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a b s t r a c t

In this paper, ‘‘uniform embedding’’ (independent of image contents and pixel correlations while embedding)
and ‘‘adaptive embedding’’ (depend on image contents and pixel correlations while embedding) in image
steganography are investigated. A compact steganographic embedding function is proposed to ensure the
correctness and efficiency, and a pixel correlation function is utilized to discriminate the image smoothness.
Two feasible image steganographic frameworks using these critical functions are presented, and some well-
known image steganographic methods can be derived from the proposed frameworks. The effectiveness of the
proposed frameworks is experimentally validated by constructing and testing some special data hiding methods
in the case of four neighboring pixel as a processing unit. Experimental results show that the proposed methods
can achieve better visual performance and statistical undetectability compared with the prior works. Another
promising merit of our work is the potential to provide steganographers general-purpose strategies to acquire
new image steganographic methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Steganography is a technique of covert communication [1]. It aims
to embed secret messages into an innocent carrier signal by slightly
altering its most insignificant components, such that an unauthorized
user will not be aware of the existence of secret data [2]. A good stegano-
graphic method should have good visual/statistical imperceptibility and
a sufficient payload. The former is essential for the security of covert
communication and the latter ensures that a large quantity of secret
data can be conveyed [3].

Lots of practical image steganographic embedding methods apply a
mutually independent embedding operation to all or selected elements
of the cover image. The most common and well-known method falling
under this paradigm is called least significant bit (LSB) substitution,
embedding secret data by replacing fixed-length LSBs of a cover pixel
with secret bits directly [4]. Chan et al. proposed a simple and effi-
cient optimal pixel adjustment process (OPAP) method to improve LSB
substitution. The basic concept of it is to increase or decrease the most
significant bit part by 1 in order to reduce the embedding distortion [5].
LSB matching (LSBM) employs a minor modification to LSB substitution.
If the secret bit does not match the LSB of the cover pixel, then one
is randomly either added or subtracted from the value of the cover
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pixel [6]. Unlike the above mentioned methods, some steganographic
methods employ two pixel pair as an embedding unit. Mielikainen
presented the LSB matching revisited method (LSBMR), which allows
embedding the same payload as LSBM but with fewer changes to the
cover image [7]. Chao et al. proposed a novel data hiding method based
on the diamond encoding (DE), and one secret 𝑘-ary digit is concealed
into the diamond characteristic value of two pixel pair [8]. In 2012,
Hong et al. proposed a novel data embedding method called APPM by
providing a specially designed neighborhood set, which is employed to
embed message digits with a smallest notational system [9]. Besides
that, some other steganographic techniques using a block of more than
two pixels as an embedding unit have been proposed. Exploiting modi-
fication direction (EMD) proposed by Zhang and Wang is an efficient
steganographic technique, and log2(2𝑛 + 1) secret bits are embedded
into 𝑛 cover pixels and at most only one pixel is increased or decreased
by 1 [10]. To highlight the pixel modification directions and achieve
high embedding capacity, Sun et al. presented an improved method
named HoEMD, in which a pixel with a larger change implies more pixel
directions [11].

Note that all the above steganographic methods are independent of
image contents and pixel correlations. When applying steganographic
methods to the cover image, an equal amount of secret bits is concealed
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into each pixel and an equal degree of embedding distortion is caused.
Therefore, these steganographic methods can be called ‘‘Uniform Em-
bedding’’. In fact, digital images exhibit quite complex statistical depen-
dencies among individual pixels, and not all pixels in a cover image can
tolerate equal amount of changes without causing noticeable distortion.
According to the characteristics of Human Visual System (HVS), it is
sensitive to the changes in the pixels of the smooth areas, while it is not
sensitive to changes in the edge areas. Therefore, some steganographic
methods called ‘‘Adaptive Embedding’’ have been proposed in which the
amount of bits to be embedded in each pixel is variable.

