetic flux across cell membrane, and the coupling between magnetic flux and membrane voltage can be realized through

using a flux-controlled memristor [66,67] . Usually, the flux-controlled memristor can be expressed by { 

i = W (ϕ) v 
. 
ϕ = v 
W (ϕ) = α + 3 βϕ 

2 

, (4)

where i, v , ϕ are output current, input voltage, and magnetic flux, respectively. W( ϕ) denotes the memory conductance, and

α, β are two memristor parameters. When we consider that the neuron 2 is influenced by electromagnetic radiation, the

model of the neural network under electromagnetic radiation can be built as follows: [62,63] ⎧ ⎪ ⎨ 

⎪ ⎩ 

. 
x 1 = −x 1 + 1 . 5 tanh ( x 1 ) + 2 tanh ( x 2 ) + 0 . 9 tanh ( x 3 ) 
. 

x 2 = −x 2 − 1 . 5 tanh ( x 1 ) + 1 . 5 tanh ( x 2 ) − 0 . 45 tanh ( x 3 ) + ρx 2 (α + 3 βϕ 

2 ) 
. 

x 3 = −x 3 + 3 tanh ( x 1 ) − 2 tanh ( x 2 ) + 1 . 5 tanh ( x 3 ) 
. 
ϕ = μx 2 − εϕ 

, (5)

where ϕ denotes the magnetic flux across cell membrane of the neuron 2. The term ρx 2 (α + 3 βϕ 

2 ) is an induction current

caused by the change of magnetic flux and field, where ρ represents the intensity of the electromagnetic induction. The

term μx is the changes of magnetic flux caused by membrane potential, and the term εϕ is the leakage of magnet flux. 
2 
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Fig. 1. Concept map of the neural network in different external stimulus cases 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Case 3: the neural network under electromagnetic radiation and multi-level-logic pulse 

To further explore the effects of different kinds of external stimuli on the chaotic dynamics of the neural network, elec-

tromagnetic radiation and multi-level-logic pulse signal are imposed on the neuron 2 simultaneously, where the multi-level-

logic pulse signal can be described by [30] 

I MLP = 

n ∑ 

1 

a n s i gn ( sin ( ω n t)) , (6) 

where a n , ω n are pulse signal amplitude and frequency respectively. The model of the neural network under electromagnetic

radiation and multi-level-logic pulse can be established as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

. 
x 1 = −x 1 + 1 . 5 tanh ( x 1 ) + 2 tanh ( x 2 ) + 0 . 9 tanh ( x 3 ) 
. 

x 2 = −x 2 − 1 . 5 tanh ( x 1 ) + 1 . 5 tanh ( x 2 ) − 0 . 45 tanh ( x 3 ) + ρx 2 (α + 3 βϕ 

2 ) + I MLP 
. 

x 3 = −x 3 + 3 tanh ( x 1 ) − 2 tanh ( x 2 ) + 1 . 5 tanh ( x 3 ) 
. 
ϕ = μx 2 − εϕ 

(7) 

Furthermore, to better understand these three cases, a corresponding concept map is delineated in Fig. 1 , where N 1 , N 2 and

N 3 are three neurons, EMR represents electromagnetic radiation, and MLP represents multi-level-logic pulse. 

2.2. Stability analysis 

The equilibrium points of the neural network and their stabilities in the three cases are analyzed by graphic and nu-

merical analytic methods. For case 1, by equating the left side of model (3) to 0, the equilibrium points can be solved by

E(x, y, z) , (x = − y + 3 . 5 tanh (y ) + 0 . 45 tanh (z)) , (8)

where the values of y and z can be solved by graphic analytic method. The following functions are obtained by substituting

Eq. (8) to Eq. (3) 

F 1 (y, z) = −y − 1 . 5 tanh (−y + 3 . 5 tanh (y ) + 0 . 45 tanh (z)) + 1 . 5 tanh (y ) − 0 . 45 tanh (z) , (9)

F 2 (y, z) = −z + 3 tanh (−y + 3 . 5 tanh (y ) + 0 . 45 tanh (z)) − 2 tanh (y ) + 1 . 5 tanh (z) . (10)

The functions (9) and (10) are numerically drawn in Fig. 2 (a). Obviously, there is only one zero equilibrium point in the

model (3) . The stability of zero equilibrium point E (0,0,0) can be determined by the eigenvalues of the following Jacobian

matrix: 

J E = 

⎡ 

⎢ ⎣ 

∂ 
. 

x 1 
∂ x 1 

∂ 
. 

x 1 
∂ x 2 

∂ 
. 

x 1 
∂ x 3 

∂ 
. 

x 2 
∂ x 1 

∂ 
. 

