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Although multiwing hidden attractor chaotic systems have attracted a lot of interest, the cur-
rently reported multiwing hidden attractor chaotic systems are either with no equilibrium point
or with an infinite number of equilibrium points. The multiwing hidden attractor chaotic sys-
tems with stable equilibrium points have not been reported. This paper reports a four-wing
hidden attractor chaotic system, which has only one stable node-focus equilibrium point. The
novel system can also generate a hidden attractor with one-wing and hidden attractors with
quasi-periodic and periodic coexistence. In addition, a self-excited attractor with one-wing can
be generated by adjusting the parameters of the novel system. The hidden attractors of the
novel system are verified by the cross-section of attraction basins. And the hidden behavior
is investigated by choosing different initial states. Moreover, the coexisting transient four-wing
phenomenon of the self-excited one-wing attractor system is studied by the time domain wave-
forms and attraction basin. The dynamical characteristics of the novel system are studied by
Lyapunov exponents spectrum, bifurcation diagram and Poincaré map. Furthermore, the novel
hidden attractor system with four-wing and one-wing are implemented by electronic circuits.
The hardware experiment results are consistent with the numerical simulations.

Keywords : Stable node-focus; four-wing attractor; coexisting attractors; attraction basin.

1. Introduction

Since Lorenz proposed the first simple three-
dimensional chaotic system [Lorenz, 1963], chaos
theory has established itself as an important branch
of nonlinear dynamics with a broad range of appli-
cations in secure communication [Li et al., 2009],
image encryption [Zhou & Wang, 2020; Yin &
Wang, 2018; Cheng et al., 2019], cellular neural net-
work [Lin & Wang, 2020; Yao et al., 2019], etc. After
the mathematical definition of hidden attractors
was introduced by Leonov et al. [2011], the theory
and application of studying hidden attractors have

received extensive attention. The chaotic attrac-
tors can be classified as self-excited attractors
and hidden attractors. For the hidden attractor,
its attraction basin does not intersect any open
neighborhood of the system equilibria, while the
self-excited attractor’s basin is associated with an
unstable equilibrium. The widely-known chaotic
attractors such as Lorenz attractor [Lorenz, 1963],
Rössler attractor [Rössler, 1976] and Chen attractor
[Chen & Ueta, 1999] belong as self-excited attrac-
tors because they are all excited from the unstable
equilibrium points.

†Author for correspondence
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From a computational point of view, hid-
den attractors can be classified into three cat-
egories: hidden attractor with stable equilibrium
points, hidden attractor with no equilibrium point
and hidden attractor with infinitely many equilib-
rium points. The first hidden chaotic attractor was
found in a generalized Chua’s circuit [Kuznetsov
et al., 2010], and the hidden attractor in the clas-
sical Chua’s circuit was later reported in [Leonov
et al., 2011]. In 2010, Yang et al. [2010] proposed a
generalized Lorenz chaotic system with two stable
node-foci equilibrium points. Wang and Chen [2012]
proposed a chaotic system with only one stable
equilibrium point. Molaie et al. [2013] reported 23
simple chaotic flows with stable equilibrium point.
The first hyperchaotic hidden attractor with sta-
ble equilibrium points was proposed by Wei and
Zhang [2014]. Danca et al. [2016] discovered the hid-
den attractor with stable equilibrium points in the
Rabinovich–Fabrikant system. Next year, Wei et al.
[2017] reported a hyperchaotic hidden attractor in
a 5D system. Cang et al. [2019], reported a Lorenz-
like system with two equilibrium points, which has
hidden attractors and self-excited coexisting attrac-
tors. Apart from the hidden attractors with sta-
ble equilibrium points, hidden attractors with no
equilibrium point [Pham et al., 2014; Pham et al.,
2017; Zhou et al., 2018a] and hidden attractors with
infinitely many equilibrium points [Jafari & Sprott,
2013; Zhou et al., 2016; Wang et al., 2018; Zhang &
Wang, 2019b] were studied widely and deeply.