‘‘Adaptive Embedding’’ methods can also be divided into several
categories according to the number of pixels in each embedding unit.
In the first category, these steganographic methods embed variable bits
into each pixel. Chang and Tseng utilized the side information, i.e., the
difference between the pixel and its upper and left side pixels, to decide
the number of bits to be embedded [12]. Zhang and Wang proposed
a multiple base notational system (MBNS) steganographic method, in
which secret data are first transformed into symbols in a notational
system with multiple bases and the amount of information carried
by each pixel is adapted to the pixel value variation in the immedi-
ate neighborhood [13]. In the second category, these steganographic
methods process a two-pixel pair at a time. Wu and Tsai presented an
adaptive steganographic method using pixel-value differencing (PVD),
where the number of bits to be embedded in a pixel pair is decided
by the difference value between two neighboring pixels [14]. Wu et al.
combined it and LSB later [15]. Wang et al. presented a steganographic
method with the modulus function (MF-PVD), utilizing the remainders
of two consecutive pixels to record the information of secret data [16].
Yang et al. proposed an edge adaptive steganographic method (EA-
PVD), using the difference value of two consecutive pixels to distinguish
between edge areas and smooth areas. All pixels are embedded by the
𝑘-bit OPAP method, where 𝑘 is decided by the level which the difference
value belongs to [17]. In 2011, Luo et al. expanded LSBMR method and
selected the embedding regions according to the size of secret messages
and the differences between two consecutive pixels (LSBMR-PVD) [18].
Sun et al. proposed an adaptive EMD method with the consideration of
HVS (AdEMD) [11]. Hong et al. embedded data into two-pixel pairs
using DE method and concealed digits in multiple-base according to
the corresponding pixel-value differencing (DE-PVD) [19]. Shen et al.
utilized an optimization problem to minimize the embedding distortion
of the pixel [20]. Recently Hussaina et al. combined parity-bit pixel
value differencing with improved rightmost digit replacement [21].
Note that the features of image edge can be considered sufficiently by
using multi-pixel blocks [22]. Liu et al. proposed two generalizations of
pixel-value differencing for data hiding (G-PVD). In each 𝑛-pixel block,
𝑛 − 1 differences are calculated between consecutive pixels, and then
more differences can be used to hide secret data [23]. Yang et al.
proposed a steganographic method using four-pixel differencing and
pixel-value shifting operations (FPVD) [24], and it was improved by
using modulus function and optimization theory later (MF-FPVD) [25].
In 2011, the authors introduced the average differencing of four-pixel
values to design efficient steganographic methods, and then proposed
two novel methods based on OPAP and EMD, respectively (OPAP-
ADFPV and EMD-ADFPV) [26,27]. An octonary-PVD method with 3 × 3
pixel block was designed, in which the number of bits to be embedded
in each pixel was decided by its neighbors in eight directions [28]. Chen
et al. proposed a novel image steganographic method with 2 × 2 pixel
block, and secret data was randomly embedded instead of sequential
hiding [29]. In fact, designing adaptive steganographic schemes can
be formulated as a minimal distortion framework for the entire image
pixels. A distortion function is firstly built to decide the probable
embedding change positions adaptively, and then combined with the
advanced syndrome-trellis coding technique [30]. The distortion func-
tion of HUGO (highly undetectable stego) [31] computed the weighted
sum of differences between the feature vectors respectively extracted
from cover and stego images. WOW (wavelet obtained weights) [32],

S-UNIWARD (spatial-universal wavelet relative distortion) [33], HILL
(high-pass, low-pass, and low-pass) [34] designed the distortion func-
tion based on diverse image filters. MG (multivariate Gaussian) [35]
was the first model driven framework to obtain the distortion, which
was subsequently extended by utilizing a better variance estima-
tor and the multivariate generalized Gaussian model (MVGG) [36].
CMD (clustering modification directions) [37] and Synchronize [38]
strategies could preserve the correlation between neighboring pixels,
which could be applied together with the above-mentioned distortion
functions.

In this paper, two practical and efficient image steganography
frameworks for ‘‘uniform embedding’’ and ‘‘adaptive embedding’’ are
investigated, respectively. We elaborate the steganographic embedding
function and the pixel correlation function in a more systematic man-
ner, guaranteeing the correctness and effectiveness of the proposed
frameworks. Our contributions can be summarized in the following
aspects.

(1) Two novel functions (the steganographic embedding function
and the pixel correlation function) and their characteristics are inves-
tigated, and the new ‘‘uniform embedding’’ and ‘‘adaptive embedding’’
frameworks are proposed based on these critical functions.

(2) The effectiveness of two proposed frameworks is experimentally
validated by constructing the special image steganographic methods in
the case of four neighboring pixel as a processing unit, and showing
improvements in visual performance and statistical undetectability.

(3) The proposed frameworks are flexible and general-purpose. Some
well-known image steganographic methods can be obtained from the
proposed frameworks. Once the embedder specifies the constructions
of the critical functions by himself, the proposed frameworks provide
essential tools for constructing practical image steganographic methods.

The remainder of this paper is organized as follows. In Section 2, a
steganographic embedding function 𝐹 along with its characteristics are
introduced, and then a ‘‘uniform embedding’’ framework is proposed.
The pixel correlation function 𝐺 is described and analyzed in Section 3,
and a novel ‘‘adaptive embedding’’ framework is designed based on
two critical functions. Section 4 presents investigative experiments and
analysis aimed at comparing the performances among some state-of-the-
art methods and the proposed frameworks in the case of four neighbor-
ing pixel as a processing unit. We give further discussions about how
to construct a new image steganographic method using the proposed
general-purpose strategies in Section 5. Finally, the conclusions are
made.