x 2 
∂ x 2 

∂ 
. 

x 2 
∂ x 3 

∂ 
. 

x 3 
∂ x 1 

∂ 
. 

x 3 
∂ x 2 

∂ 
. 

x 3 
∂ x 3 

⎤ 

⎥ ⎦ 

= 

[ 

0 . 5 2 0 . 9 

−1 . 5 0 . 5 −0 . 45 

3 −2 0 . 5 

] 

. (11) 

J E has a characteristic equation: 

| λE − J E | = ( λ − 0 . 5 ) 
(
λ2 − λ − 0 . 350 0 0516 

)
. (12) 

Solving the characteristic equation, we can get three eigenvalues λ1 = 0.5, λ2 = 1.2746 and λ3 = 0.2746, respectively. Therefore,

the zero equilibrium point of the neural network model (3) is an unstable node. 
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Fig. 2. Intersections determined by two functions where the curves of functions F 1 ( y, z ) and F 2 ( y, z ) are colored in dark red and dark blue, respectively, 

and P i ( y, z ) denotes the coordinates y and z in equilibrium point E i ( x, y, z, w ). (a) F 1 ( y, z ) in (9) and F 2 ( y, z ) in (10) , (b) F 1 ( y, z ) in (15) and F 2 ( y, z ) in (16) , 

(c) F 1 ( y, z ) in (20) and F 2 ( y, z ) in (21) with n = 1, (d) F 1 ( y, z ) in (20) and F 2 ( y, z ) in (21) with n = 2. 

 

 

 

 

 

 

 

 

 

 

For case 2, through setting the left side of the model (5) equal to zero, its solutions can be determined as equilibrium

points ± E i ( x, y, z, w ), which can be calculated by 

E i (x, y, z, w ) = (x, y, z, ( μ/ε ) y ) , (13)

where 

x = − y + 3 . 5 tanh (y ) + 0 . 45 tanh (z) + ρy (α + 3 β( μ/ε ) 2 y 2 )) . (14)

Here, the point ( y, z ) is the intersection coordinate of the following two functions 

F 1 (y, z) = −y − 1 . 5 tanh (−y + 3 . 5 tanh (y ) + 0 . 45 tanh (z) + ρy (α + 3 β(μ/ε) 2 y 2 )) 
+1 . 5 tanh (y ) − 0 . 45 tanh (z) + ρy (α + 3 β(μ/ε) 2 y 2 ) 

, (15)

F 2 (y, z) = −z + 3 tanh (−y + 3 . 5 tanh (y ) + 0 . 45 tanh (z) + ρy (α + 3 β(μ/ε) 2 y 2 )) − 2 tanh (y ) + 1 . 5 tanh (z) . (16)

When parameters are fixed as α= 1.519, β= -0.04, ρ= -0.5, μ= 0.1 and ε= 0.45, the functions (15) and (16) are drawn in

Fig. 2 (b), synchronously. In Fig. 2 (b), there are three intersections, namely P 1 (-0.3799, 1.5195), P 2 (0,0) and P 3 (0.3799, -1.5195),

respectively. Meanwhile, the values of x and w can be given by Eqs. (13) and (14) . Hence three equilibrium points E 1 (-0.1919,-

0.3799,1.5195,-0.0084), E 2 (0,0,0,0) and E 3 (0.1919,0.3799,-1.5195,0.0084) can be attained from the Eq. (13) . The Jacobian matrix

of the model (5) on the equilibrium point E ( x, y, z, w ) can be easily expressed as follows 

J = 

⎡ 

⎢ ⎣ 

−1 + 1 . 5 sec h 

2 (x ) 2 sec h 

2 (y ) 0 . 9 sec h 

2 (z) 0 

−1 . 5 sec h 

2 (x ) −1 + 1 . 5 sec h 

2 (y ) + ρ(α + 3 βw 

2 ) −0 . 45 sec h 

2 (z) 6 ρβyw 

3 sec h 

2 (x ) −2 sec h 

2 (y ) −1 + 1 . 5 sec h 

2 (z) 0 

0 μ 0 −ε 

⎤ 

⎥ ⎦ 

. (17)
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Based on Eq. (17) , the eigenvalues of the equilibrium points E 1 and E 3 are λ1 = -0.45, λ2 = -0.8568, λ3 = λ4 =
0.0539 ± 1.3473 i . And the eigenvalues of the equilibrium point E 2 are λ1 = -0.45, λ2 = 1.6907, λ3 = λ4 = -0.4751 ± 0.8783 i .

Clearly, E 1 and E 3 are two unstable saddle focuses, and E 2 is an unstable saddle point. That is to say, external electromagnetic

radiation can induce the changes of the equilibrium points in the neural network. 