Compared with single-wing and two-wing
attractor systems, multiwing attractor systems [Yu
et al., 2010a; Yu et al., 2018; Yu et al., 2012] and
multiscroll attractor systems [Wang et al., 2017a;
Zhang & Wang, 2019a; Wang et al., 2017b; Jin &
Li, 2019; Jin, 2018] have more complex dynamic
behaviors, making them more suitable for applica-
tions. The multiwing chaotic systems can be clas-
sified into two categories. The first type of multi-
wing chaotic systems is formed by smooth nonlinear
functions. A 3D four-wing chaotic system with five
equilibrium points was proposed in [Liu & Chen,
2003], and it was proved to be a pseudo four-wing
chaotic system but consisted of two coexisting and
closely located double-wing attractors in [Liu &
Chen, 2004]. The real 3D four-wing attractors with
five equilibrium points in a smooth autonomous sys-
tem were proposed in [Lü et al., 2004; Qi et al.,
2006]. Later, using the energy analysis, which has
been used in many scenes [Qi & Yang, 2019; Qi,

2019], Qi et al. made a detailed analysis of the Qi
four-wing attractor [Qi & Liang, 2017]. In 2012,
Dadras et al. put forward a 4D hyperchaotic four-
wing attractor with one unstable saddle equilibrium
point for the first time [Dadras et al., 2012]. A
notable feature of these four-wing attractor chaotic
systems, which consist of smooth nonlinear func-
tions, is that the number of wings is not equal
to that of equilibrium points. The other type of
widely studied multiwing attractor chaotic system
is constructed by introducing nonsmooth nonlinear
parts into a chaotic system to increase the num-
ber of equilibrium points. Elwakil et al. [2003] pro-
posed a four-wing butterfly attractor chaotic sys-
tem by relying on two embedded state-controlled
binary switches. Hereafter, nonsmooth nonlinear
functions such as piecewise-linear function [Yu
et al., 2010b], heteroclinic loops [Yu et al., 2011],
multipiecewise square function [Ma et al., 2017],
etc. were applied to construct multiwing attractors
or grid multiwing attractors. A notable feature of
these multiwing attractor chaotic systems is that
the nonlinear functions would increase the num-
ber of unstable equilibrium points, and the num-
ber of wings is equal to the number of equilibrium
points.

The multiwing attractors mentioned above are
self-excited, for all of them are excited from unsta-
ble equilibrium points. Tahir et al. [2015] con-
structed a multiwing butterfly attractor chaotic
system with no equilibrium point. Zhou et al. [2017]
constructed a four-wing hyperchaotic attractor and
two-wing, three-wing and four-wing chaotic attrac-
tors with line equilibrium points (infinitely many
equilibrium points) by introducing a memristor
into a three-dimensional pseudo four-wing chaotic
system. Zhang et al. [2018a] reported a 4D hid-
den attractor chaotic system with no-equilibrium
point, which can generate one-wing to four-wing.
In the same year, Zhang et al. [2018b] proposed a
4D no-equilibrium hyperchaotic system with grid
multiwing hidden attractors. However, these mul-
tiwing hidden attractors belong to only two cate-
gories of hidden attractors of no-equilibrium point
and an infinite number of equilibrium points. To the
best of our knowledge, the multiwing hidden attrac-
tor with stable equilibrium points has not been
reported. Here we construct a chaotic system, which
can generate four-wing and one-wing hidden attrac-
tors with only one stable node-focus equilibrium
point. Besides, the system has hidden attractors
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with quasi-periodic and periodic coexistence, as well
as a self-excited attractor with one-wing.

The paper is organized as follows. The formu-
lation of the four-wing system is briefly introduced
in Sec. 2. In Sec. 3, the dynamical behaviors of the
system are discussed. The circuit implementation of
the hidden attractors is carried out in Sec. 4. Some
conclusions are finally drawn in Sec. 5.

2. The Four-Wing Hidden Attractor
System

In this section, we propose a 4D system, which
can generate a four-wing attractor and has only
one equilibrium point. The state equations can be
expressed as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = ax − byz − 10,

ẏ = −cy + xz + kw,

ż = −dz + exy,

ẇ = f(x + z),

(1)

where a, b, c, d, e, f and k are positive parameters.
In the following, some basic properties of the novel
system are analyzed.

