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ABSTRACT

This paper proposes a simple locally active memristor whose state equation only consists of linear terms and an easily implementable func-
tion and design for its circuit emulator. The effectiveness of the circuit emulator is validated using breadboard experiments and numerical
simulations. The proposed circuit emulator has a simple structure, which not only reduces costs but also increases its application value. The
power-off plot and DC V-I Loci verify that the memristor is nonvolatile and locally active, respectively. This locally active memristor exhibits
low cost, easy physical implementation, and wide locally active region characteristics. Furthermore, a neural model composed of two 2D
HR neurons based on the proposed locally active memristor is established. It is found that complicated firing behaviors occur only within
the locally active region. A new phenomenon is also discovered that shows coexisting position symmetry for different attractors. The firing
pattern transition is then observed via bifurcation analysis. The results of MATLAB simulations are verified from the hardware circuits.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143071

The memristor is the fourth fundamental circuit element. Due
to its nanoscale, nonlinearity, and memorability characteristics,
memristors play a significant role in exploring nonlinear dynamic
behaviors. Local activity is considered as the origin of complex-
ity. Some locally active memristor emulators have been created
to enrich memristor theory and study new nonlinear dynam-
ics. However, in related works, the simulation models of locally
active memristors consist of complex functions, which increase
the difficulty of circuit implementation. This paper proposes a
simple locally active memristor and its circuit emulator, which
exhibit a simple structure and excellent characteristics such as
low cost, easy physical implementation, and a wide locally active
region. In addition, because of their natural biomimetic proper-
ties, memristors are usually used to imitate biological synapses
and autapses. Thus, a new neural model based on the proposed
locally active memristor is established, which shows more com-
plex firing behaviors within the locally active region. A new
neurodynamic behavior is discovered for coexisting position sym-
metry with different attractors.

I. INTRODUCTION

The memristor was originally postulated by Chua1 and is the
fourth basic circuit element defined by a constitutive relationship

between charge and magnetic flux. Memristors were then physically
implemented and fabricated by Hewlett–Packard Lab in 2008.2 Since
then, numerous researchers and scholars have focused on memris-
tors and their applications. Due to their low power consumption,
nanometer size, and nonvolatile characteristics, memristors can be
applied in a variety of scenarios, such as neural networks,3–6 memory
storage,7,8 chaotic circuit design,9–11 and secure communications.12

Local activity as defined by Chua in 201413 is considered as
the origin of complexity14,15 as it provides an effective way to study
complicated nonlinear dynamic behaviors. Therefore, the research
on locally active memristors can be divided into two categories:
elements and emulators. In 2017, a locally active memristor ele-
ment called the nanoscale NbO2 Mott memristor was physically
implemented,16 which showed that it is suitable for analog comput-
ing. However, due to the cost and technical difficulties of nanoscale
device manufacturing, commercially available locally active memris-
tor elements are infeasible for the near future. Therefore, to enrich
theoretical knowledge of locally active memristors and explore their
applications in various fields, studies of locally active emulators
and their simulation models are necessary. A locally active mem-
ristor, which is called the Chua Corsage memristor,17 was designed
by Chua. Its state equation was composed of piecewise linear func-
tions, and its locally active range is limited. Furthermore, Kim et al.
performed a detailed analysis of the complex frequency domain
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and bifurcation characteristics of the Chua Corsage memristor.18

A bi-stable bi-local active memristor was then proposed by Chang
et al.19

At the same time, the complex frequency domain and bifur-
cation characteristics of the memristor are analyzed. The memduc-
tance function of the bi-stable bi-local active memristor was realized
using a square function, which may limit its range. Jin et al.20 intro-
duced a locally active memristor and designed a nonlinear circuit
to verify its characteristics. Both the memductance function and
state equation were realized using a cubic function, which increased
the cost of circuit implementation. Previous studies were limited in
exploring the simulation models of locally active memristor emula-
tors. In this paper, a simple locally active memristor emulator and
its circuit emulator consisting of linear terms and an easily imple-
mented function are proposed. The memductance of the locally
active memristor can be positive, zero, and negative. The locally
active memristor emulator not only has a simple structure but also
exhibits a wide memductance range, locally active region, low cost,
and easy physical implementation characteristics.

