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Abstract The theoretical, numerical and experimen-

tal demonstrations of firing dynamics in isolated neuron

are of great significance for the understanding of neu-

ral function in human brain. In this paper, a new type

of locally active and non-volatile memristor with three

stable pinched hysteresis loops is presented. Then, a

novel locally active memristive neuron model is estab-

lished by using the locally active memristor as a con-

necting autapse, and both firing patterns and multista-

bility in this neuronal system are investigated. We have

confirmed that, on the one hand, the constructed neuron

can generate multiple firing patterns like periodic burst-

ing, periodic spiking, chaotic bursting, chaotic spiking,

stochastic bursting, transient chaotic bursting and tran-

sient stochastic bursting. On the other hand, the phe-

nomenon of firing multistability with coexisting four

kinds of firing patterns can be observed via chang-

ing its initial states. It is worth noting that the pro-

posed neuron exhibits such firing multistability previ-

ously unobserved in single neuron model. Finally, an

electric neuron is designed and implemented, which is

extremely useful for the practical scientific and engi-
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neering applications. The results captured from neuron

hardware experiments match well with the theoretical

and numerical simulation results.
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1 Introduction

Firing is one of the primary electric activities of bio-

logical neurons and plays a crucial role in neural infor-

mation transmission and encoding. The neural signals

encoded by neuronal action potentials are considered

to be the neural bases for the realization of various

advanced intelligent behaviors like learning, memory

and emotion in the human brain [1–3]. Thus, the inves-

tigation of neuronal firing is extremely important to

develop neuromorphic systems with neural functions

[4–7] and artificial intelligence with emotional algo-

rithms [8–10]. In the past decades, great progresses in

nonlinear dynamics have inspired an increasing enthu-

siasm in studies on the complex dynamics in neural

electrical activities. From the perspective of dynam-

ics, firing patterns of neurons can be divided into peri-

odic and chaotic spiking firings [11], stochastic burst-

ing firing [12], periodic and chaotic bursting firings

[13] as well as chaos firing [14]. Since British biol-

ogists Hodgkin and Huxley reproduced the pulse fir-

ing in an isolated neuron model described by dynam-

ical equations [15], various firing patterns have been
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widely investigated based on theoretical and experi-

mental neuron models. For example, Hindmarsh and

Rose (HR) [16,17] discovered the periodic spiking fir-

ing and periodic bursting firing in a two-dimension

(2D) and a three-dimension (3D) nerve impulse mod-

els, respectively. In [18], the generating mechanisms

of periodic bursting firing and chaotic bursting firing

are revealed in a simplified HR neuron model. And

Lakshmanan and his team found that the periodic and

chaotic spiking, and the periodic and chaotic bursting

can be observed based on the HR neuron with time

delays [19]. With the rapid development in nonlinear

dynamics and bio-physiology, based on single neuron,

the phenomena of multiple modes and mode transition

in electrical activities of neuron have been explored

by considering different external environment factors.

For instance, Lv and Ma [20] detected that when exter-

nal electromagnetic radiation is imposed on the neu-

ron, the bursting firings with different periodicities can

be changed by changing the intensity of magnet field.

Some similar research results have also been reported

in [21,22]. And [23] obtained multiple firing patterns

such as periodic bursting, stochastic bursting, chaotic

bursting and chaos firing in an isolated neuron exposed

to external electric field. Similarly, multiple firing pat-

terns including chaotic bursting and stochastic bursting

have been verified in a sciatic nerve chronic constriction

injury neuron [24]. Additionally, in [25], hidden chaos

firing pattern has also been discovered in a memristive

HR neuron model.

In recent years, the phenomenon of coexisting

behaviors [26–29] has become a very important research

topic and received extensive attention. Coexisting

behavior is an intricate dynamical phenomenon that

contains different kinds of stable dynamical behav-

iors in the same nonlinear system under different ini-

tial states [30]. Particularly, the coexistence of three or

more different dynamical states under different initial

conditions is called as multistability [31,32]. Multista-

bility means that a rich diversity of stable states exists

in a nonlinear system, which reflects the characteristics

of the brain itself [33,34]. Numerous electrophysio-

logical experiments show that multistability of firing

patterns exists in the electrical activities of biologi-

cal neurons [35,36]. Such multistable behaviors may

be modulated by neuromodulators, which has many

potential implications for dynamic memory and infor-

mation processing in a neuron [37,38]. Recently, the

phenomenon of coexisting two types of firing patterns

has been observed in single neuron model. For exam-

ple, in [39], the coexistence of two chaotic bursting

with different topologies has been found in a modified

HR neuron by imposing an external alternating current.

[40] captured the coexisting phenomenon of periodic

spiking firing and chaotic bursting firing in a 2D HR

neuron model stimulated by bipolar pulse. In particular,

Bao et al. [25] demonstrated that the coexisting behav-

iors of periodic spiking and hidden chaos firing can be

produced in the memristive HR neuron model under

two sets of different initial conditions. And the coexis-

tence of periodic bursting firing and hidden bursting fir-

ing has been discovered in a threshold memristive neu-

ron model [41]. Besides, the multistability with coex-

isting three types of periodic bursting firing patterns

with different periodicities has been observed in single

Morris–Lecar neuron model [42]. However, the mul-

tistability with coexisting four or more firing patterns

has not been detected in isolated neuron models up to

now. Therefore, it is important to explore firing multi-

stability from single neuron models, which is helpful

for better understanding of complicated dynamics of

electrical activities observed in biological neurons.