In this paper, vectors will be typeset in boldface and their individual
elements with the corresponding lower-case letters in italics. We utilize
the symbols Z and Z+ to represent the set of all integers and positive
integers, and N is used to represent the set of positive integers and zero.
For any vector 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ Z𝑛, ‖𝐱‖𝑙 is applied to represent
the 𝑙-norm, ‖𝐱‖𝑙 = (

∑𝑛
𝑖=1|𝑥𝑖|

𝑙)
1
𝑙 . For 𝑙 = 1 we get the taxicab norm, for

𝑙 = 2 we get the Euclidean norm, and as 𝑙 approaches ∞ the 𝑙-norm
approaches the Maximum norm, i.e., ‖𝐱‖∞ = max(|𝑥1|, |𝑥2|,…, |𝑥𝑛|).

2. ‘‘Uniform Embedding’’ Image Steganography Framework

In this section, a steganographic embedding function 𝐹 is derived
for efficient steganographic embedding, and a ‘‘uniform embedding’’
framework is proposed based on it. Good function characteristics can
ensure the correctness and effectiveness of the proposed framework.
Some previous steganography methods can be regarded as special and
variational cases, i.e., they are equivalent to the proposed framework if
and only if the construction of 𝐹 is modified.

2.1. The steganographic embedding function 𝐹

In this subsection, a steganographic embedding function 𝐹
is proposed for efficient steganographic embedding. Inspired by
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refs. [8,9,11,12,16], the critical function 𝐹 is designed under the
modular arithmetic. The modulus function will be applied to adjust the
remainder of pixel values for data embedding. For the modulus number
𝑏, it could accommodate 𝑏 difference varieties, and then ⌊log2𝑏⌋ secret
bits can be embedded at a time. Furthermore, by using the modulus
operation, the adjustment range of the weight summation is reduced
to [−𝑏∕2, 𝑏∕2], and then the pixel modifications would be potentially
decreased.

Let 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ Z𝑛, 𝐀 = (𝑎1, 𝑎2,… , 𝑎𝑛) ∈ N𝑛 and 𝑘 ∈ N. The
steganographic embedding function 𝐹 is derived as follows.

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,

‖𝐱‖1 ≤ 𝑘, 𝑎𝑖 = (2𝑘 + 1)𝑖−1, 𝑏 = 1 +
𝑛
∑

𝑖=1

(

𝑛
𝑖

)(

𝑘
𝑖

)

× 2𝑖. (1)

Characteristic 1: The number of mutually exclusive 𝐱 satisfying
‖𝐱‖1 ≤ 𝑘 is 𝑏 altogether.

Proof. We firstly assume that ‖𝐱‖1 = 𝑙 (1 ≤ 𝑙 ≤ 𝑘, 𝑙 ∈ Z+), and
the number of zero values of 𝑥𝑖 in 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) is 𝑚 (0 ≤ 𝑚 ≤
𝑛−1, 𝑚 ∈ N). Thus, we have

(𝑛
𝑚

)( 𝑙−1
𝑛−𝑚−1

)

×2𝑛−𝑚 mutually exclusive vectors
𝐱 according to permutations and combinations.

Along with changing 𝑚, there are altogether ∑𝑛−1
𝑚=0

(𝑛
𝑚

)( 𝑙−1
𝑛−𝑚−1

)

× 2𝑛−𝑚

mutually exclusive vectors 𝐱 such ‖𝐱‖1 = 𝑙 holds.
The total number of mutually exclusive vectors consist of the sum-

mation of the above equation from 𝑙 = 1 to 𝑘 and the special case that
all 𝑥𝑖 are zeros. Thus, we have

1 +
𝑘
∑

𝑙=1

𝑛−1
∑

𝑚=0

(

𝑛
𝑚

)(

𝑙 − 1
𝑛 − 𝑚 − 1

)

× 2𝑛−𝑚

= 1 +
𝑛−1
∑

𝑚=0

(

𝑛
𝑚

) 𝑘
∑

𝑙=1

(

𝑙 − 1
𝑛 − 𝑚 − 1

)

× 2𝑛−𝑚

①
= 1 +

𝑛−1
∑

𝑚=0

(

𝑛
𝑚

)(

𝑘
𝑛 − 𝑚

)

× 2𝑛−𝑚

②
= 1 +

𝑛−1
∑

𝑚=0

(

𝑛
𝑛 − 𝑚

)(

𝑘
𝑛 − 𝑚

)

× 2𝑛−𝑚

= 1 +
𝑛
∑

𝑖=1

(

𝑛
𝑖

)(

𝑘
𝑖

)

× 2𝑖 (𝑛 − 𝑚 ≜ 𝑖)

= 𝑏.

Here ① and ② are by the combinatorial identity ∑𝑘
𝑙=1

( 𝑙−1
𝑛−𝑚−1

)

=
( 𝑘
𝑛−𝑚

)

and
(𝑛
𝑚

)

=
( 𝑛
𝑛−𝑚

)

, respectively.
Characteristic 2: It will be different function values when the input

vectors are mutually exclusive, i.e., 𝐹 (𝐱) ≠ 𝐹 (𝐱′) if 𝐱 ≠ 𝐱′.