2.1. Dissipation and existence
of attractor

The general case of the dissipation of system (1) is
calculated as

∇V =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
+

∂ẇ

∂w

= a − c − d. (2)

Thus, for a < c + d, system (1) is dissipative.
It means that all orbits of the system converge to
a specific subset of zero volume as t → ∞ at an
exponential rate �V , which is independent of sys-
tem states. It is known that a volume element with
its initial volume being V0 can shrink to V0e

Vt , indi-
cating that every volume element can shrink to a
specific subset of zero with the exponential rate �V .
Consequently, all system orbits can be limited to a
point set of which the volume is zero, and its asymp-
totic motion forms an attractor.

2.2. Equilibrium point and stability

The equilibrium point of system (1) can be
found by solving the following algebraic equations

simultaneously⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ax − byz − 10 = 0,

−cy + xz + kw = 0,

−dz + exy = 0,

f(x + z) = 0.

(3)

From the fourth equation we can get the rela-
tionship of state variables x and z, which can be
expressed as

x = −z. (4)

Substituting Eq. (4) into the third equation of
Eq. (3), we can get that the value of state variable y
equals to −d/e. Substituting Eq. (4) and the value
of state variable y into the first and the second equa-
tions of Eq. (3), we can get that the values of state
variables x, z and w can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = −z =
10

a − b

(
d

e

) ,

w =

−c

(
d

e

)
+

⎛
⎜⎝

10

a − b

(
d

e

)
⎞
⎟⎠

2

k
.

(5)

Hence, the only equilibrium point of system (1)
is

E∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗ =
10

a − b

(
d

e

) ,

y∗ = −d

e
,

z∗ = − 10

a− b

(
d

e

) ,

w∗ =

−c

(
d

e

)
+

⎛
⎜⎝

10

a − b

(
d

e

)
⎞
⎟⎠

2

k
.

(6)

The Jacobian matrix at the equilibrium point
can be expressed as

J(E∗) =

⎡
⎢⎢⎢⎢⎣

a −bz −by 0

z −c x k

ey ex −d 0

f 0 f 0

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
E∗

. (7)
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The stability of E∗ is determined by the eigen-
values of Eq. (7). In this part, we set the parameters
to b = 6, c = 10, e = 2, f = 0.05 and k = 2.5, to
investigate the effect of parameters a and d on the
stability of the equilibrium point. Equation (7) can
be rewritten as follows

J(E∗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a − 60
a − 3d

3d 0

− 10
a − 3d

−10
10

a − 3d
2.5

−d
20

a − 3d
−d 0

0.05 0 0.05 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

It is tough to judge the stability of E∗ by the
characteristic equation of the Jacobian matrix (8).
We use the numerical simulation method to inves-
tigate the effects of changing parameters a and
d from 1 to 10 on the stability of E∗. Figure 1
shows the results of the numerical simulation. The
green region in Fig. 1 indicates that a stable
equilibrium point E∗ can be obtained by select-
ing the corresponding parameters a and d. The
red region represents the region of parameters a
and d corresponding to the unstable equilibrium
points.

Fig. 1. Classification of stability of the equilibrium points
by parameters a and d, setting b = 6, c = 10, e = 2, f = 0.05
and k = 2.5.

3. Dynamical Behaviors of the
New System

3.1. Four-wing hidden attractor

In this subsection, the numerical simulations are
carried out by performing the fourth Runge–Kutta
integration algorithm, using MATLAB program.
Fix b = 6, c = 10, e = 2, f = 0.05, k = 2.5
and set a = 4, d = 5. The system (1) can gen-
erate a four-wing attractor with the initial values
(−0.91,−2.3, 0.91, 1). Phase portraits of the four-
wing attractor are shown in Fig. 2.