It is well-known that memristors are natural candidates to
mimic biological synapses21,22 and autapses.23,24 Accordingly, the
application of memristors, including ordinary and locally active
memristors, in neural networks is an important research topic. Pre-
vious works have applied numerous ordinary memristors in neurons
and neural networks to study brain electrical activities where the
memristor relation emphasizes the memory characteristics of neu-
rons. Synapses are important bridges that connect different neurons.
Faraday’s law of electromagnetic induction states that a floating
neuron membrane potential generates an induction current that
behaves like a memristor. Thus, some scholars have suggested that
neurons should be connected via memristor synapses. They have
found that memristor synapses promote the synchronization sta-
bility of neurons25,26 and that the neuron firing behaviors simul-
taneously change when varying the memristance.27 An autapse is
a connection between a neuron and itself via a closed loop. Some
improved neuron models that consider memristors as autapses have
been established, which discovered different firing pattern tran-
sitions under the influence of autapses.28–30 The self-connection
resistor of artificial neural networks, such as the Hopfield network,
is replaced by a memristor autapse. As the memristance state is
related to the initial state of the memristor nonvolatility, memris-
tive Hopfield networks tend to induce multi-stable patterns under
different initial conditions.31,32 There is evidence that neurons oper-
ating in a locally active region may be central to learning efficiency,
adaptability, and analog computing in the brain.33

Chua proved that the potassium and sodium ion channels dis-
tributed over the entire length of the axons in neurons are locally
active memristors.34,35 Thus, the research on the application of
locally active memristors in neural networks is of great importance.
However, there have been no further studies on their application
in neural networks. As is well-known, the HR neuron is effective
and available to mimic electrical activities in the brain.25–30 This
paper establishes a neural model composed of two HR neurons
using the proposed locally active memristor as an autapse. It is
found that more complicated firing behaviors are generated for all
the states in the locally active region based on bifurcation analysis.

Of note, compared with neural models constructed from ordinary
memristors,25–32 the proposed neural model induces the coexistence
position symmetry of different firing behaviors, which has not been
reported in neurons to date.

This paper is organized as follows. A generic memristor model
based on Chua theory and its circuit emulator are presented, and the
nonvolatile and locally active characteristics are verified using the
power-Off plot (POP) and DC V-I Loci, respectively. The bi-stable
pinched hysteresis loops of the proposed locally active memristor
are simulated in Sec. II, and a neural model based on the locally
active region is established in Sec. III. The electrical activities of the
neural model are numerically revealed using bifurcation diagrams,
Lyapunov exponents, and phase portraits in Sec. IV, while Sec. V
provides a circuit implementation of the proposed neural model.
Section VI summarizes the work.

II. LOCALLY ACTIVE MEMRISTOR MODEL

Chua17 defined a generic memristor and presented its mathe-
matical definitions, which are shown as follows:

y(t) = G(x)u(t), (1)

dx

dt
= h(x, u), (2)

where u(t) and y(t) are the input and output of the memristor,
respectively, x is the state variable, and h(.) and G(.) are func-
tions related to a specific memristor. A simple generic memristor
is presented as described by

i = G0xv, (3a)

dx

dt
= 2tanh (x) − x + v = h(x, v), (3b)

where v(i) is the input voltage (output current), G0x is the memduc-
tance function with intensity G0, and h(x,v) is the state expression of
x. The circuit emulator is designed to validate its effectiveness and
analyze its nonlinear characteristics to certify that the memristor is
nonvolatile and locally active.