Proof. We firstly assume two mutually exclusive vectors 𝐱 = (𝑥1, 𝑥2,
… , 𝑥𝑛) and 𝐱′ = (𝑥′1, 𝑥

′
2,… , 𝑥′𝑛) have the same function values 𝐹 (𝐱) =

𝐹 (𝐱′), and 𝑗 is the largest index such that 𝑥𝑗 ≠ 𝑥′𝑗 . Without loss of
generality, suppose 𝑥𝑗 > 𝑥′𝑗 . Calculate the difference using modular
arithmetic

(𝐹 (𝐱) − 𝐹 (𝐱′)) mod 𝑏 =

( 𝑗
∑

𝑖=1
𝑎𝑖𝑥𝑖 mod 𝑏 −

𝑗
∑

𝑖=1
𝑎𝑖𝑥

′
𝑖 mod 𝑏

)

mod 𝑏

=
𝑗
∑

𝑖=1
𝑎𝑖(𝑥𝑖 − 𝑥′𝑖) mod 𝑏.

Note that (2𝑘+1)𝑗−1 = 2𝑘
∑𝑗−1

𝑖=1 (2𝑘+1)𝑖−1+1, we have 𝑎𝑗 = 2𝑘
∑𝑗−1

𝑖=1 𝑎𝑖+
1. Therefore,

𝑎𝑗 (𝑥𝑗 − 𝑥′𝑗 ) ≥ 𝑎𝑗

= 2𝑘
𝑗−1
∑

𝑖=1
𝑎𝑖 + 1

③

≥ (𝑥′𝑖 − 𝑥𝑖)
𝑗−1
∑

𝑖=1
𝑎𝑖 + 1

>
𝑗−1
∑

𝑖=1
𝑎𝑖(𝑥′𝑖 − 𝑥𝑖).

Here ③ is by the constraints ‖𝐱‖1 ≤ 𝑘 and ‖𝐱′‖1 ≤ 𝑘. From the above,
we know that 𝑎𝑗 (𝑥𝑗 − 𝑥′𝑗 ) −

∑𝑗−1
𝑖=1 𝑎𝑖(𝑥

′
𝑖 − 𝑥𝑖) > 0, i.e., ∑𝑗

𝑖=1𝑎𝑖(𝑥𝑖 − 𝑥′𝑖) > 0.
Note that both 𝐹 (𝐱) and 𝐹 (𝐱′) belong to [0, 𝑏 − 1], we have 𝐹 (𝐱) ≠

𝐹 (𝐱′). This contradicts the assumption. Therefore, two mutually exclu-
sive vectors have different function values.

2.2. The proposed ‘‘uniform embedding’’ framework

In this subsection, a ‘‘Uniform embedding’’ framework is proposed
based on the steganographic embedding function 𝐹 . The proposed
‘‘uniform embedding’’ framework employs 𝑛 pixels as an embedding
unit to conceal the secret data. The detailed embedding process and
extraction process are given as follows.

2.2.1. Embedding process
All the pixels in the cover image are gray values with the range

of [0, 255]. The cover image is partitioned into non-overlapping 𝑛-pixel
blocks, and their corresponding gray values are 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝑛). The
parameters in Eq. (1) are predefined by users. For each 𝑛-pixel block,
⌊log2𝑏⌋ secret bits will be embedded, and the detailed steps are as below.

Step 1: Calculate the function value 𝐹 (𝐩) = 𝐀𝐩𝑇 mod 𝑏.
Step 2: Read ⌊log2𝑏⌋ bits from the binary secret bit stream, and then

transform into decimal value 𝑠. Calculate 𝑑 = 𝑠−𝐹 (𝐩) mod 𝑏. If 𝑑 = 0, no
modification for the 𝑛 pixels is needed. Secret data have been embedded,
and then run the next 𝑛-pixel block. Otherwise, go to the next step.

Step 3: Search a vector 𝐱 such that 𝐹 (𝐱) = 𝑑 and ‖𝐱‖1 ≤ 𝑘. Since
the function 𝐹 is one-to-one function, we can find the unique vector
𝐱. According to the detailed analysis in Section 2.4, the computation
complexity is acceptable even if the exhaustive searching is used.

Step 4: Calculate 𝐩′ = (𝑝′1, 𝑝
′
2,… , 𝑝′𝑛) by 𝐩′ = 𝐩 + 𝐱. Adjust 𝐩′ to

𝐩′′ = (𝑝′′1 , 𝑝
′′
2 ,… , 𝑝′′𝑛 ) when one stego-pixel value has the overflow or

underflow problem, i.e., the resulting pixel value falls outside the gray
value range [0, 255]. If 𝑝′𝑖 > 255, then 𝑝′′𝑖 = 𝑝′𝑖−𝑏. If 𝑝′𝑖 < 0, then 𝑝′′𝑖 = 𝑝′𝑖+𝑏.
If 0 ≤ 𝑝′𝑖 ≤ 255, then 𝑝′′𝑖 = 𝑝′𝑖 .

Step 5: Replace 𝐩 by 𝐩′′ and modify the pixel values. The purpose of
⌊log2𝑏⌋-bit secret data hiding have been achieved.