Substituting the parameters into Eq. (6), we
can get that the equilibrium point of the system is

E∗(−0.91,−2.5, 0.91,−9.7). (9)

The Jacobian matrix of system (1) at the equi-
librium point can be expressed as

J(E∗) =

⎡
⎢⎢⎢⎢⎣

a −bz −by 0

z −c x k

ey ex −d 0

f 0 f 0

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
E∗

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −60
11

15 0

10
11

−10 −10
11

2.5

−5 −20
11

−5 0

0.05 0 0.05 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

So, the eigenvalues of the system (1) at the equi-
librium point are λ1 = −10.311, λ2 = −0.0004,
λ3,4 = −0.3406 ± 7.8189i. The only equilibrium
point E∗ is a stable node-focus, which means the
motion starting from the neighborhood of E∗ will
converge to it. However, Fig. 2 displays a four-
wing chaotic attractor generated by the stable equi-
librium point E∗. This implies that the four-wing
attractor is a hidden attractor.

An attractor is called a hidden attractor if its
basin of attraction does not intersect with any open
neighborhood of the system equilibria, otherwise,
it is called a self-excited attractor [Leonov et al.,
2011]. The attraction basin is defined as the set
of initial conditions that lead to a given attractor.
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(a) (b)

(c) (d)

Fig. 2. Phase portraits of four-wing attractor in (a) x–y plane, (b) y–z plane, (c) x–z plane and (d) x–w plane.

Using the numerical simulation method [Chen et al.,
2019; Li et al., 2018a] to classify the initial condi-
tions corresponding to the different attractor types,
we can get the attraction basins. To reflect the rela-
tionship of the attraction basins, we use different
colors to represent the basins of different types of
attractors. To check whether the attraction basin
intersects with the small neighborhood of equilib-
rium point E∗, a section plane {x = −0.91, y, z =
0.91, w} is chosen to pass through the stable equilib-
rium point. As shown in Fig. 3, the red dot denotes
the equilibrium point, two types of attraction basins
are marked in cyan and blue, respectively. The cyan
region in Fig. 3 denotes the attraction basin of

the chaotic attractor. The blue region represents
that the motions starting from this initial state
region will converge to the equilibrium point (called
the point attractor). It can be seen from Fig. 3
that the attraction basin of the chaotic attractor
does not intersect with the stable equilibrium point.
Based on the analysis of the cross-section of the
attraction basin, we can determine the four-wing
attractor as a hidden attractor. Moreover, we select
two initial states, initial1(−0.9,−10.8, 0.9, 6) and
initial2(−0.9,−8.8, 0.9,−6.6), to explore the hid-
den chaotic behavior of the four-wing attractor.
The two initial states are selected in the attraction
basin’s cross-section plane that passes through the
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Fig. 3. Cross-section x = −0.91, y, z = 0.91, w of attraction
basin.

equilibrium point. The initial1 is in the attraction
basin of the four-wing attractor. And the initial2
is in the attraction basin of the point attractor.
Figure 4 shows the 3D view of the phase portrait
with the two initial states. From Fig. 4, we can see
that the motion starting from initial1 is chaotic.
However, the motion starting from intial2 converges
to the equilibrium point represented by the blue
dot. From a computational point of view, the four-
wing attractor cannot be identified by the numerical
method in which a trajectory starts from a point
on the unstable manifold in the neighborhood of
the equilibrium point. In other words, the dynamic
behaviors also illustrate that the four-wing attrac-
tor is a hidden attractor.

The phase space of some nonlinear systems can
become overcrowded and the underlying structure

Fig. 4. 3D view of phase portrait with initial states: initial1
(−0.9,−10.8, 0.9, 6) and initial2(−0.9,−8.8, 0.9,−6.6).

may become obscured. Poincaré map can be used
to overcome these difficulties. It is often used to
reduce a higher-dimensional continuous system to a
discrete map of the lower dimension. In this way, it
can demonstrate the bifurcating and folding planes
in a system. Figure 5 shows the Poincaré map of
four-wing hidden attractor by setting parameters
a = 4, b = 6, c = 10, d = 5, e = 2, f = 0.05 and
k = 2.5 with initial states (−0.91,−2.3, 0.91, 1). As
can be seen from Fig. 5, the Poincaré maps here
consist of four or six branches, which imply that
the orbits of the attractor are continuously folded
and bifurcated in different directions.