It is well known that memristor [43,44] is a natu-

ral nonlinear nano-electronic device. Due to excellent

biomimetic characteristics like nano-scale, nonlinear-

ity and memorability, memristors usually are used to

imitate biological synapses [45,46]. Local activity is

considered as the origin of complexity [47,48]. The first

locally active memristor exhibiting local activity was

proposed by Leon Chua in 2014 [49]. Thereafter, the

mathematical and physical locally active memristive

devices have attracted increasing attention from scien-

tific and technological communities. There is evidence

that the locally active memristors [50–52] have intense

nonlinearity and complicated dynamics due to its rich

equilibria stability. At present, the locally active mem-

ristor models with one or two stable pinched hysteresis

loops under different initial states have been reported.

For example, [49] designed the locally active memristor

with one pinched hysteresis loops under different ini-

tial conditions. Jin et al. [53] presented a locally active

memristor model with two stable equilibria, and using it

obtained a simplest chaotic circuit. And the bistable bi-

locally active memristor with two stable pinched hys-

teresis loops has been investigated by Chang et al. [54].

As we all know, synapses are considered as the locally

active non-volatile memristors [55,56]. Therefore, the

locally active memristors can efficiently mimic the neu-
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ral synapses. Motivated by these considerations, we

present a new locally active and non-volatile memristor

with three stable pinched hysteresis loops, which has

not been reported in the previous investigation. After

that, the locally active memristor is selected as a autapse

to construct a novel locally active memristive neuron

model based on a 2D HR neuron. Through the theo-

retical and numerical analysis, we determine that the

locally active memristive neuron can generate multi-

ple firing patterns and firing multistability. Moreover,

hardware experiments of the locally active memristive

neuron are provided to verify the effectiveness of the

numerical simulation results.

The rest of this paper is organized as follows. Sec-

tion 2 designs a novel locally active memristor. In

Sect. 3, the locally active memristive neuron is mod-

eled, and its firing multistability is revealed. In Sect. 4,

the circuit of the locally active memristive neuron is

designed, and the theoretical and numerical results are

demonstrated in hardware experiments. Section 5 sum-

marizes the paper.

2 The new locally active memristor

Generally, a memristive model with n different stable

pinched hysteresis loops under different initial condi-

tions is called n-stable memristor [52]. The value of

n is determined by the number of the stable equilib-

rium points of the locally active memristor. Numer-

ous investigation results [49,50,53,54] show that the

locally active memristor with a larger number of stable

pinched hysteresis loops under different initial states

exhibits more complex dynamical behaviors. Unfor-

tunately, until now, the maximum of n is only equal

to 2. In this section, a non-volatile and locally active

memristor with three stable pinched hysteresis loops,

namely n = 3, will be presented. An accurate model

for the locally active memristor can be derived by mod-

ifying the generic memristor model [49]. According to

the theory of memristors, a voltage-controlled generic

memristor can be defined as

State-dependent ohm’s law:

i = W (x)v (1)

State equation:

dx/dt = F(x, v) (2)

where W (x) is memductance, and v, i , x denote

the input voltage, output current and state variable,

respectively. Now, we propose a hypothetical voltage-

controlled generic memristor model based on Eqs. (1)

and (2), namely

i = W (x)v = xv (3)

dx/dt = F(x, v) = α f (x) + βv (4)

where

f (x) = sgn(x + 1) + sgn(x − 1) − x (5)

α, β are two memristive parameters, and f (x) is the

exact equation of the five-segment curve. To prove the

presented mathematic model to be a non-volatile and

locally active memristor, the prominent characteris-

tics including frequency-dependent pinched hysteresis

loops, non-volatile and local activity are analyzed by

using the methods of theoretical analysis and numerical

simulations.

2.1 Pinched hysteresis loop

Keeping the parameters α = 1, β = 1, the dynamical

behaviors of the locally active memristor are explored

under different signal frequencies, signal amplitudes

and initial states, when a sinusoidal voltage signal

v = A sin(2π Ft) with amplitude A and frequency F

is chosen as the driving source. When the frequency

F = 0.5 and initial state x(0) = 2 are fixed with dif-

ferent values of the amplitude A, and the amplitude

A = 4 and initial state x(0) = 2 are fixed with differ-

ent values of the frequency F, the frequency-dependent

pinched hysteresis loops of the locally active memris-

tor are numerically simulated and plotted in Fig. 1a, b,

respectively. As can be seen from Fig.1, six pinched

hysteresis loops pass through the origin in the voltage-

current plane when driven by sinusoidal signal with

different amplitudes and frequencies. And in Fig. 1b,

as the excitation frequency increases from 0.5 to 2, the

hysteresis lobe area is gradually decreased. Further-

more, it is obvious that when the frequency increases

to infinity the pinched hysteresis loop will tend to a

single-valued function. Evidently, the proposed math-

ematical model exhibits memristor peculiarities [42],

which implies the model described by Eqs. (3)–(5) is a

memristor device.
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(a) (b)

Fig. 1 Amplitude-/frequency-dependent pinched hysteresis

loops of the locally active memristor. a F = 0.5, x(0) = 2

and different amplitudes. b A = 4, x(0) = 2 and different fre-

quencies. (Color figure online)

(a) (b)

Fig. 2 Initial state-dependent pinched hysteresis loops of the

locally active memristor. a A = 4, F = 0.8 and different initial

values. b A = 4, F = 0.3 and different initial values. (Color

figure online)

Additionally, with A = 4, F = 0.8 unchanged,

three stable pinched hysteresis loops can be obtained

from the proposed locally active memristor model as

shown in Fig. 2a under different initial states, and two

critical points which divide three pinched hysteresis

loops are −0.3521 and −1.1609, respectively. It should

be pointed out that with the decreasing of the signal

frequency, three distinct pinched hysteresis loops of

the memristor will tend to synthesize a stable pinched

hysteresis loop, as shown in Fig. 2b. Obviously, the

presented memristor is a tri-stable locally active mem-

ristor, which has not been reported in the previous stud-

ies. Additionally, the memductance of the locally active

memristor can be modulated by controlling voltage

through it, as shown in Fig. 3 with different frequencies

and initial states. Such feature is similar to the function

of a biological neural synapse. Consequently, using the

locally active memristor as a synapse in neuromorphic

system can efficiently imitate synaptic functions.