2.2.2. Extraction process
In the extraction process, we can quickly extract secret data without

the original image. Partition the stego image into 𝑛-pixel blocks, which
is identical with the embedding procedure. For each 𝑛-pixel block,
their corresponding gray values are 𝐩′′ = (𝑝′′1 , 𝑝

′′
2 ,… , 𝑝′′𝑛 ). Calculate the

function value 𝐹 (𝐩′′′), and transform into the binary secret bit stream
with the length of ⌊log2𝑏⌋.

2.3. A simple example

We will use a simple example to illustrate the proposed framework
clearly, as shown in Fig. 1. Suppose the parameters of the proposed
framework are 𝑘 = 2 and 𝑛 = 4. The corresponding gray values of
four-pixel block are (170,171,174,170). The secret bits to be embedded
are 101012, i.e., the decimal value 𝑠 = 21. According to Eq. (1), we
have 𝑏 = 41. Calculate the function value 𝐹 (170, 171, 174, 170) = 16,
and then 𝑑 = (𝑠 − 16) mod 41 = 5. The suitable vector 𝐱 = (0, 1, 0, 0)
satisfies 𝐹 (𝐱) = 5. Thus, replace (170, 171, 174, 170) by (170, 172, 174, 170).
The secret data can be extracted without the original image. Extract
the embedded digit 𝑠 = 𝐹 (170, 172, 174, 170) = 21, so we obtain the
embedded secret bits 101012.
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Fig. 1. A simple example of the proposed ‘‘Uniform Embedding’’ framework.

2.4. Analysis

Since the function 𝐹 is a one-to-one function, the correctness and
feasibility of the proposed framework can be explicitly validated.
𝐹 (𝐩′′) = 𝐀𝐩′′𝑇 mod 𝑏 = (𝐀𝐩𝑇 + 𝐀𝐱𝑇 ) mod 𝑏 = (𝐹 (𝐩) + 𝐹 (𝐱)) mod 𝑏 =
(𝐹 (𝐩) + 𝑑) mod 𝑏 = 𝑠, the receiver can extract the secret data exactly.

According to the embedding procedure, the modification of pixel
values is decided by the vector 𝐀 = (𝑎1, 𝑎2,… , 𝑎𝑛) and the modulus 𝑏. The
maximal accumulative modification for 𝑛-pixel block 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛)
is 𝑘 because of ‖𝐱‖1 ≤ 𝑘. Furthermore, the amount of secret bits
embedded into the 𝑛-pixel block is ⌊log2𝑏⌋. Thus, for a given 𝑛, the ratio
between the embedding capacity and the embedding distortion is

𝑅(𝑛) =
⌊log2𝑏⌋

𝑘
=

⌊log2(1 +
∑𝑛

𝑖=1
(𝑛
𝑖

)(𝑘
𝑖

)

× 2𝑖)⌋

𝑘
. (2)

Specially, 𝑅(2) = ⌊log2(2𝑘2 + 2𝑘 + 1)⌋∕𝑘, 𝑅(3) = ⌊log2(4𝑘3 + 6𝑘2 +
8𝑘 + 6)∕3⌋∕𝑘 and 𝑅(4) = ⌊log2(2𝑘4 + 4𝑘3 + 10𝑘2 + 8𝑘 + 3)∕3⌋∕𝑘. We
can obtain larger embedding capacity by increasing the parameter
𝑘, but the image quality and attack-resistance would be decreased.
In practical application, we should determine the suitable parameters
based on numerous experiment simulations, guaranteeing the proposed
framework can provide enough capacity while maintaining the smallest
image distortions and highest statistical undetectability.

In the proposed ‘‘Uniform Embedding’’ framework, secret bits will be
embedded by skillfully modifying the pixel values. The steganographer
is require to do some basic arithmetic operations of 𝑛-dimensional
vector, such as 𝐹 (𝐩) = 𝐀𝐩𝑇 mod 𝑏, 𝑑 = 𝑠 − 𝐹 (𝐩) mod 𝑏, and 𝐩′ = 𝐩 + 𝐱.
The computation complexity of these operations is no more than 𝑂(𝑛).
The maximal accumulative modification is 𝑘. For a given 𝑘0 ≤ 𝑘, we
try to find a vector 𝐱 such that 𝐀𝐱𝑇 mod 𝑏 = 𝑑 and ‖𝐱‖1 = 𝑘0. The
maximum searching range of each 𝑥𝑖 is 2𝑘0, and the computational
cost is no more than 𝑂(2𝑘0 ∗ 𝑛) even if the exhaustive searching is
used. Thus, the computation cost of the embedding process is 𝑂(2𝑘𝑛 +
2(𝑘 − 1)𝑛 + 2(𝑘 − 2)𝑛 + ⋯ + 2𝑛) = 𝑂(𝑛𝑘(𝑘 + 1)) = 𝑂(𝑛𝑘2). The receiver
would calculate 𝐹 (𝐩′′) = 𝐀𝐩′′𝑇 mod 𝑏, and transform it into the binary
secret bit stream, so the computation complexity is 𝑂(𝑛). Thus, the
computation complexity of the proposed framework is 𝑂(𝑛𝑘2), which
would be mainly determined by the parameter 𝑘. When 𝑘 is small, the
proposed framework can be solved in polynomial time. For example, for
the proposed framework in the case of 𝑛 = 4 and 𝑘 = 2, we conduct the
experiments on desktop PC running Windows 7 Professional with 16GB
memory and 3.6 GHz Intel(R) Core(TM) i7-4790 processor. The time
cost for each image is less than 0.5 s. Specifically, for the classic image
‘‘Lena’’, it will cost only 0.25 s.