For case 3, by setting the left side of the model (7) to 0, its equilibrium points can be solved. And the solutions can be

divided into two situations. 

Situation 1:when ω n t = kπ(k ∈ N) , I MLP = 0. 

Under this situation, the model (7) and model (5) have the same equilibrium points and stabilities. 

Situation 2: when ω n t � = k π ( k ∈ N ), I MLP = 

n ∑ 

1 

±a n . 

Under this situation, the equilibrium points of model (7) can be determined as follows: 

E i (x, y, z, w ) = (x, y, z, ( μ/ε ) y ) , (18) 

where 

x = − y + 3 . 5 tanh (y ) + 0 . 45 tanh (z) + ρy (α + 3 β( μ/ε ) 2 y 2 )) + 

n ∑ 

1 

( ±a n ) , (19)

where the values of y and z can be solved by following two functions 

F 1 (y, z) = −y − 1 . 5 tanh (−y + 3 . 5 tanh (y ) + 0 . 45 tanh (z) + ρy (α + 3 β(μ/ε) 2 y 2 ) + 

n ∑ 

1 

( ±a n ) ) 

+1 . 5 tanh (y ) − 0 . 45 tanh (z) + ρy (α + 3 β(μ/ε) 2 y 2 ) + 

n ∑ 

1 

( ±a n ) 
, (20) 

F 2 (y, z) = −z + 3 tanh (−y + 3 . 5 tanh (y ) + 0 . 45 tanh (z) + ρy (α + 3 β(μ/ε) 2 y 2 ) + 

n ∑ 

1 

( ±a n ) ) 

−2 tanh (y ) + 1 . 5 tanh (z) 
. (21) 

When model parameters α= 1.519, β= -0.04, ρ= -0.5, μ= 0.1 and ε= 0.45, are fixed, and n = 1, a 1 = 0.02, ω 1 = 0.08 are cho-

sen, the functions in (20) and (21) are depicted as Fig. 2 (c). In Fig. 2 (c), there are five intersection points P 1 − P 5 , and the

corresponding equilibrium points can be calculated by using Eqs. (18) and (19) . So the five equilibrium points are E 1 (-0.1789,

-0.389, 1.5929, -0.0087), E 2 (-0.205, -0.3696, 1.4435, -0.0082), E 3 (0, 0, 0, 0), E 4 (0.205, 0.3696, -1.4435, 0.0082), and E 5 (0.1789,

0.3897, -1.5929, 0.0087), respectively. The corresponding eigenvalues can be solved by using numerical analysis methods.

The numerical results show that E 1 and E 5 have the same eigenvalues λ1 = -0.45, λ2 = -0.8764, λ3 = λ4 = 0.046 ± 1.366 i. E 2 
and E 4 have the same eigenvalues λ1 = -0.45, λ2 = -0.833, λ3 = λ4 = 0 . 0623 ± 1 . 3235 i . And the eigenvalues of E 3 are λ1 = -

0.45, λ2 = 1.6907, λ3 = λ4 = −0 . 4751 ± 0 . 8783 i . It is obviously that E 1 , E 2 , E 4 and E 5 are four unstable saddle focuses, and

E 3 is an unstable saddle point. Similarly, when n = 2, a 1 = 0.178, ω 1 = 0.15, a 2 = 0.16, and ω 2 = 0.14 are selected, I MLP has four

combinations such as 0.0338, -0.338, 0.018, and -0.018. The corresponding intersection points are plotted in Fig. 2 (d). Under

this situation, the model (7) has seven equilibrium points. Apparently, the stabilities of all of the equilibrium points can

be confirmed by using above analogous analysis methods. It can be proved that when n = 2 the model (7) has six unstable

saddle focuses and one unstable saddle point. According to the numerical and graphic analysis methods, it can be demon-

strated that with the increasing of n , the number of unstable saddle point is not changed, while the number of unstable

saddle focus is always equal to 2(n + 1) . Therefore, the external stimuli can change the number of the equilibrium points in

the neural network, which could cause the variation of its dynamics directly. Furthermore, all the equilibrium points in the

three models are unstable equilibrium points, which means that the all chaotic attractors generated from the three models

are self-excited attractors. 

3. Dynamical characteristics of the neural network under different cases 

In this section, the dynamical behaviors of the neural network under the three cases are revealed orderly. The numerical

researches are carried out by using the four-order Runge-Kutta algorithm with time step h = 0.01, and transient period about

20 0 0 time units. 