(a) (b)

Fig. 3 Voltage-dependent memductance of the locally active

memristor. a A = 4, x(0) = −1 and different frequencies. b

A = 4, F = 0.8 and different initial states. (Color figure online)

2.2 Non-volatile memory

It is noted that not all memristors have non-volatility

memories [49]. The property of non-volatile can be

proved by using power-off plot (POP), that is, a curve

in the F(x, 0) versus x plane. According to the non-

volatile memristor theorem, the POP curve of the non-

volatile memristor has two or more negative slope inter-

sections with x-axis in the dx/dt versus x plane. Here,

Let v = 0, the state equation of the locally active mem-

ristor reduces to

dx/dt = F(x, 0) = sgn(x + 1) + sgn(x − 1) − x (6)

The dynamic route of the nonlinear dynamical function

Eq. 6, namely POP, is shown in Fig. 4. In Fig. 4, when

dx/dt = 0, there are a total of five intersections with x-

axis located at Q1(−2, 0), Q2(−1, 0), Q3(0, 0), Q4(1, 0)

and Q5(2, 0), respectively. It should be stressed that

each intersection of POP with the x-axis is defined as

an equilibrium point of the memristor due to dx/dt = 0

under this case. According to the judgment method of

Ref. [49], the equilibrium points Q1, Q3 and Q5 are

asymptotically stable, while the equilibrium points Q2

and Q4 are unstable. Thus, three stable equilibrium

states exist in the non-volatile memristor under differ-

ent initial state x(0), that is to say,

X = x(Q1) = −2, (x(0) < −1) (7)

X = x(Q3) = 0, (−1 < x(0) < 1) (8)

X = x(Q5) = 2, (x(0) > 1) (9)

Furthermore, the corresponding stable small-signal

conductance can be calculated as

W (x(Q1)) = x(Q1) = −2, (x(0) < −1) (10)

W (x(Q3)) = x(Q3) = 0, (−1 < x(0) < 1) (11)
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Fig. 4 POP of the tri-stable locally active memristor. (Color

figure online)

W (x(Q5)) = x(Q5) = 2, (x(0) > 1) (12)

Obviously, Eqs. (7)–(12) show that the state x(t) is dif-

ferent with initial state x(0). Therefore, the presented

locally active memristor is a non-volatile memristor.

2.3 Local activity

It is noted that not all non-volatile memristors are

locally active [49]. The property of local activity can

be inferred by observing DC V –I plot. To measure the

DC V –I loci of the locally active memristor, its equilib-

rium equation can be calculated by setting dx/dt = 0,

as follows

V = X − sgn(X + 1) − sgn(X − 1) (13)

where V denotes DC voltage, and X is a variable equi-

librium state satisfying dx/dt (x = X) = 0. Then, sub-

stituting Eq. (13) into Eq. (3), the DC current I can be

described by

I = X V = X (X − sgn(X + 1) − sgn(X − 1)) (14)

Considering Eqs. (13) and (14), the DC V –I plot of

the tri-stable locally active memristor is drawn with

the input DC voltage V value varying from −1 to 1 V

and the variable X value varying within (−2.2, 2.2), as

shown in Fig. 5. In Fig. 5, when the DC voltage V = 0,

the memristor has five different memductances which

are, respectively, W (X1) = −2 (the royal blue curve),

W (X2) = −1 (the dark yellow curve), W (X3) = 0

(the cyan curve), W (X4) = 1 (the purple curve)

and W (X5) = 2 (the dark green curve). And when

Fig. 5 DC V − I loci of the tri-stable locally active memristor

associated with the equilibrium state on interval −2.2 < X <

2.2. (Color figure online)

the DC voltage V �= 0, five intervals of equilibrium

states X1 = (−2.2,−1.01), X2 = (−1.01,−0.9988),

X3 = (−0.9988, 0.9988) and X4 = (0.9988, 1.002)

and X5 = (1.002, 2.2) are coincident with the cor-

responding five segment curves in Fig. 4, and corre-

sponding POP curve is colored in royal blue, dark yel-

low, cyan, purple and dark green. It can be seen from

Fig. 5 that the royal blue curve, the dark yellow curve

and part of the cyan curve are negative slope, and the

corresponding equilibrium state values X are (−2.2,

−1.01), (−1.01, −0.9988) and (−0.9988, 0), respec-

tively. Therefore, the tri-stable non-volatile memristor

is locally active.

3 Dynamics of the locally active memristive neuron

3.1 Model Establishment

As it is well known, a neuron is made up of the nucleus

encoding information, the dendrite collecting electri-

cal signals, and the axon propagating electrical signals.