A. Circuit emulator of the memristor

The circuit emulator is shown in Fig. 1(a), which only contains
a function unit −tanh(x), integrator U0, analog multiplier A0, and
some resistances. The circuit schematic of −tanh(x) is depicted in
Fig. 1(b), where there are a pair of differential transistors T1 and T2,
two operational amplifiers U1 and U2, a current source I0 at 1.1 mA,
and some resistances at R = 10 k�, RF = 520 �, and Rm = 1 k�. The
circuit emulator consists of a small number of commercially avail-
able components, which shows a simple structure and exhibits low
cost with easy physical implementation characteristics.

Values of C0 = 10 nf and τ 0 = 1000 (τ = τ 0t) are chosen, and
the circuit parameters are determined as A0 = 1, Ra = 100 k�,
Rb = 100 k�, Rc = 50 k�, and R0 = 1 �. Circuit theory indicates that

i = A0xv, (4a)

dx

dτ
=

1

RcC0

tanh(x) −
1

RbC0

x +
1

RaC0

v, (4b)

Chaos 30, 053118 (2020); doi: 10.1063/1.5143071 30, 053118-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

E

vi

vo

-tanh(vi)
-15V

15V

+

-

-15V

15V

+

-

R

R

R

R

Rm Rm
RF R

I0

U2

U1 T1T2222

v

R0i

G(x)v

x

-v
Ra

Rb

Rc

C0

x
+

-

-15V

U0

-tanh(x)

15V

(a) (b)

FIG. 1. (a) Circuit emulator topology and (b) –tanh(.) function circuit schematic.

where i and v are the current and voltage through the locally active
memristor, respectively, and x is the state variable of the memristor.
The circuit emulator corresponds to the simulation model for the
locally active memristor defined by Eqs. (3a) and (3b).

B. Breadboard results

The frequency-dependent pinched hysteresis loop character-
istics of the circuit emulator are explored through breadboard

experiments. The experiments use a sinusoidal voltage source of
v = Asin(2π f) with a fixed amplitude of A = 2 V using a signal
generator. The pinched hysteresis loops with different frequencies
are shown in Figs. 2(a1)–2(a3). Numerical simulations were per-
formed to verify the effectiveness of the circuit emulator, as shown
in Figs. 2(b1)–2(b3). Based on study in Ref. 30, the frequency f
is given by f = Fτ 0. It is seen that both the breadboard experi-
ments and the numerical simulations verify the fingerprints of the
memristor.36,37

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 2. Frequency-dependent pinched hysteresis loops. The top row is the results of the breadboard experiments and the bottom row is for the numerical simulations at
frequencies of (1) 0.3 kHz, (2) 0.8 kHz, and (3) 6 kHz.
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C. Verification of nonvolatile and locally active

characteristics

The nonvolatile memristor retains its most recent memristance
(memductance) state when powered off. The nonvolatile memristor
theorem proposed by Chua suggests that a memristor with a scalar
state variable x is nonvolatile if its POP intersects the x axis at two or
more points with a negative slope.17–20 The POP reveals changes in
the state variable x of a memristor when the signal source is turned
off. Hence, the POP of the memristor can be calculated by setting the
voltage signal to v = 0 on the right-hand-side of Eq. (3b), as shown in
Fig. 3(a). There are two intersections with the x axis that have neg-
ative slopes, indicating that the designed memristor is nonvolatile.
Moreover, the POP reveals the equilibrium point (intersection with
x axis) characteristics of the memristor, suggesting that those with
negative (positive) slopes are stable (unstable). Thus, the equilib-
rium points Q0 and Q2 are asymptotically stable, but Q1 is unstable.
The moving direction of the memristor is marked by the arrowheads
in Fig. 3(a), which point toward (away from) the stable (unstable)
equilibrium points.