3.2. One-wing hidden attractor

Fix b = 6, c = 10, e = 2, f = 0.05, k = 2.5 and
set a = 3, d = 4. The equilibrium point can be
calculated as

E∗(−0.91,−2, 0.91,−7.5). (11)

The eigenvalues at the equilibrium point are
λ1 = −10.347, λ2 = −0.0054 and λ3,4 = −0.323 ±
6.639i. It is a stable node-focus equilibrium point.
Figure 6 shows the phase portraits of one-wing
attractor generated by system (1) under such
parameters.

Figure 7(a) displays the section plane {x =
−1.1, y, z = 1.1, w} of attraction basin, which
passes through the equilibrium point. As shown
in Fig. 7(a), the red dot denotes the equilibrium
point, the attraction basin of the chaotic attrac-
tor is marked in cyan and the attraction basin of
the point attractor is marked in blue. The mixed
region at the boundary indicates that the initial
conditions selected from here may result in either
a chaotic attractor or a point attractor. As can
be seen from Fig. 7(a), the equilibrium point does
not connect with the chaotic attraction basin. How-
ever, the equilibrium point is located in the blue
region representing the point attractor. We can
get that the cross-section of the chaotic attraction
basin does not intersect with the equilibrium point.
So, we can determine the one-wing attractor as a
hidden attractor. The hidden chaotic behavior of
the one-wing attractor is also studied by two ini-
tial states, initial1(−1.11,−3.72, 1.11,−0.62) and
initial2(−1.11,−4.72, 1.11,−4.85). The two initial
states are selected in the attraction basin’s cross-
section plane that passes through the equilibrium
point. The initial1 is in the attraction basin of
the one-wing attractor. And the initial2 is in the
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(a) (b)

(c) (d)

Fig. 5. Poincaré maps of four-wing hidden attractor in (a) x–y plane, (b) y–z plane, (c) x–z plane and (d) x–w plane.

(a) (b)

Fig. 6. Phase portraits of one-wing attractor in (a) x–z plane, (b) y–z plane, (c) x–y plane and (d) x–w plane.
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(c) (d)

Fig. 6. (Continued)

attraction basin of the point attractor. Figure 7(b)
shows the 3D view of the phase portrait. From
Fig. 7(b), we can see that the motion starting
from initial1 is chaotic, while the motion starting
from the initial2 converges to the equilibrium point.
From a computational point of view, we can identify
the one-wing attractor as a hidden attractor.

3.3. Coexisting hidden attractor
with quasi-period and period

The coexistence of many different attractors for the
same system parameters, has become a very striking
and important research topic [Zhou et al., 2018b;

Li et al., 2018b; Li et al., 2019a; Li et al., 2019b].
Fix b = 6, c = 10, e = 2, f = 0.05, k = 2.5 and
set a = 3, d = 7. The equilibrium point can be
calculated as

E∗(−0.56,−3.5, 0.56,−13.9). (12)

The eigenvalues at the equilibrium point are
λ1 = −10.151, λ2 = −0.0019 and λ3,4 = −1.923 ±
11.156i. Under such parameters, system (1) gen-
erates attractors with quasi-periodic and peri-
odic coexistence. Figure 8(a) is the phase portrait
in y–z plane of quasi-periodic with initial state
initial1(−0.555,−3.15, 0.555, 1.28). Figure 8(b) is
the corresponding time series of state variable z.

(a) (b)

Fig. 7. (a) Cross-section of attraction basin and (b) 3D view of phase portrait with initial states: initial1(−1.11,−3.72, 1.11,
−0.62) and initial2(−1.11,−4.72, 1.11,−4.85).
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(a) (b)

(c) (d)

Fig. 8. (a) Phase portrait of quasi-periodic attractor in y–z plane, (b) time series of quasi-periodic attractor of state variable z,
(c) phase portrait of periodic attractor in y–z plane and (d) time series of periodic attractor of state variable z.

The Lyapunov exponents of the quasi-periodic
attractor are LE1 = 0.022, LE2 = −0.025, LE3 =
−0.138 and LE4 = −13.858. Figure 8(c) shows the
phase portrait in y–z plane of periodic attractor
with initial state initial2(−0.555, 0.68, 0.555, 2.53).
Figure 8(d) shows the corresponding time series
of state variable z. The Lyapunov exponents of
the periodic attractor are LE1 = −0.0006, LE2 =
−0.446, LE3 = −0.462 and LE4 = −13.090.