2.5. Discussions

After further study, it is shown that some previous steganographic
methods can be regarded as the special and equivalent versions of the
proposed framework. That is to say, the following image steganographic
methods can be obtained only by modifying the construction of the
function 𝐹 .

DE [8]: DE method executes two-pixel pair at a time, and is equiva-
lent to the proposed framework in the case of 𝑛 = 2. The coefficients of
the function 𝐹 is changed to 𝑎1 = 1, 𝑎2 = 2𝑘 + 1 and 𝑏 = 1 + 2𝑘 + 2𝑘2.

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,
‖𝐱‖1 ≤ 𝑘, 𝑎𝑖 = (2𝑘 + 1)𝑖−1, 𝑏 = 1 + 2𝑘 + 2𝑘2.

(3)

APPM [9]: APPM method executes two-pixel pair at a time, and the
coefficients of the function 𝐹 are required to be computed firstly. For
𝑎1 = 1 and the given integer 𝑏, we calculate 𝑎2 by solving an optimization
problem. APPM restricts the maximal modification of each pixel ‖𝐱‖∞
to be as small as possible.

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,
‖𝐱‖∞ as small as possible, 𝑎1 = 1.

(4)

EMD [10]: EMD method executes 𝑛-pixel block at a time, and the
coefficients of the function 𝐹 is changed to 𝑎𝑖 = 𝑖 and 𝑏 = 2𝑛 + 1. The
total modification of each block is not more than 1 (‖𝐱‖1 ≤ 1).

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,
‖𝐱‖1 ≤ 1, 𝑎𝑖 = 𝑖, 𝑏 = 2𝑛 + 1.

(5)

HoEMD [11]: HoEMD method executes 𝑛-pixel block at a time, and
the coefficients of the function 𝐹 are replaced by 𝑎𝑖 = (2𝑘 + 1)𝑖−1 and
𝑏 = (2𝑘 + 1)𝑛. HoEMD limits the maximal modification of each pixel,
i.e., the constraint is changed to ‖𝐱‖∞ ≤ 𝑘.

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,
‖𝐱‖∞ ≤ 𝑘, 𝑎𝑖 = (2𝑘 + 1)𝑖−1, 𝑏 = (2𝑘 + 1)𝑛.

(6)

3. ‘‘Adaptive Embedding’’ Image Steganography Framework

In this section, a critical function 𝐺 (named ‘‘pixel correlation
function’’) is derived for discriminating the image smoothness, and an
‘‘adaptive embedding’’ framework is proposed based on the functions 𝐹
and 𝐺.

3.1. The pixel correlation function 𝐺

The pixel correlation function 𝐺 is full exploited to classify a 𝑛-pixel
block (𝑥1, 𝑥2,… , 𝑥𝑛) as a smooth area or an edge area.

𝐺(𝑥1, 𝑥2,… , 𝑥𝑛) ∶ [0, 255]𝑛 → [0,∞). (7)

According to the predefined thresholds, the function value
𝐺(𝑥1, 𝑥2,… , 𝑥𝑛) is divided into different levels. It is obvious that the
image smoothness can be estimated more exactly as 𝑛 increases.

Most of existing ‘‘adaptive embedding’’ methods employ two neigh-
boring pixels as an embedding unit, and use the difference value of
two consecutive pixels to distinguish between edge areas and smooth
areas [11,14–19,21]. It can be regarded as the function 𝐺 in the case of
𝑛 = 2.

𝐺(𝑥1, 𝑥2) = |𝑥1 − 𝑥2|. (8)

where 𝑥1 and 𝑥2 are two neighboring pixels values.
The difference value of neighboring pixels could be generalized by

considering 𝑛-pixel block.

𝐺(𝑥1, 𝑥2,… , 𝑥𝑛) =
∑

𝑥𝑖∈𝑆
(𝑥𝑖 − 𝑥min)∕(𝑛 − 1),

𝑥min = min{𝑥1, 𝑥2,… , 𝑥𝑛}, 𝑆 = {𝑥1, 𝑥2,… , 𝑥𝑛} ⧵ {𝑥min}.
(9)

where 𝑥1, 𝑥2,… , 𝑥𝑛 are 𝑛 neighboring pixels values.
Some exisiting ‘‘adaptive embedding’’ methods [26,27] consider

non-overlapping 2 × 2 pixels as an embedding unit, and the difference
value of four-pixel values can be regarded as the above construction
in the case of 𝑛 = 4. It would be utilized in the proposed ‘‘Ours-AE1’’
method in our experiments.

𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
∑

𝑥𝑖∈𝑆
(𝑥𝑖 − 𝑥min)∕3,

𝑥min = min{𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑆 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} ⧵ {𝑥min}.
(10)

where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are four neighboring pixels values.
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Furthermore, the pixel correlation function 𝐺 can be designed
according to the local complexity. Divide the digital image into non-
overlapping 𝑛 pixels, and the function 𝐺 is defined based on the variance
of pixel values.

𝐺(𝑥1, 𝑥2,… , 𝑥𝑛) =

√

√

√

√

𝑛
∑

𝑖=1
(𝑥𝑖 − �̄�)2∕𝑛,

�̄� =
𝑛

∑

𝑖=1
𝑥𝑖∕𝑛.

(11)

where 𝑥1, 𝑥2,… , 𝑥𝑛 are 𝑛 neighboring pixels values.
If 𝑛 = 4, the pixel correlation function 𝐺 is as follows. It would be

used in the proposed ‘‘Ours-AE2’’ method in our experiments.

𝐺(𝑥1, 𝑥2, 𝑥3, 𝑥4) =

√

√

√

√

4
∑

𝑖=1
(𝑥𝑖 − �̄�)2∕4,

�̄� =
4
∑

𝑖=1
𝑥𝑖∕4.

(12)

where 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are four neighboring pixels values.

3.2. The proposed ‘‘adaptive embedding’’ framework

In this subsection, an ‘‘adaptive embedding’’ framework is proposed
based on the steganographic embedding function 𝐹 and the pixel
correlation function 𝐺. The detailed embedding process and extraction
process are given as follows.

3.2.1. Embedding process
We first transform the binary secret bit stream into decimal value

𝑚, and then the proposed framework will conceal secret data 𝑚 into
the cover image. The cover image is partitioned into non-overlapping 𝑛-
pixel blocks, and their corresponding gray values are 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝑛).
The range of pixel correlation function value 𝐺(𝐩) is partitioned into two
different levels. The threshold value 𝑇 is predefined by users. Low level
will use lower parameter values 𝑘𝑙 and 𝑏𝑙 = 1 +

∑𝑛
𝑖=1

(𝑛
𝑖

)(𝑘𝑙
𝑖

)

× 2𝑖, while
high level uses higher parameter values 𝑘ℎ and 𝑏ℎ = 1+

∑𝑛
𝑖=1

(𝑛
𝑖

)(𝑘ℎ
𝑖

)

×2𝑖.
For each 𝑛-pixel block, the detailed embedding steps are as follows.

Step 1: Calculate the pixel correlation function value 𝐺(𝐩). If 𝐺(𝐩) <
𝑇 , it belongs to lower level, 𝑘1 = 𝑘𝑙 and 𝑏1 = 𝑏𝑙 (i.e., the block belongs to
a smooth area). Otherwise, it belongs to higher level, 𝑘1 = 𝑘ℎ and 𝑏1 = 𝑏ℎ
(i.e., the block belongs to an edge area). Calculate the steganographic
embedding function value 𝐹 (𝐩) = 𝐀𝐩𝑇 mod 𝑏1.

Step 2: Calculate 𝑠 = mod (𝑚, 𝑏1) and 𝑑 = 𝑠−𝐹 (𝐩) mod 𝑏1. If 𝑑 = 0, no
modification for the 𝑛 pixels is needed, and the secret digit 𝑠 has been
embedded. Replace 𝑚 by (𝑚 − 𝑠)∕𝑏1, and modify the pixel values, and
then run the next 𝑛-pixel block. Otherwise, go to the next step.

Step 3: Since the function 𝐹 is one-to-one function, we can find the
unique vector 𝐱 such that 𝐹 (𝐱) = 𝑑 and ‖𝐱‖1 ≤ 𝑘.

Step 4: Calculate 𝐩′ = (𝑝′1, 𝑝
′
2,… , 𝑝′𝑛) by 𝐩′ = 𝐩 + 𝐱, and adjust

𝐩′ = (𝑝′1, 𝑝
′
2,… , 𝑝′𝑛) to 𝐩′′ = (𝑝′′1 , 𝑝

′′
2 ,… , 𝑝′′𝑛 ) when one stego-pixel value

has the overflow or underflow problem. If 𝑝′𝑖 > 255, then 𝑝′′𝑖 = 𝑝′𝑖 − 𝑏1. If
𝑝′𝑖 < 0, then 𝑝′′𝑖 = 𝑝′𝑖 + 𝑏1. If 0 ≤ 𝑝′𝑖 ≤ 255, then 𝑝′′𝑖 = 𝑝′𝑖 .