Synapse is an important bridge for connecting the axon

and the dendrite of different neurons, which plays a

key role for receiving and transferring electrical sig-

nals between neurons. Based on some mathematical

and biological neuron models [45,46], the patterns in

electrical activities can be modulated by the synapse

current. Autapse can connect the axon and the dendrite

of the same neuron by a close loop, which is a type of

special synapse. As reported in [57,58], the autapse can

regulate the neuronal activity by a negative feedback

autapse current. Therefore, it is significant and neces-

sary to consider autapse as a part of a neuronal sys-
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Fig. 6 Structure of a neuron with memristive autapse. (Color

figure online)

tem. Numerous experiments show that the nonvolatile

nature of memristors makes them an attractive candi-

date for the simulated autapse [56,57]. Furthermore,

the effect of electromagnetic induction current on elec-

trical activities in neuron can be described by using

memristor coupling [20–22,25,41]. Under this strat-

egy, a reduced diagram is plotted for a new neuronal

model with a memristive autaptse connection in Fig. 6.

Since the memristive autapse is considered by adding

memristive induction current on the neuron, a neuron

model accompanying autapse current can be consid-

ered to generate complex firing patterns in biological

neurons. Generally, autapse is thought as the locally

active memristor, which is emulated by a locally active

and non-volatile memristor considered in this paper. It

should be pointed out that such locally active mem-

ristive neuron model is distinguished from the mem-

ristive neuron model in [25] and [41] due to different

constructing approach. Compared with [25] and [41],

we mainly focus the influence of autapse current on

the firing patterns of neuron, while both [25] and [41]

investigate the electromagnetic induction effects trig-

gered by external electromagnetic radiation in biolog-

ical neurons.

The 2D HR neuron model is regarded by many

scholars as the idealistic one in the study of actual neu-

ron firing. Its mathematical expression is

{

dx/dt = y − ax3 + bx2 + I

dy/dt = c − dx2 − y
(15)

where x and y denote membrane potential and recovery

variable of the neuron, a, b, c and d are system parame-

Fig. 7 Two function curves and their intersection, where k =

0.9, α = 0.1 and β = 0.42. (Color figure online)

ters, and I is the external current. Since the fluctuation

of electrical activities in neurons can generate dynamic

electromagnetic field. According to the Maxwell’s

equation, the induction current following through the

autapse can be occurred. When the locally active mem-

ristor in (3)–(5) is considered to emulate the autapse, a

locally active memristive induction current IM , namely,

autapse current can be added on the neuron. As a result,

a novel locally active memristive neuron model can be

built. Based on Eqs. (3)–(5), a locally active memristive

induction current can be described by

{

IM = −kW (z)VM = −kzVM

dz/dt = α(sgn(z + 1) + sgn(z − 1) − z) + βVM

(16)

where z represents an inner state variable of the mem-

ristor synapse, k represents the coupling strength of

the locally active memristor, and VM represents the

membrane potential of the neuron. W (z) = z is a

memductance function, which stands for the synapse

weight. It should be noted that the autapse current is

often regarded as a negative feedback current [57,58],

namely −IM . When the autapse current −IM in (16) is

considered in the HR neuron model in (15), the locally

active memristive neuron model can be established and

written as

⎧

⎨

⎩

dx/dt = y − ax3 + bx2 + I + kxz

dy/dt = c − dx2 − y

dz/dt = α(sgn(z + 1) + sgn(z − 1) − z) + βx

(17)
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where a = 1, b = 3, c = 1, d = 5, I = 0, and α, β

are considered as two memristor synapse parameters.

3.2 Stability analysis

By setting the left-hand side of Eq. (17) to zero, its

equilibrium equation can be given by

⎧

⎨

⎩

y = x3 − 3x2 − kxz

y = 1 − 5x2

βx = α(z − sgn(z + 1) − sgn(z − 1))

(18)

And the equilibrium points of the locally active mem-

ristive neuron can be numerically solved by solving

Eq. (18), namely

⎧

⎨

⎩

x∗

y∗ = 1 − 5(x∗)2

z∗

(19)

where the values of x∗ and z∗ are the intersection points

of the two following function curves

{

f1(x, z) = 1 − x3 − 2x2 + kxz

f2(x, z) = α(sgn(z + 1) + sgn(z − 1) − z) + βx

(20)

The values of x∗ and z∗ can be determined through

graphic analytic method. For example, when k =

0.9, α = 0.1 and β = 0.42, the two function

curves given by Eq. (20) are plotted in Fig. 7, from

which the only solution is gotten as x∗ = 2.6143

and z∗ = 12.9801. Correspondingly, the equilibrium

point can be easily obtained from Eq. (19), namely

(x∗, y∗, z∗) = (2.6143,−33.1728, 12.9801). Corre-

spondingly, the Jacobian matrix of the neuron model

Eq. (17) at equilibrium point (x∗, y∗, z∗) can be given by

J =

⎡

⎢

⎢

⎣

∂ ẋ
∂x

∂ ẋ
∂y

∂ ẋ
∂z

∂ ẏ
∂x

∂ ẏ
∂y

∂ ẏ
∂z

∂ ż
∂x

∂ ż
∂y

∂ ż
∂z

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−3(x∗)2

+6x∗ + kz∗ 1 kx∗

−10x∗ −1 0

β 0
α(106(1 − tanh2(106(z∗ + 1)))

+106(1 − tanh2(106(z∗ − 1))) − 1)

⎤

⎥

⎥

⎥

⎥

⎦

(21)

Corresponding eigenvalues of the equilibrium point

(x∗, y∗, z∗) can be solved by using MATLAB numer-

ical methods. Based on the above methods, when the

parameters k and α are fixed as 0.9 and 0.1, respec-

tively, for different parameter β, the equilibrium points

P∗, their corresponding eigenvalues, and the stability

are given in Table 1. It can be seen from Table 1 that

the potential types of P∗ include unstable saddle-focus

with index 2, stable focus-nodes and stable saddle-

nodes.