Exploring the DC voltage–current characteristics is an effec-
tive way to judge whether a memristor is locally active, which occurs
when it has a negative slope curve in the DC V-I plot.17 The DC
V-I Loci can be derived from the parametric method.38 Setting
(dx/dt) = 0 in Eq. (3b) and partitioning the state variable x between
−3 and 3 allows expressing the current and voltage in the following
parametric form:







V = −2tanh(X) + X

I = G0(−2Xtanh(X) + X2)

. (5)

The DC V-I Loci are depicted in Fig. 3(b) when G0 is equal
to 1 (G0 > 0). The slopes of the green curve and part of the red
curve are negative; hence, the designed memristor is locally active.
In Fig. 3(c), the DC V-I Loci with G0 =−1 (G0 < 0) are drawn
as the black (0 < x < 3) and pink (−3 < x < 0) curves. Therefore,
the locally active range is x > 0, which is a relatively wide region.
Figures 3(b) and 3(c) indicate that the locally active range is also
related to polarity of G0.

D. Simulation characteristics

A memristor device with two different stable pinched hysteresis
loops is called a bi-stable memristor. The stable pinched hysteresis
loop pair is dependent on the initial value, amplitude, and fre-
quency of the periodic signal v. When the amplitude (A = 2) and
the frequency (f = 1 Hz) are fixed, the critical initial value x*(0) is
approximately equal to −0.3119. The initial values of x(0) =−0.31
and x(0) = −0.32 are located on both sides of the critical value
x*(0), and two completely different stable pinched hysteresis loops
are drawn for x(0) = −0.31 (green curve) and x(0) = −0.32 (blue
curve) in Fig. 4(a1). However, Fig. 4(b1) shows two identical hystere-
sis loops with different initial values of x(0) = −0.1 and x(0) = 0.1,
both of which are larger than the critical initial value x*(0). On the
other hand, the critical amplitude A* is approximately 11.7769 V.
Figure 4(a2) shows two stable pinched hysteresis loops with ampli-
tudes of A = 2 V (A < A*). Nevertheless, these join together abso-
lutely at A = 15 V in Fig. 4(b2) (A > A*). Here, the amplitude and
special frequency are maintained at A = 2 V and f* = 0.1589 Hz,
respectively. Two stable pinched hysteresis loops are depicted in
Fig. 4(a3) with f = 0.6 Hz (f > f*), but they overlap at f = 0.1 Hz in
Fig. 4(b3) (f < f*).

The proposed locally active memristor is compared with
reported locally active memristors from the basis of physical achiev-
ability, locally active features, etc., as given in Table I.

As is well-known, the use of multipliers in circuit implemen-
tations will increase its cost and reduce its stability. In general, the
proposed locally active memristor has a simple structure with low
cost, easy physical implementation, and wide locally active region
characteristics.

III. LOCALLY ACTIVE MEMRISTOR NEURAL MODEL

AND ITS EQUILIBRIUM POINTS

A. Neural model

The two-dimensional (2D) HR neuron model was simplified
from the classical Hodgkin–Huxley model39 by Hindmarsh and
Rose.40 It is believed that the HR neuron is effective and avail-
able to mimic electrical activity in the brain.30,41 The autapse is a

(a) (b) (c)

FIG. 3. (a) POP of the memristor, (b) DC V-I Loci of the memristor, and (c) locally active range for the state variable x.
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v

i

x(0)=-2.0 x(0)=2.0

Amplitude A=2V

Frequency F=0.6Hz

(a1) (a2) (a3)

(b1) (b2) (b3)

FIG. 4. Stable pinched hysteresis loops with different initial values, amplitudes, and frequencies: (a1) x(0)=−0.32 (blue curve) and x(0)=−0.31 (green curve); (b1)
x(0)=−0.1 (blue curve) and x(0)= −0.1 (green curve); (a2) A= 2 V and (b2) A= 15 V; and (a3) f = 0.8 Hz and (b3) f = 0.1 Hz.

connection between a neuron and itself through a closed loop to
regulate the membrane potential, which plays a significant role in
numerous physiological activities of the brain. Therefore, a neural
model composed of two 2D HR neurons using the proposed locally
active memristor as an autapse is constructed. Meanwhile, the active
processes of biological neurons are simulated using the activation
function tanh(.). The connection structure is shown in Fig. 5.