3.1. Simple periodic attractors in case 1 

The dynamical phenomena of the model (3) are researched by using phase portraits and Lyapunov exponents. When

initial states are kept as (0, 0.1, 0), dynamical trajectory of the neural network without external stimulus on the x 1 − x 2 and

x 2 − x 3 planes is respectively given in Fig. 3 (a) and (b). The first three Lyapunov exponents are L 1 = 0, L 2 = -0.6811 and L 3 = -

0.9185, respectively. As can be seen from Fig. 3 , the presented neural network without external stimulus exhibits a periodic

attractor. 
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Fig. 3. Periodic attractor of the neural network without external stimulus under initial states (0, 0.1, 0). (a) x 1 − x 2 plane, (b) x 2 − x 3 plane. 

Fig. 4. The μ-dependent dynamics with α= 1.519, β= -0.04, ρ= -0.5, ε= 0.45. (a) Bifurcation diagram under initial states (0, 0, 0.1, 0) colored in dark blue 

and (0, 0, -0.1, 0) colored in purple, (b) Lyapunov exponents under initial states (0, 0, 0.1, 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Abundant chaotic attractors in case 2 

The chaotic dynamics of the model (5) is analyzed by using bifurcation diagrams, Lyapunov exponents, attraction basin

and phase portraits. When the model parameters are fixed as α= 1.519, β= -0.04, ρ= -0.5, ε= 0.45, and initial states are

selected as (0, 0, 0.1, 0) colored in dark blue and (0, 0, -0.1, 0) colored in purple, the μ-parameter bifurcation diagram

is plotted in Fig. 4 (a). As shown in Fig. 4 (a), the dynamical behaviors dependent on the parameter μ are symmetrical

about zero value, which is a complex dynamical characteristic. When the adjustable parameter μ increases from -2, orbit

of the neural network under electromagnetic radiation begins with period-1limit cycle, then evolves to chaotic behavior

at μ= -1.8 by chaos crisis. Thereafter, the orbit breaks into a rich chaotic states until μ= -0.1. As μ increases further, the

chaotic behavior develops into coexisting chaotic attractors within the region μ ∈ [-0.1, 0]. Interestingly, the neural network

begins a reverse dynamical route until μ= 2, when μ further increases from 0. Consequently, the neural network affected by

electromagnetic radiation presents rich chaotic behaviors in a wide range, i.e., μ ∈ [-1.8, 1.8], except some narrow periodic

windows like μ = ±1.58, μ = ±1.08, and μ = ±0.7. Furthermore, coexisting chaotic attractors can be detected within the

region μ ∈ [-0.1, 0.1]. The corresponding first four Lyapunov exponents are drawn as shown in Fig. 4 (b). Chaotic attractors

of the model (5) with different μ values on x 1 − x 3 phase plane are portrayed in Fig. 5 . Undoubtedly, the neural network

affected by electromagnetic radiation can generate abundant chaotic behaviors. 

In addition, to further investigate the coexisting attractors in the neural network under electromagnetic radiation, the

attraction basin defined as the domain of initial conditions is depicted. When the adjustable parameter μ is chosen as

0.1, both the initial state x 2 (0) and ϕ(0) are fixed as 0, as well as the measureable initial conditions x 1 (0) and x 3 (0) are

scanned in the regions of [-10, 10] and [-10, 10] respectively, the attraction basin in the x 1 (0)- x 3 (0) initial plane is plotted

in Fig. 6 (a), where purple, yellow, and royal blue regions stand for chaotic attractors with different offset or amplitude.

Similarly, when the initial condition x 1 (0) and x 2 (0) are fixed as 0, the attraction basin in the x 3 (0)- ϕ(0) initial plane is drawn

in Fig. 6 (b). The attractors with different topologies are plotted in Fig. 7 under different initial conditions. It is obviously that

the neural network affected by electromagnetic radiation exhibits coexisting multiple chaotic attractors, that is, it generates

the phenomenon of multistability. Consequently, it can be seen from Figs. 5 and 7 that external electromagnetic radiation

can induce plenteous chaotic attractors in the neural network with periodic attractors. 
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Fig. 5. Chaotic attractors of the neural network under electromagnetic radiation with α= 1.519, β= -0.04, ρ= -0.5, ε= 0.45, initial states (0, 0, 0.1, 0) and 

different μ. (a) μ= -1.7, (b) μ = -1, (c) μ= -0.3, (d) μ= -0.1. 

Fig. 6. For adjustable parameter μ= 0.1, attraction basins in two initial planes, where purple, yellow, and royal blue regions stand for chaotic attractors 

with different toplogies. (a) x 1 (0)- x 3 (0) plane, (b) x 3 (0)- ϕ(0) plane. 