Figure 9 shows the cross-section plane {x =
−0.56, y, z = 0.56, w} of attraction basin, which
passes through the equilibrium point denoted by the
red dot. The blue region in Fig. 9 denotes the attrac-
tion basin of point attractor, the yellow regions
denote quasi-periodic attractor, and the cyan region

denotes periodic attractor. The blue and cyan dots
filling the yellow region indicate that the initial con-
ditions selected from here may result in any point
attractor, a quasi-periodic attractor or a periodic
attractor. Based on Fig. 9, we can determine that
the quasi-periodic attractor and the periodic attrac-
tor are hidden attractors because their attraction
basins do not intersect with the equilibrium point.

3.4. Self-excited one-wing attractor
and transient four-wing
phenomenon

Fix b = 6, c = 10, e = 2, f = 0.05, k = 2.5, and
set a = 3, d = 3. The equilibrium point can be
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Fig. 9. 3D view of phase portrait with initial states: initial1(−10/11,−10.8, 10/11, 6) and initial2(−10/11,−8.8, 10/11,−6.6).

(a) (b)

(c) (d)

Fig. 10. (a) Phase portrait of one-wing self-excited attractor in y–z plane, (b) time domain waves of state variable z,
(c) phase portrait of transient four-wing self-excited attractor in y–z plane and (d) time domain waves of transient four-wing
phenomenon.
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Fig. 11. Attraction basin of one-wing and transient four-
wing attractor.

calculated as

E∗(−1.67,−1.5, 1.67,−4.9). (13)

The eigenvalues at the equilibrium point are
λ1 = −10.414, λ2 = −0.007 and λ3,4 = 0.211 ±
5.778i. It is an unstable saddle-focus equilibrium
point for which the eigenvalues have positive parts.
By such parameters setting, system (1) gener-
ates a one-wing chaotic attractor with initial state
initial1((−1.667,−3.83, 1.667, 0.01). Figures 10(a)
and 10(b) show the phase portrait of the one-wing
attractor in y–z plane and the time domain waves
of state variable z. In addition, there exist many
initial state regions, in which transient four-wing
attractor can be generated. We take initial state
initial2(−1.667,−3.83, 1.667, 2.18) as an example to

display the transient phenomenon. Figures 10(c)
and 10(d) are the corresponding phase portrait of
the transient four-wing attractor in y–z plane and
the time domain waves of state variable z. From
Fig. 10(d), we can see that the time domain waves
corresponding to the four-wing attractor last for
around 550 s, and then the time domain waves
become the form of the one-wing attractor.

To investigate the initial regions of transient
four-wing attractor, we select a cross-section plane
{x = −1.67, y, z = 1.67, w} of attraction basin,
which passes through the equilibrium point denoted
by the red dot. These cyan regions in Fig. 11 denote
attraction basins of the one-wing attractor, while
these yellow ones denote attraction basins of the
transient four-wing attractor. Most regions of the
two attraction basins are intertwined. The initial
conditions chosen from the intertwined regions may
result in either of a one-wing attractor or a transient
four-wing attractor. As can be seen in the figure,
these chaotic attractors are self-excited, because the
attraction basins of chaotic attractors intersect with
the unstable equilibrium point.

3.5. Lyapunov spectrum and
bifurcation diagram

For further investigating the dynamics of sys-
tem (1), the controlled bifurcation parameter d is
changed from 1 to 9, while the other parameters are
fixed as a = 3, b = 6, c = 10, e = 2, f = 0.05 and
k = 2.5. We can get the corresponding spectrum
of Lyapunov exponents, as shown in Fig. 12(a), and

(a) (b)

Fig. 12. (a) Lyapunov exponent spectra versus parameter d and (b) corresponding bifurcation diagram of state variable x.
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Table 1. The dynamics of system with respect to
parameter d.