Both x1 and x2 are the membrane potentials corresponding to
the first (HR1) and second (HR2) neurons, respectively, y1 and y2

are the associated spiking variables, and a, b, c, and d are the 2D HR
neuron model parameters, which are set as the classical values of

a = 1, b = 3, c = 1, and d = 5. The mathematical expression for the
model can be described as



































dx1
dt

= y1 + 3x1
2
− x1

3
+ k1W(x)tanh(x1) + k2tanh(x2)

dx2
dt

= 1 − 5x1
2
− y1

dx2
dt

= y2 + 3x2
2
− x2

3
+ k3tanh(x1) + k4tanh(x2)

dy2
dt

= 1 − 5x2
2
− y2

dx
dt

= 2tanh(x) − x + x1

, (6)

TABLE I. Comparison of reported locally active memristors.

Items Ref. 17 Ref. 19 Ref. 20 Proposed memristor

Memductance function Quadratic term Quadratic term Quadratic and linear terms Linear term
State equation Piecewise linear Cubic term and absolute value Cubic and multiple quadratic terms Linear term and

tangent function
Physical realization No No No Yes
Locally active range 0 < x < 10 2.5 < x < 3.75 x > 0 x > 0 (x < 0)
Multiplication times 2 3 5 1
Memductance value 0+ or (0−) 0+ or (0−) 0+− 0+−
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HR1 HR2k1w(x)

k2

k3

k4

FIG. 5. Proposed neural model using the memristor.

where k1W(x) = k1x represents the autapse described by the locally
active memristor; x is the state variable; k2, k3, and k4 are the con-
nection parameters; and the activation function tanh(.) simulates the
activation process of biological neurons.

B. Equilibrium point analysis

The analysis of equilibrium points reflects the local character-
istics of a system. Setting the left-hand-side of Eq. (6) to 0 provides
the equilibrium points as

E(x1, 1 − 5x1
2, x2, 1 − 5x2

2, x), (7)

x1 = x − 2tanh(x), (8)

where the values of x and x2 can be solved using graphic ana-
lytic methods. The following functions are obtained by substituting
Eqs. (7) and (8) into Eq. (6),

F1(x, x2) = 1 − 2[x − 2tanh(x)]2
− [x − 2tanh(x)]3

+ k1xtanh[x − 2tanh(x)] + k2tanh(x2) = 0, (9)

F2(x, x2) = 1 − 2x2
2
− x2

3
+ k3tanh[x − 2tanh(x)]

+ k4tanh(x2) = 0. (10)

Equations (9) and (10) are drawn numerically in Figs. 6(a)
and 6(b) for k1 = −0.2 and k1 =−0.1, respectively, when k2 = 1.2,
k3 = −0.9, and k4 = −1 are fixed.

The solutions for x and x2 are the intersections of two func-
tions in Figs. 6(a) and 6(b), which are determined using New-
ton’s iterative method. When k1 is equal to −0.2, the equilib-
rium points are P0(−1.5760, −11.4190, 0.6790, −1.3055, −3.5729),
P1(−1.2154, −6.3865, 0.6638, −1.2029, −3.2089), and P2(0.6332,
−1.0047. 0.2989, 0.5532, 2.6118). With k1 =−0.1, the equilibrium
point is P0(0.6666, −1.2215, 0.2904, 0.5785, 2.6466), giving three
and one equilibrium points for k1 = −0.2 and k1 = −0.1, respec-
tively. Therefore, the number of equilibrium points changes for
different k1.

IV. COMPLEX ELECTRICAL ACTIVITIES OF THE

NEURAL MODEL

Bifurcation analysis, phase diagrams, and Lyapunov exponents
are used to explore the electrical activity of the neural model. Bao’s
algorithm30 and the MATLAB ODE23 algorithm are used in the
bifurcation analysis and phase diagram, respectively, and there are
1000 iterations used in the Lyapunov exponent approach.