 

 

 

 

 

3.3. Complex multi-scroll attractors in case 3 

Keeping the system parameters α= 1.519, β= -0.04, ρ= -0.5, μ= 0.1 and ε= 0.45, and initial states (0, 0, 0.1, 0) unchanged,

the multi-scroll chaotic attractors of the model (7) are explored by using phase portraits, Poincar ́e maps, and Lyapunov

exponents. For example, when n = 1, a 1 = 0.02 and a 2 = 0.08, the neural network under electromagnetic radiation and multi-

level-logic pulse can generate a double-scroll attractor, as shown in Fig. 8 a. Meanwhile, the corresponding Poincar ́e mapping

on x − x phase plane for the neural network with x = 0 is depicted in Fig. 8 b. It can be seen from Fig. 8 b that the
3 1 2 
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Fig. 7. Coexisting chaotic attractors under different initial conditions. (a) (0,0,-0.1,0) located in purple region, (b) (0,0,5.5,5.5) located in the yellow region, 

(c) (0,0,0.1,0) located in the royal blue region. 

Fig. 8. Double-scroll attractor with n = 1 , a 1 = 0.02 and a 2 = 0.08 and initial states (0,0,0.1,0). (a) Phase portrait, (b) Poincar ́e mapping. 

Fig. 9. Four-scroll attractor with n = 2, a 1 = 0.178, ω 1 = 0.15, a 2 = 0.16, and ω 2 = 0.14 and initial states (0,0,0.1,0). (a) Phase portrait (b) Poincar ́e mapping 

 

 

 

 

 

 

 

 

 

 

 

 

 

Poincar ́e image contains two irregular open curves, which implies that the double-scroll attractor observed from the neural

network is a chaotic attractor. Moreover, the corresponding first four Lyapunov exponents are L 1 = 0.025, L 2 = 0, L 3 = -0.4585,

L 4 = -0.7141, respectively. 

When n = 2, a 1 = 0.178, ω 1 = 0.15, a 2 = 0.16, and ω 2 = 0.14, a four-scroll attractor can be detected in the model (7) , as shown

in Fig. 9 (a). And its first four Lyapunov exponents are L 1 = 0.0627, L 2 = 0, L 3 = -0.4621, L 4 = -0.7812, respectively. The Poincar ́e

mapping on x 3 − x 1 phase plane for the neural network with x 2 = 0 is depicted in Fig. 9 (b). In Fig. 9 (b), the Poincar ́e image

exhibits a patch of irregular dense points, which means that the neural network affected by electromagnetic radiation and

electric pulse produce complex four-scroll chaotic attractors. 

Similarly, when n = 3, a 1 = 0.24, ω 1 = 0.25, a 2 = 0.31, ω 2 = 0.21, a 3 = 0.5, and ω 3 = 0.14, a six-scroll attractor can be observed in

the model (7) , as shown in Fig. 10 (a). Under this case, the first four Lyapunov exponents are L 1 = 0.0627, L 1 = -0.1479, L 1 = -

0.2588, L 1 = -0.6761, respectively. And the Poincare mapping on x 2 − ϕ phase plane for the neural network with x 2 = 0 is

drawn in Fig. 10 (b). Clearly, the six-scroll attractor is a complex chaotic attractor due to the Poincar ́e image displays a patch

of irregular dense points. It is obviously that chaotic attractor can be switched to multi-scroll attractor by simultaneously

injecting external electromagnetic radiation and multi-level-logic pulse in the neural network. Such multi-scroll attractor has

not been found yet in the previously reported Hopfield neural networks. It is also found that the number of generated scrolls
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Fig. 10. Six-scroll attractor with n = 3, a 1 = 0.24, ω 1 = 0.25, a 2 = 0.31, ω 2 = 0.21, a 3 = 0.5, and ω 3 = 0.14 and initial states (0,0,0.1,0). (a) Phase portrait, (b) Poincar ́e 

mapping 

 

 

 

 

 

 

 

 

 

 

 

 

 

depends on the number of available electric pulse, which can be realized by using the different pulse-exciting combinations.

Hence, more numbers of scrolls can be achieved by selecting the different pulse combinations in the model (7) . 

4. Hamilton energy analysis and discussion 

It is extremely significant to explore energy release and capture during the transition of dynamical behavior in neural

network, because the occurrence and transition of electric activities of neurons depend on the energy release and supply

[59,60] . Based on the Helmholtz theorem [55] , any velocity vector field can be considered as a sum of the conservative field

containing the full rotation and the dissipative field containing the divergence. As a consequence, for a general continuous

nonlinear dynamical system F ( x ), its dynamical equations can be expressed by the follow form: [57,58] 

F (x ) = F c (x ) + F d (x ) = [ J(x ) + R (x ) ] ∇H, (22) 

where F c ( x ) and F d ( x ) are the conservative field and the dissipative field, respectively. �H is the gradient vector of a smooth

energy function H ( x ). J ( x ) and R ( x ) are a skew-symmetric matrix and a symmetric matrix, respectively. Then the Hamilton

energy function can be approached by { . 