According to the results given in Table 1, the β-

parameter bifurcation diagram is depicted by Fig. 8a

under the initial conditions (0, 0, −0.1), where xmax is

the maxima of the x variable. In Fig. 8a, when the model

parameter β increases from 0.3, the orbit of the locally

active memristive neuron model begins with period-1

spiking firing pattern and evolves to period-2 spiking

firing pattern at β = 0.34 by forward period doubling

bifurcation (FPDB) rout. Thereafter, the orbits break

into chaotic bursting firing at β = 0.4 until β = 0.46

via crisis scenario (CS). As β increases further, the

chaotic bursting is degenerated to periodic bursting pat-

tern via tangent bifurcation (TB) rout. Interestingly,

when β increases to 0.75, the orbit enters into hid-

den chaos firing pattern and finally ends at β = 0.96.

What follows is period-1 spiking pattern in the interval

β ∈(0.97, 1.1) again. It is noting that the wider chaotic

band of β ∈(0.4, 0.46) and β ∈(0.75, 0.96) contains

multiple narrow periodic windows, such as β = 0.44,

β = 0.84, and β = 0.94. The corresponding Lyapunov

exponents in Fig. 8b are basically consistent with the

dynamical phenomena on the bifurcation diagram in

Fig. 8a. Note that the third Lyapunov exponent L3 is

much less than L2 colored in blue and out of the pic-

ture. To systematically exhibit the complex dynamics in

Eq. (17), the corresponding types of equilibrium points

are superimposed on the bifurcation diagram in Fig. 8a.

It can be seen from Fig. 8a that there exists a smooth

transition from a unstable equilibrium point to a stable

equilibrium point in β ∈(0.3,1.1), which essentially

leads to the emergence of firing multistability.

3.3 Multistability with coexisting multiple firings

Before exploring the firing multistability of the locally

active memristive neuron, it is necessary to introduce

basic definition of various firing patterns [11–13,24].

Generally, firing pattern mainly includes spiking and
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Table 1 Equilibrium points and their corresponding eigenvalues and stabilities

β Equilibrium points (P∗) Eigenvalues Stabilities

0.3 (1.1913, −6.0960, 7.7403) −0.0597, 3.2115 ± j0.7598 Unstable saddle-focus

0.42 (2.6143, −33.1728, 12.9801) −0.0522, 2.9082 ± j3.0903 Unstable saddle-focus

0.58 (3.7669, −69.9477, 23.8482) −0.0483, 0.2222 ± j5.8420 Unstable saddle-focus

0.59 (3.8445, −72.9010, 24.6826) −0.0482, −0.0555 ± j5.9549 Stable focus-node

0.75 (5.1372, −130.954, 40.5293) −0.0473, −6.4628 ± j4.3227 Stable focus-node

0.78 (5.3875, −144.1258, 44.0234) −0.0472, −8.0911 ± j0.7782 Stable focus-node

0.79 (5.4714, −148.6811, 45.2246) −0.0472, −6.005, −11.3260 Stable saddle-node

0.9 (6.4025, −203.9600, 59.6227) −0.0472, −3.1614, −28.7764 Stable saddle-node

1.1 (8.1359, −229.9643, 91.4953) −0.0473, −2.1771, −66.2930 Stable saddle-node

Fig. 8 The β-dependent

dynamics with k = 0.9,

α = 0.1. a bifurcation

diagram, b Lyapunov

exponent spectra. (Color

figure online)
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Fig. 9 Numerical

bifurcation diagrams for the

parameter β with k = 0.9,

α = 0.1, and four sets of

different initial states. a

Bifurcation diagram for β

under the initial states (0, 0,

0.1). b Bifurcation diagram

for β under the initial states

(0, 0, −0.1). c Bifurcation

diagram for β under the

initial states (0.2, −0.1, 0).

d Bifurcation diagram for β

under the initial states

(−0.1, 0, 0). (Color figure

online)

(a) (b)

(c) (d)
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bursting patterns. If the trajectory of a firing pattern

of the neuronal system only circles around the spik-

ing, the firing pattern is said to be spiking pattern. If

the trajectory alternates between a quiescent state and

repetitive spiking, the firing pattern is considered burst-

ing pattern. The spiking patterns include periodic spik-

ing and chaotic spiking, whereas the bursting patterns

contained periodic bursting, chaotic bursting, stochas-

tic bursting, transient stochastic bursting and transient

chaotic bursting. Among them, periodic spiking con-

taining m spikes per spiking is said to be period-m

spiking (m ∈ N∗). For the chaotic spiking, except for

the period-m spiking, there exist other kinds of spiking

with different numbers or amplitudes of spikes. Peri-

odic bursting containing m spikes per burst is said to

be period-m bursting. For the stochastic bursting, the

trajectory is stochastic transition between bursting and

spiking. For the chaotic bursting, except for the period-

m bursts, there exist other kinds of bursts with different

numbers or amplitudes of spikes. Transient stochastic

bursting is an especial behavior that the existence of

stochastic bursting is on finite time. Similarly, for the

transient chaotic bursting, the behavior of chaotic burst-

ing only exists on finite time. In general, the phase tra-

jectory of the transient firing pattern is a transient chaos

attractor [33].

In our next work, the multistable dynamics of the

locally active memristive neuron model is revealed in

which two model parameters are kept unchanged as

k = 0.9, α = 0.1, and the model parameter β and ini-

tial conditions (x0, y0, z0) are taken to be adjustable.

In addition, MATLAB ODE45 algorithm is used, and

the start time, the time step △ t and the time length are

500, 0.01 and 4000, respectively.