d (LE1, LE2, LE3, LE4) Dynamic

[1, 1.36) (0,−,−,−) Periodic orbits
[1.36, 2.36) (0, 0,−,−) Torus
[2.36, 5.94) (+, 0,−,−) Chaos
[5.94, 6.12) (0,−,−,−) Periodic orbits
[6.12, 6.4) (0, 0,−,−) Torus
[6.4, 6.54) (0,−,−,−) Periodic orbits
[6.54, 9) (+, 0,−,−) Chaos

the bifurcation diagram of state variable x, as shown
in Fig. 12(b). From Fig. 12(a), we can observe that
the system has complex dynamic behaviors such
as chaos, torus, and periodic orbits. Most of the
dynamical systems can be characterized by their
Lyapunov exponents, which are classified in Table 1.
The bifurcation behaviors, shown in Fig. 12(b),
match the analysis of Lyapunov exponents.

4. Circuit Experiment

In this part, a circuit, which can generate hidden
attractors is designed. And the hardware circuit is
implemented by using TL082 op-amps. Their sup-
ply voltages are ±15V and the saturation voltage
is around 13.5 V. All the multipliers are selected as
AD633JN, whose voltage gain is 0.1. The implemen-
tation circuit is shown in Fig. 13.

According to Fig. 2, the phase portrait, the
state variable values are out of the saturation range
of op-amps. Reducing the state variable values five
times, we can get that the system can be expressed
as ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ax − 5byz − 10
5

,

ẏ = −cy + 5xz + kw,

ż = −dz + 5exy,

ẇ = f(x + z).

(14)

Now, using the voltage across the capacitance
Vc1, Vc2, Vc3 and Vc4 represents the variable values x,
y, z and w. The differential function can be changed
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dx

dt
= − 1

R1
V1 +

1
R2

x − 1
10R3

yz,

C2
dy

dt
= − 1

R4
y +

1
R5

w +
1

10R6
xz,

C3
dz

dt
= − 1

R7
z +

1
10R8

xy,

C4
dw

dt
=

1
R9

z +
1

R10
x.

(15)

We select the values of capacitors as follows:
C1 = C2 = C3 = C4 = 10nF. According to the

Fig. 13. Circuit diagram of the novel system.
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(a) (b)

(c) (d)

Fig. 14. Phase portraits of the four-wing hidden chaotic system in (a) x–y plane, (b) x–z plane, (c) y–z plane and
(d) x–w plane.

(a) (b)

Fig. 15. Phase portraits of the one-wing hidden chaotic system in (a) x–z plane, (b) y–z plane, (c) x–y plane and
(d) x–w plane.
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(c) (d)

Fig. 15. (Continued)

parameters of the four-wing hidden attractor, we
take R1 = 5MΩ, R2 = 250 kΩ, R3 = 3.33 kΩ, R4 =
100 kΩ, R5 = 400 kΩ, R6 = 20kΩ, R7 = 200 kΩ,
R8 = 10kΩ and R9 = R10 = 20MΩ. The DC volt-
age V1 is set to 10 V. Figure 14 shows the phase
portraits of the four-wing hidden attractor. Con-
sidering parameters of one-wing hidden attractor
a = 3, b = 6, c = 10, d = 4, e = 2, f = 0.05 and
k = 2.5, changing the resistors R2 = 333 kΩ and
R7 = 250 kΩ, while keeping others fixed, the one-
wing hidden attractor can be generated. The phase
portraits of one-wing hidden attractor are shown in
Fig. 15.

5. Conclusion

In this paper, we present a four-wing hidden attrac-
tor system with only one stable equilibrium point.
In addition, the novel system can also generate
a one-wing chaotic hidden attractor and quasi-
periodic and periodic coexistence hidden attrac-
tors. And a self-excited one-wing attractor can be
generated by setting different parameters. Perfor-
mances of the hidden attractor are investigated by
phase portraits, cross-section of attraction basin,
Lyapunov exponents spectrum, bifurcation diagram
and Poincaré map. The transient phenomenon in
the self-excited one-wing attractor system is stud-
ied by time domain waves and attraction basin.
The hardware experiment of the proposed system
is carried out. It is believed that the proposed novel
system will contribute to the development of theo-
retical study of multiwing hidden attractors.
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