H 

= ∇ H 

T R (x ) ∇H = ∇ H 

T F d (x ) 
∇ H 

T J(x ) ∇ H = ∇ H 

T F c (x ) = 0 

(23) 

Thus, for the neural network in model (3) , one has 

F c (x ) = 

[ 

2 tanh ( x 2 ) + 0 . 9 tanh ( x 3 ) 
−1 . 5 tanh ( x 1 ) − 0 . 45 tanh ( x 3 ) 
3 tanh ( x 1 ) − 2 tanh ( x 2 ) 

] 

, (24) 

F d (x ) = 

[ −x 1 + 1 . 5 tanh ( x 1 ) 
−x 2 + 1 . 5 tanh ( x 2 ) 
−x 3 + 1 . 5 tanh ( x 3 ) 

] 

. (25) 

According to Eqs. (22) and (23) , the Hamilton energy function H ( x 1 , x 2 , x 3 ) of the neural network can be written as follows:

∂H 

∂ x 1 
( 2 tanh ( x 2 ) + 0 . 9 tanh ( x 3 ) ) − ∂H 

∂ x 2 
( 1 . 5 tanh ( x 1 ) + 0 . 45 tanh ( x 3 ) ) + 

∂H 

∂ x 3 
( 3 tanh ( x 1 ) − 2 tanh ( x 2 ) ) = 0 . (26) 

Afterwards, a general solution of Eq. (26) is given by 

H = x 1 + 2 x 2 + x 3 . (27) 

Moreover, the differential versus time of the Hamilton energy function can be calculated by 

d H/d t = d x 1 /d t + 2 d x 2 /d t + d x 3 /d t 
= −x 1 − 2 x 2 − x 3 + 1 . 5 tanh ( x 1 ) + 3 tanh ( x 2 ) + 1 . 5 tanh ( x 3 ) 
= ∇ H 

T F d (x ) 
. (28) 

Evidently, the Hamilton energy function in Eq. (27) satisfies the condition as shown in Eq. (23) . According to references

[68,69] , it should be pointed that the Hamilton energy functions should be independent of the external forcing term. That

is to say, the models (5) and (7) have the same Hamilton energy function as the neural network model (3) . 

According to Eq. (27) , the Hamilton energy function is mainly dependent on the membrane potential of three neurons in

the neural network. That is, the Hamilton energy of the neural network is directly related to its dynamical behaviors instead

of external stimuli. Thus, it is important to observe the evolution of Hamilton energy by inducing different attractors in the
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Fig. 11. Evolution of Hamilton energy in the neural network under different cases. (a) periodic attractor in case1, (b) chaotic attractor in case 2 with μ= 0.1, 

(c) double-scroll attractor in case 3. 

Fig. 12. Hamilton energy derivative for the neural network under different cases. (a) periodic attractor in case1, (b) chaotic attractor in case 2 with μ= 0.1, 

(c) double-scroll attractor in case 3. 

 

 

 

 

 

 

 

 

 

 

neural network under different external stimulus, and the detailed results are plotted in Fig. 11 . Fig. 11 (a) shows the evolu-

tion of the Hamilton energy of the periodic attractor in the neural network without any external stimulus. Fig. 11 (b) shows

the evolution of the energy of the chaotic attractor in the neural network stimulated by electromagnetic radiation. Fig. 11 (c)

presents the evolution of the energy of the double-scroll attractor in the neural network under electromagnetic radiation

and multi-level-logic pulse. As depicted in Fig. 11 , the neural network has the different energy consumption and release

periods with respect to the different attractors. Hence, we believe that the energy distributions are mainly dependent on its

dynamical behaviors in the neural system. As it can also be seen, in the case of the periodic attractor, the Hamilton energy

fluctuates with higher amplitude than in the case of the chaotic attractor and the double-scroll attractor. In other words,

external stimulus shrinks the fluctuation of Hamilton energy in the neural network indirectly and greatly. Furthermore, the

corresponding Hamilton energy derivative is given in Fig. 12 . As shown in Fig. 12 , the neural network in the cases 1 and 3

exhibit intermittent release and absorbing in energy, while in the case 2 always consumes energy. 
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Fig. 13. Development of average Hamilton energy in the neural network, calculated by changing the external stimuli, and the average time for the calcu- 

lations T = 20 0 0 time units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further estimate the dependence of Hamilton energy on dynamical behaviors of the neural network, the average