Considering the model parameter β in the range

[0.32, 0.48] and four sets of different initial conditions

(0, 0, 0.1), (0, 0, −0.1), (0.2, −0.1, 0) and (−0.1, 0, 0),

four β-parameter bifurcation diagrams are depicted by

Fig. 9a–d, respectively. It can be seen from Fig. 9 that

the locally active memristive neuron model produces

different dynamical states under different initial con-

ditions. That is to say, diverse types of firing patterns

can be observed in the locally active memristive neuron

with different initial states.

According to the bifurcation plots shown in Fig. 9,

when the parameter β is selected as 0.39, and four sets

of initial conditions (0, 0, 0.1), (0, 0, −0.1), (1.5, 0.1,

0) and (0.2, −0.1, 0) are used, the multistability with

coexisting of periodic bursting firing pattern, period-

2 spiking firing pattern, chaotic bursting firing pat-

tern and transient chaotic bursting firing pattern can

be detected in the presented locally active memristive

neuron model. Correspondingly, Figs. 10 and 11 show

the time sequences of membrane potential x and phase

plane plots in the x–z plane, respectively. Noted that in

Fig. 10d time series of membrane potential x presents

a chaotic bursting firing in the time interval t ∈(0,

1400 ms) colored in royal blue, and then it turns to peri-

odic spiking firing colored in purple. Similarly, when

the parameter β is fixed as 0.4, with four sets of differ-

ent initial values (0, 0, −0.1), (2, −2, −2), (−0.1, 0, 0)

and (0.2, −0.1, 0), four types of firing patterns includ-

ing chaotic spiking, periodic bursting, chaotic burst-

ing and transient chaotic bursting in the locally active

memristive neuron model are depicted in Figs. 12 and

13, where Fig. 12 exhibits their time sequences of the

membrane potential x , and Fig. 13 shows correspond-

ing coexisting attractors including periodic attractor,

chaotic attractors with different topologies, and tran-

sient chaos attractor in the x–z plane. In Fig. 12d, time

series of membrane potential x exhibits a chaotic burst-

ing state in the time interval t ∈(0, 1480 ms) colored

in royal blue, and then it turns to periodic spiking state

colored in purple. In addition, under four sets of ini-

tial states (0, 0, 0.1), (0, 0, −1.8), (0, 0, −1.6) and

(0, −1.5, 0), four firing patterns which contain peri-

odic bursting firing, stochastic bursting firing, transient

chaotic bursting firing and transient stochastic bursting

firing can be discovered when the adjustable parameter

β is chosen as 0.46. Their time sequences of the mem-

brane potential x , and corresponding phase plane plots

are shown in Figs. 14 and 15, respectively. Where in

Fig. 14c, the dynamical behavior of the locally active

memristive neuron begins with chaotic bursting firing

pattern and evolves to periodic bursting firing pattern at

t = 1400 ms. And in Fig. 14d, the neuron first generates

stochastic bursting firing pattern within 2000 ms, after-

wards the stochastic bursting is degenerated to periodic

bursting pattern. As is clear from the above analysis,

the locally active memristive neuron generates multiple

firing patterns and firing multistability with coexisting

four types of firing patterns. And the form of multista-

bility of the locally active memristive neuron can be

changed by choosing different model parameters.

In addition, considering the aforementioned param-

eters and performing a measurement of initial condi-

tions, the attraction basin defined as the domain of ini-

tial conditions can be depicted, in which different types
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(a) (b) (c) (d)

Fig. 10 The time sequences of the membrane potential in the

locally active memristive neuron under different initial states.

k = 0.9, α = 0.1, β = 0.39. a Periodic bursting fir-

ing for (x0, y0, z0) = (0, 0, 0.1). b Periodic spiking firing

for (x0, y0, z0) = (0, 0,−0.1). c Chaotic bursting firing for

(x0, y0, z0) = (1.5, 0.1, 0). d Transient chaotic bursting firing

for (x0, y0, z0) = (0.2,−0.1, 0). (Color figure online)

Fig. 11 The corresponding phase plane plots under different ini-

tial states. k = 0.9, α = 0.1, β = 0.39. a Periodic attractor for

(x0, y0, z0) = (0, 0, 0.1). b Periodic attractor for (x0, y0, z0) =

(0, 0,−0.1). c Chaotic attractor for (x0, y0, z0) = (1.5, 0.1, 0).

d Transient chaotic attractor for (x0, y0, z0) = (0.2,−0.1, 0).

(Color figure online)

(a) (b) (c) (d)

Fig. 12 The time sequences of the membrane potential in

the locally active memristive neuron under different initial

states. k = 0.9, α = 0.1, β = 0.4. a Chaotic spiking fir-

ing for (x0, y0, z0) = (0, 0,−0.1). b Periodic bursting firing

for (x0, y0, z0) = (2,−2,−2). c Chaotic bursting firing for

(x0, y0, z0) = (−0.1, 0, 0). d Transient chaotic bursting firing

for (x0, y0, z0) = (0.2,−0.1, 0). (Color figure online)

of firing patterns are marked by different colors. When

the adjustable parameter β and the initial state z0 are

chosen as 0.39 and 0, as well as the measureable ini-

tial conditions x0 and y0 are scanned in the regions of

[−4, 4] and [−4, 4], respectively, the attraction basin in

the x0–y0 initial plane is plotted in Fig. 16a, where the

yellow, royal blue, orange and cyan regions stand for

periodic spiking firing pattern, chaotic bursting firing

pattern, periodic bursting firing pattern and transient

chaotic bursting firing pattern, respectively. When the

adjustable parameter is selected as β = 0.4, and the ini-

tial condition y0 is fixed as 0, the attraction basin in the

x0–z0 initial plane is drawn in Fig. 16b, where the yel-

low, royal blue, orange and cyan regions denote chaotic
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Fig. 13 The corresponding phase plane plots under different ini-

tial states. k = 0.9, α = 0.1, β = 0.4. a Chaotic attractor for

(x0, y0, z0) = (0, 0,−0.1) colored in royal blue, periodic attrac-

tor for (x0, y0, z0) = (2,−2,−2) colored in purple, chaotic

attractor for (x0, y0, z0) = (−0.1, 0, 0) colored in olive drab.

b Transient chaotic attractor for (x0, y0, z0) = (0.2,−0.1, 0).