A. Oscillation only in locally active region

Based on Sec. II C, when the intensity k1 of the locally active
memristor is in the range of −0.2 to −0.08 (k1 < 0), the locally active
range of the memristor is x(0) > 0. The bifurcation diagram for k1

was obtained by setting two initial values with the system parame-
ters of k2 = 1.2, k3 =−0.9, and k4 = −1 in which only x(0) differs,
as shown in Fig. 7(a). The blue curve corresponds to the initial value
(−1 0 1 0 2), in which the neural model exhibits complex and chaotic
firing behaviors. In contrast, the red plot is related to the initial value
(−1 0 1 0 −2), in which the neural model exhibits a quiescent firing
behavior.

The bifurcation diagram with respect to x(0) is plotted in
Fig. 7(b) with the fixed system parameters of k1 = −0.15, k2 = 1.2,
k3 = −0.9, and k4 =−1. The proposed neural model exhibits com-
pletely different firing behaviors with x(0) = 0 as the boundary,
which is extremely complicated for all values of x(0) in the locally
active region and quiescent for all x(0) in the locally passive region.
Therefore, the simulation results suggest that oscillations only occur
in the locally active region. Therefore, this study provides a way to
explore complex electrical activities in neural systems.

(a) (b)

FIG. 6. Equilibrium points of the neural model
for (a) k1 = −0.2 and (b) k1 =−0.1.
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(a) (b)

FIG. 7. (a) Bifurcation diagram for k1
with initial values (−1 0 1 0 2) (blue curve)
and (−1 0 1 0 −2) (red curve). (b) Bifur-
cation diagram for x with initial value (−1
0 1 0 x).

(a) (b) (c)

FIG. 8. Coexistence of different firing behaviors with different initial values of (−1 0 1 0 0) in blue and (0.4 −0.39 1 0 1) in red under k1 values of (a) −0.147, (b) −0.1, and
(c) −0.085.

(a) (b)

FIG. 9. Electrical behaviors of the pro-
posed neural model with respect to k1: (a)
Lyapunov exponent graph and (b) bifur-
cation diagram of the membrane poten-
tial x1.
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B. Coexistence position symmetry of different

attractors

The coexistence phenomenon is when different attractors
appear under different initial conditions, which includes the attrac-
tor types and locations.42–44 However, coexisting position symmetry
for different attractors is a unique phenomenon. The phase diagrams
for the x1 and x planes are shown in Fig. 8. The system parameters
are selected as k2 = 2, k3 = −0.9, and k4 = −1 with several values
of k1 under different initial values. The quasi-period firing behav-
ior and chaotic firing behavior appear in Fig. 8(a) for k1 =−0.147.
The coexistence of two different chaotic firing behaviors with dif-
ferent shapes emerges for k1 =−0.1 is seen in Fig. 8(b), and the
coexistence of the periodic-3 firing behavior with different shapes
for k1 = −0.085 appears in Fig. 8(c). Therefore, coexisting position
symmetry firing behaviors are observed.

C. Lyapunov exponent and bifurcation analysis

The Lyapunov exponent approach is generally used to deter-
mine whether a system is in a chaotic state or not, while bifurcation
analysis is an effective method to study nonlinear systems.45 There-
fore, Lyapunov exponent graphs and bifurcation diagrams for x1

are drawn in Figs. 9(a) and 9(b), respectively, considering k1 as
the control parameter. The other system parameters are selected
as k2 = 2, k3 = −0.9, and k4 = −1 with the initial value (0.1 −0.1
−0.1 −0.1 −2). The Lyapunov exponent graph agrees with the
bifurcation diagram. Moreover, the neural model shows abundant
electrical behaviors for k1 ranging from −0.2 to 1.2, such as qui-
escent, chaotic, and periodic firing behaviors for different cycles;
forward and reverse period-doubling bifurcation behavior (remerg-
ing primary bubble); and tangent bifurcation and quasiperiodic
firing behaviors. The membrane potential of HR1 shows abundant
electrical behavior as the intensity k1 of the locally active memristor
changes.