Hamilton energy is calculated by 

< H > = 

1 

T 

∫ T 0 + T 

T 0 

H( x 1 , x 2 , x 3 ) dt, (29) 

where T 0 is the beginning time and T is the calculation period about 20 0 0 time units. By changing the external stimulus,

the evolution of average Hamilton energy is calculated, as shown in the bar chart Fig. 13 , where A 1 − A 5 denote periodic

attractor in case 1, chaotic attractor in case 2, double-scroll attractor in case 3, four-scroll attractor in case 3, and six-

scroll attractor in case 3, respectively. As shown in Fig. 13 , the average Hamilton energy of the periodic attractor in the

neural network without external stimulus is zero due to energy conservation effect. Interestingly, the average energy of the

neural network undergoes a rapid jump when its dynamical behavior is switched from the periodic attractor to the chaotic

attractor. This result is mainly due to the input of external electromagnetic radiation (energy). However, the average energy

in the neural network decreases greatly with the increase of the number of scrolls. The potential mechanism could be that

more complex external stimulation can much contribute to the multi-scroll behaviors in the neural system. It means that

external stimuli can decrease the energy cost triggering for dynamical behaviors of the neural network. Moreover, the results

in Fig. 13 confirm that continuous release and absorbing in energy can obtain a lower average Hamilton energy in the neural

system. As a result, appropriate external stimuli can enhance chaotic behaviors and also decrease the Hamilton energy. 

5. Hardware experiments 

The circuital realization of the mathematical model is extremely vital and necessary to the practical engineering appli-

cations [70] . As a rule, nonlinear dynamical equations can be physically implemented by employing already existing electric

elements like resistors, capacitors, operational amplifiers and analog multipliers [64,71] . Thus, the neural circuit can be de-

signed and manufactured in real life, which means that the theoretical and numerical results of the neural network model

can be effectively demonstrated by hardware experiments. 

5.1. Physical circuit design 

Before realizing the neural circuit, we first introduce a hyperbolic tangent function circuit [63] and a multi-level-logic

pulse function circuit [52] , as shown in Fig. 14 . In Fig. 14 (a), when R = 10 k �, R F = 520 �, R C = 1 k � and I o = 1.1 mA , the input-

output relationship of the hyperbolic tangent circuit can be expressed by V o = -tanh( V i ). And in Fig. 14 (b), when R S = 13.5 k �,

R K = 1 k � and V sn = sin(2 πFt ), the output current can be calculated by I MLP = sign(sin(2 πFnt ))/ R An . Considering the models (3),

(5) and (7) , the neural circuit is designed in Fig. 15 . It is noted that two switches are added in the neural circuit to control

the different external stimuli. According to Kirchhoff circuit law, the corresponding circuit state equations are given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

RC d v 1 
dt 

= −v 1 + 

R 
R 1 

tanh ( v 1 ) + 

R 
R 2 

tanh ( v 2 ) + 

R 
R 3 

tanh ( v 3 ) 

RC d v 2 
dt 

= −v 2 − R 
R 4 

tanh ( v 1 ) + 

R 
R 5 

tanh ( v 2 ) − R 
R 6 

tanh ( v 3 ) 

RC d v 3 
dt 

= −v 3 + 

R 
R 

tanh ( v 1 ) − R 
R 

tanh ( v 2 ) + 

R 
R 

tanh ( v 3 ) 

, (30) 
7 8 9 
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Fig. 14. Circuit implementation of hyperbolic tangent function and multi-level-logic pulse function.(a)Hyperbolic tangent function unit, (b) multi-level-logic 

pulse unit. 

Fig. 15. Main circuit structure of the neural network under different external stimuli. 

 

 

 

 

 

 

 

 

 

 

 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

RC d v 1 
dt 

= −v 1 + 

R 
R 1 

tanh ( v 1 ) + 

R 
R 2 

tanh ( v 2 ) + 

R 
R 3 

tanh ( v 3 ) 

RC d v 2 
dt 

= −v 2 − R 
R 4 

tanh ( v 1 ) + 

R 
R 5 

tanh ( v 2 ) − R 
R 6 

tanh ( v 3 ) + R v 2 (− 1 
R 10 

+ 

v 4 2 
R 11 

) 

RC d v 3 
dt 

= −v 3 + 

R 
R 7 

tanh ( v 1 ) − R 
R 8 

tanh ( v 2 ) + 

R 
R 9 

tanh ( v 3 ) 

RC d v 4 
dt 

= 

R 
R 12 

v 2 − R 
R 13 

v 4 

, (31)

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

RC d v 1 
dt 

= −v 1 + 

R 
R 1 

tanh ( v 1 ) + 

R 
R 2 

tanh ( v 2 ) + 

R 
R 3 

tanh ( v 3 ) 