(Color figure online)

(a) (b) (c) (d)

Fig. 14 The time sequences of the membrane potential in the

locally active memristive neuron under different initial states.

k = 0.9, α = 0.1, β = 0.46. a Periodic bursting firing

for (x0, y0, z0) = (0, 0, 0.1). b Stochastic bursting firing for

(x0, y0, z0) = (0, 0,−1.8). c Transient chaotic bursting firing

for (x0, y0, z0) = (0, 0,−1.6). d Transient stochastic bursting

firing for (x0, y0, z0) = (0,−1.5, 0). (Color figure online)

Fig. 15 The corresponding phase plane plots under different

initial states. k = 0.9, α = 0.1, β = 0.46. a Periodic

attractor for (x0, y0, z0) = (0, 0, 0.1). b Chaotic attractor for

(x0, y0, z0) = (0, 0,−1.8). c Transient chaotic attractor for

(x0, y0, z0) = (0, 0,−1.6). d Transient chaotic attractor for

(x0, y0, z0) = (0,−1.5, 0). (Color figure online)
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Fig. 16 For different β, local basins of attraction in two ini-

tial planes, where yellow, loyal blue, orange and cyan stand for

different firing states. a With β = 0.39, the four color regions

stand for periodic spiking, chaotic bursting, periodic bursting

and transient chaotic bursting, respectively. b With β = 0.4, the

four color regions stand for chaotic spiking, periodic bursting,

transient chaotic bursting and chaotic bursting, respectively. c

With β = 0.46, the four color regions stand for stochastic burst-

ing, periodic bursting, transient chaotic bursting and transient

stochastic bursting, respectively. (Color figure online)

spiking firing, periodic bursting firing, transient chaotic

bursting firing and chaotic bursting firing, respectively.

Similarly, when β = 0.46, z0 = 0.1, the attraction

basin in the y0–z0 initial plane is given in Fig. 16c,

where the yellow, royal blue, orange and cyan regions

represent stochastic bursting firing, periodic bursting

firing, transient chaotic bursting firing and transient

stochastic bursting firing, respectively. It is obvious that

the proposed locally active memristive neuron exhibits

multistability with coexisting four kinds of different

firing patterns.

To better exhibit the characteristics of the proposed

neuron model, a performance comparison with other

memristive neuron models is given in Table 2. Obvi-

ously, the locally active memristive neuron can gen-

erate more complex firing patterns, such as stochas-

tic bursting, transient chaotic bursting and transient

stochastic bursting. More importantly, the presented

locally active memristive neuron exhibits firing mul-

tistability with coexisting four firing patterns, which

has never been reported in isolated neuron model.

4 Circuit design and hardware experiments

From the view of practical engineering applications,

it is significant and necessary to the hardware circuit

realization of mathematical models [59,60]. Generally,

nonlinear dynamical equations can be physically real-

ized by adopting commercially available analog elec-

tric elements, such as operational amplifiers, analog

multipliers, capacitors and resistors [61–63]. Thus, the

hardware circuit of the locally active memristive neuron

model can be designed and implemented by employing

already-existing electronic elements, which is helpful

to promote the rapid development of neuromorphic cir-

cuits.

4.1 Circuit implementation

Before realizing the locally active memristive neu-

ron circuit, based on operational amplifiers and ana-

log multipliers, a circuit of the locally active memris-

tor described by Eqs. (3)–(5) is designed, as plotted in

Fig. 17. It can be seen from Fig. 17 that the locally

active memristor circuit is composed of one capacitor

C , one analog multiplier M , six operational amplifiers

U1–U6 and eleven passive resistors, which means that

the neuron circuit can be easily realized by adopting

common electric components. According to the Kirch-

hoff’s law, the circuit equations of the locally active

memristor circuit can be given as

i = W (vz)v =
gvz

RL
v (22)

C
dvz

dt
=

RF

RA

(

13.5sgn(vz+e)

RS
+

13.5sgn(vz−e)

RS
−

vz

RC

)

+
v

RB

(23)

where vz represents inner state, RC is the integral time

constant,v and i are the input voltage and output current
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Table 2 Comparison of different memristive neuron models

References Memristor Periodic

spiking

Chaotic

spiking

Periodic

bursting

Chaotic

bursting

Stochastic

bursting

Transient

chaotic

bursting

Transient

stochastic

bursting

Multistability

[25] Active

memristor

Yes Yes No No No No No No

[41] Active

threshold

memristor

No No Yes Yes No No No No

This paper locally

active mem-

ristor

Yes Yes Yes Yes Yes Yes Yes Yes

Fig. 17 Circuit configuration of the locally active memristor

emulator

Fig. 18 Circuit configuration of the locally active memristive

neuron model

of the locally active memristor, respectively. The model

described by Eqs. (22) and (23) agrees with the defi-

nition of the locally active memristor in Eqs. (3)–(5).