V. CIRCUIT IMPLEMENTATION

A. Schematics and equations of experimental circuit

The circuit is implemented to verify numeric simulations.46 The
operations of integration, addition, and subtraction of the system in

Eq. (6) are accomplished by operational amplifiers connected with
the capacitors and/or resistors, and the −tanh(.) circuit is given in
Fig. 1(b). The main circuit scheme of the proposed system model
implemented using a pure analog circuit is depicted in Fig. 10, which
contains five circuit blocks for the physically implemented system.
The circuit equation is described according to Kirchhoff’s current
law as
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The state variables x1, y1, x2, y2, and x are voltages across
the capacitors C1, C2, C3, C4, and C5, respectively. It is assumed
that the time constant is τ 0 = 1000 (τ = τ 0t) with a capacitance
for the integrator of 10 nF. Based on the parameters of the system
in Eq. (8), the value of other components is obtained as follows:
R4 = 100 k�, R1 = 3.33 k�, R5 = 1 k�, R2 = 10/k1 k�, R3 = 50 k�,
R6 = 100 k�, R7 = 2 k�, R8 = 100 k�, R12 = 100 k�, R9 = 100 k�,
R13 = 1 k�, R10 = 111.1 k�, R11 = 100 k�, R14 = 100 k�, R15 = 2 k�,
R16 = 100 k�, R19 = 50 k�, R18 = 100 k�, and R17 = 100 k�. It is
noted that the resistor R2 is an adjusting resistance and corresponds
to the intensity of the locally active memristor.

B. Firing behavior verification

The physical circuit construction is executed on a breadboard.
The multiplier AD633JN and operational amplifier TL082CD are
supplied by a 15-V DC power supply along with a transistor S8050,
a ceramic capacitor, and resistors. Two external bias voltages V1 and
V2 are supplied from a DC voltage source. The output results are
captured using a digital oscilloscope. The induced initial voltages for
the five capacitors are randomly obtained by repeatedly cycling the
power supply. The firing patterns are observed by adjusting R2 as

FIG. 10. Main circuit of the proposed
neuron model.
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(a1) (a2) (a3)
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FIG. 11. Experimental measurement results for the (a1) quasi-period with R2 = 65 k�, (b1) chaotic firing with R2 = 65 k�, (a2) chaotic firing with R2 = 100 k�, (b2) chaotic
firing with R2 = 100 k�, (a3) three-period firing with R2 = 120 k�, and (b3) three-periodic firing with R2 = 120 k�.

shown in Fig. 11. There is a slight dissimilarity between the theoreti-
cal and actual R2 values of 65 k� and 120 k�, respectively, as caused
by system errors and parasitic parameters.

VI. CONCLUSION

This article proposes a locally active memristor and explores its
application in HR neurons. The circuit emulator is presented using
common electronic components, and the nonvolatile and locally
active characteristics of the memristor are verified using the POP
and DC V-I plot, respectively. Both the breadboard experiments
and simulation results verify the effectiveness of the locally active
memristor. Compared with reported locally active memristors, the
advantages of the presented memristor are its simple structure and
excellent characteristics, such as low cost, easy physical implemen-
tation, and a wide locally active region. Moreover, the locally active
memristor is used as an autapse to construct a neural model and
explore its application as HR neurons. The electrical activities are
investigated using bifurcation diagrams, phase portraits, and Lya-
punov exponent graphs, with associated hardware experiments. A
new neurodynamic behavior of coexisting position symmetry for
different attractors is discovered for the proposed neural model. It
is believed that this study contributes to the theoretical research of

memristors and the exploration of unique electrical activities in the
brain. In future work, it may be possible and valuable to design a
locally active memristor with better characteristics and explore other
new neurodynamic behaviors in the neural model based on locally
active memristors.
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