RC d v 2 
dt 

= −v 2 − R 
R 4 

tanh ( v 1 ) + 

R 
R 5 

tanh ( v 2 ) − R 
R 6 

tanh ( v 3 ) + R v 2 (− 1 
R 10 

+ 

v 4 2 
R 11 

) + I MLP 

RC d v 3 
dt 

= −v 3 + 

R 
R 7 

tanh ( v 1 ) − R 
R 8 

tanh ( v 2 ) + 

R 
R 9 

tanh ( v 3 ) 

RC d v 4 
dt 

= 

R 
R 12 

v 2 − R 
R 13 

v 4 

, (32)

where RC is the integral time constant, and v 1 , v 2 , v 3 , v 4 are the voltages on the capacitors of four integral circuits, respec-

tively. Besides, - v a , - v b and - v c can be realized by inverting amplifiers. Assuming that RC = 10 us , the resistance R = 10 k �, then

the C can be chosen as 1 nF . In view of the coefficient of the neural network model and error influence, part resistances can

be calculated as R 1 = 6.67 k �, R 2 = 5 k �, R 3 = 11 k �, R 4 = R 5 = 6.67 k �, R 6 = 22 k �, R 7 = 3.5 k �, R 8 = 5 k �, R 9 = 7 k �. Furthermore,

the adjustable resistors R An = R/a n , R 10 = R/ρα, R 11 = g 2 R/ 3 βρ, R 12 = R/μ, R 13 = R/ε, and F n = ω n / 2 πRC, where g = 0.1 is

the control gain of the multiplier M . 

5.2. Hardware circuit experiments 

The neural circuit given in Fig. 15 is implemented on the experimental circuit breadboard through adopting electrical

elements including metal resistors, precision potentiometers, ceramic capacitors, operational amplifiers TL082CP and analog

multipliers AD633JN, as shown in Fig. 16 . Among them, TL082CP and AD633JN are supplied by ± 15V voltage sources. And

the sinusoidal voltage sources are achieved by function generators, and the experimental results are measured by an analog
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Fig. 16. The photo of the hardware circuit of the neural network under different external stimuli. 

Fig. 17. Experimental results in the neural network under different external stimuli. (a) Periodic attractor under case 1, (b) Chaotic attractor under case 2, 

(c) Four-scroll attractor under case 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

oscilloscope. After that, the numerical results given in the Section 3 are experimentally proved by selecting appropriate

switches. 

(1) When S 1 and S 2 are opened, the circuit of the model (3) can be realized. The periodic attractor can be generated from

the neural circuit, as shown in Fig. 17 (a). 

(2) When S 1 is closed and S 2 is opened, the circuit of the model (5) can be established. Regarding the system parameters

α= 1.519, β= -0.04, ρ= -0.5, μ= 0.1 and ε= 0.45, the corresponding resistances are chosen as R 10 = 12.5 k �, R 11 = 2 k �,

R 12 = 100 k �, R 13 = 21.4 k �, and the single scroll chaotic attractor can be captured from the neural circuit, as shown in

Fig. 17 (b). 

(3) When S 1 and S 2 are closed, the circuit of the model (7) can be completed. For n = 2, a 1 = 0.178, ω 1 = 0.15, a 2 = 0.16 and

ω 2 = 0.14, the circuit parameters are selected as F 1 = 2389 Hz, F 2 = 2230 Hz, R A 1 = 56.18 k �, R A 2 = 62.5 k �, and the four-scroll

attractor can be captured as shown in Fig. 17 (c). 

6. Conclusions 

Chaotic dynamics in a neural network under different external stimuli is studied in this paper. The neural network un-

der three different cases, namely, without external stimulation, with electromagnetic radiation stimulation, and with both

electromagnetic radiation and multi-level-logic pulse stimulations are mathematically modeled. The research results show 

that the three-neurons-based neural network with periodic attractors can induce rich chaotic behaviors including coexist-

ing chaotic attractors when its one neuron is stimulated by external electromagnetic radiation. And, the multi-scroll chaotic

attractors like double-scroll attractors, four-scroll attractors and six-scroll attractors can be observed in the neural network

simultaneously stimulated by electromagnetic radiation and multi-level-logic pulse. Furthermore, the Hamilton energy func- 

tion is calculated to find the energy changes when different external stimuli is imposed on the neural network. It is also

found that external stimuli can decrease the energy cost inducing more complex dynamical behaviors in the neural net-

work. Hardware experimental results demonstrate the theoretical and numerical results, effectively. These results may have

potential applications in the diagnosis and therapy of neurological diseases. 
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