Assuming that RC = 1 ms, the resistance R = 10 k�,

then the C can be chosen as 100nF. Some resistances

in Eqs. (22) and (23) are calculated from Eqs. (3)–

(5) as RS = 13.5 k�, RC = 1 k�, RF/RA = 0.1α,

RB = R/β. Based on the locally active memristor cir-

cuit in Fig. 17, the circuit of the locally active memris-

tive neuron is implemented and shown in Fig. 18. The

corresponding circuit state equations are expressed by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C
dvx
dt

=
vy

R1
+

gvx
2

R2
−

g2vx
3

R3
+

gvx vz
RL

C
dvy

dt
= e

RS
−

gvx
2

R4
−

vy

R6

C
dvz

dt
=

RF
RA

(

13.5sgn(vz+e)
RS

+
13.5sgn(vz−e)

RS
−

vz
RC

)

+
vx
RB

(24)

According to Eq. (17), the resistances in Fig. 18 are

derived as R1 = 10 k�, R2 = 333�, R3 = 100�,

R4 = 200�, R5 = 10 k� and R6 = 10 k�. Moreover,

the resistances of RL , RF , RA and RB can be deter-

mined by RL = gR/k, RF/RA = 0.1α, RB = R/β,

where g = 0.1 is the multiplier gain.

4.2 Hardware experiments

Based on the circuit topology given in Fig. 18, the

circuit of the locally active memristive neuron model

in Eq. (18) is realized on the experimental bread-

board by using electronic elements of R/metal resis-

tors and precision potentiometers, C /ceramic capaci-

tors, M /AD633 and U /TL082CP. In experimental mea-

surements, the time series and phase trajectories of the

membrane potential in the memristive neuron are cap-

tured by 2 channel analog oscilloscope. Firstly, the cir-

cuit of the locally active memristor is demonstrated
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Fig. 19 The experimental

results of three stable

pinched hysteresis loops of

the locally active memristor.

(Color figure online)

Fig. 20 Experimentally captured coexisting firing patterns with RB = 25.58 k�. a Periodic bursting firing. b Periodic spiking firing.

c Chaotic bursting firing. d Transient chaotic bursting firing. (Color figure online)

Fig. 21 Experimentally captured corresponding coexisting attractors with RB = 25.58 k�. a Periodic attractor. b Periodic attractor. c

Chaotic attractor. d Transient chaotic attractor. (Color figure online)

in the hardware experiments. When the RA = 10 k�,

RF = 1 k�, RB = 10 k� and e = 0.8 V, that is, α = 1,

β = 1, three stable pinched hysteresis loops can be

obtained from the hardware circuit of the locally active

memristor, as shown in Fig. 19. Secondly, the coexist-

ing behavior of multiple firing patterns is verified by

using the neuron circuit shown in Fig. 18. When the

parameters k = 0.9, α = 0.1 and β are set to 0.39, 0.4

and 0.46, the time series and corresponding phase tra-

jectories were numerically simulated by MATLAB, as

shown in Figs. 10, 11, 12, 13, 14 and 15. Accordingly, in

the hardware experiments, the values of resistors RL ,

RF and RA are fixed as 1.11 k�, 1 k� and 100 k�,

respectively. When the resistance RB is set to 25.58 k�

Fig. 22 Experimentally captured coexisting firing patterns with RB = 24.99 k�. a Chaotic spiking firing. b Periodic bursting firing. c

Chaotic bursting firing. d Transient chaotic bursting firing. (Color figure online)

123



Firing multistability in a locally active memristive neuron model 3681

Fig. 23 Experimentally captured coexisting firing patterns with

RB = 21.74 k�. a Periodic bursting firing. b Stochastic bursting

firing. c Transient chaotic attractor with transient chaotic burst-

ing firing. d Transient chaotic attractor with transient stochastic

bursting firing. (Color figure online)

(β = 0.39), the periodic bursting firing, periodic spik-

ing firing, chaotic bursting firing and transient chaotic

bursting firing can be captured by turning on and off

the driven voltage source, and the corresponding time

sequences and phase trajectories are shown in Figs. 20

and 21, respectively. Using the same method, when

RB = 24.99 k�(β = 0.4), the experimental results

shown in Fig. 22 are good for verifying the numeri-

cal results shown in Fig. 12. Similarly, when RB =

21.74 k�(β = 0.46), the numerical simulation results

in Figs. 14a, b and 15c, d are verified by the experimen-

tal results in Fig. 23a–d. Obviously, the experimental

results are basically consistent with the numerical sim-

ulation results. However, it should be pointed out that it

is extremely difficult to determine an ideal initial value

in the hardware experiments. Thus, the experimental

results are slightly different from the simulation results.

5 Conclusion

In this article, we presented a novel locally active mem-

ristive neuron model based on a new locally active and

non-volatile memristor with three stable pinched hys-

teresis loops. The dynamics of electrical activity of

the locally active memristive neuron model is numeri-

cally and experimentally investigated. The results show

the proposed locally active memristive neuron gener-

ates three multistable phenomena of coexisting four

firing patterns, which are the phenomenon of coexis-

tence of periodic bursting, chaotic bursting, periodic

spiking and transient chaotic bursting, the phenomenon

of coexistence of chaotic spiking, periodic bursting,

chaotic bursting and transient chaotic bursting, and

the phenomenon of coexistence of stochastic bursting,

periodic bursting, transient stochastic bursting and tran-

sient chaotic bursting. The firing multistability is prac-

tically demonstrated in the hardware experiments. The

phenomenon of firing multistability observed in the sin-

gle neuron model is useful to understand the function

of biological neuron. Moreover, the hardware circuit of

the locally active memristive neuron model is imple-

mented by using common circuit elements, which is

very important to the application in the area of artifi-

cial intelligence.
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