Step 5: Calculate the function value 𝐺(𝐩′′). If 𝐺(𝐩) and 𝐺(𝐩′′) belong
the same level, the secret digit 𝑠 has been embedded successfully.
Replace 𝐩 and 𝑚 by 𝐩′′ and (𝑚− 𝑠)∕𝑏1, and modify the pixel values, and
then go to step 7. If 𝐺(𝐩) and 𝐺(𝐩′′) belong different levels, the receiver
cannot extract the secret digit 𝑠 exactly, and we should go to the next
step.

Step 6: This step is called ‘‘adjusting step’’. There are two adjusting
cases.

Case 1: Adjust the pixels to guarantee the same level that the
pixel correlation function values belong to before and after embedding.
Search 𝐱(1) = (𝑥(1)1 , 𝑥(1)2 ,… , 𝑥(1)𝑛 ) ∈ Z𝑛 satisfying the following four
conditions. (1) 𝐺(𝐩) and 𝐺(𝐱(1) + 𝐩) belong to the same level. (2)
𝐹 (𝐱(1) + 𝐩) = 𝑠. (3) 0 ≤ 𝑥(1)𝑖 + 𝑝𝑖 ≤ 255. (4) The value of ‖𝐱(1)1 ‖2 is
minimized.

Case 2: Modify the secret digit to be embedded in this 𝑛-pixel
block. If 𝑏1 = 𝑏𝑙, then 𝑏2 = 𝑏ℎ. Otherwise 𝑏2 = 𝑏𝑙. Calculate 𝑠′ =
mod (𝑚, 𝑏2). The block will be embedded the secret digit 𝑠′. Search

𝐱(2) = (𝑥(2)1 , 𝑥(2)2 ,… , 𝑥(2)𝑛 ) ∈ Z𝑛 satisfying the following four conditions.
(1) 𝐺(𝐩) and 𝐺(𝐱(2) + 𝐩) belong to different levels. (2) 𝐹 (𝐱(2) + 𝐩) = 𝑠′.
(3) 0 ≤ 𝑥(2)𝑖 + 𝑝𝑖 ≤ 255. (4) The value of ‖𝐱(2)‖2 is minimized.

If log2𝑏1
‖𝐱(1)‖2

> log2𝑏2
‖𝐱(2)‖2

, Case 1 provides larger payload with smaller
embedding distortion, and then replace 𝐩 and 𝑚 by 𝐩+𝐱(1) and (𝑚−𝑠)∕𝑏1.
Otherwise, Case 2 provides larger payload with smaller embedding
distortion, and then replace 𝐩 and 𝑚 by 𝐩 + 𝐱(2) and (𝑚 − 𝑠′)∕𝑏2.

Step 7: Repeat the above steps until 𝑚 = 0, and then the stego image
is obtained.

3.2.2. Extraction process
In the extraction process, the secret data 𝑚 can be extracted without

the original image. Partition the stego image into 𝑛-pixel blocks, which
is identical with the embedding procedure.

Step 1: For each 𝑛-pixel block, their corresponding gray values are
𝐩′′ = (𝑝′′1 , 𝑝

′′
2 ,… , 𝑝′′𝑛 ), and calculate the pixel correlation function value

𝐺(𝐩′′). Use the threshold value 𝑇 to find out the level which 𝐺(𝐩′′)
belongs to. If 𝐺(𝐩′′) < 𝑇 , then 𝑘 = 𝑘𝑙 and 𝑏 = 𝑏𝑙. Otherwise, 𝑘 = 𝑘ℎ
and 𝑏 = 𝑏ℎ.

Step 2: Calculate the function value 𝐹 (𝐩′′) = 𝐀𝐩′′𝑇 mod 𝑏. Extract the
embedded digit 𝑠 = 𝐹 (𝐩′′).

Step 3: Repeat steps 1–2 until all the embedded digits in each 𝑛-pixel
block are extracted.

Step 4: Assume that all the extracted digits are (𝑠(1), 𝑠(2),… , 𝑠(𝑙)), and
their corresponding bases (modulus) are (𝑏(1), 𝑏(2),… , 𝑏(𝑙)). Calculate the
secret data 𝑚 using the equation

𝑚 =
𝑙

∑

𝑖=2

(

𝑠(𝑖) ×
𝑖−1
∏

𝑗=1
𝑏(𝑗)

)

+ 𝑠(1) (13)

3.3. A simple example

In this subsection, we use a simple example to illustrate the proposed
framework. Suppose a cover image is composed of twelve pixels, and
their corresponding gray values are (170,168,175,170,175,176,166,172,
167,169,169,170). The secret bits to be embedded are 100001001111002,
i.e., the decimal value 𝑚 = 8508. The parameters of the proposed
‘‘adaptive embedding’’ framework are 𝑇 = 4, 𝑘𝑙 = 2, 𝑘ℎ = 3, 𝑛 = 4,
and the pixel correlation function 𝐺 is defined as Eq. (10). The detailed
steps are shown in Fig. 2.

To embed secret data, the cover image is partitioned into
three blocks with four pixel (170, 168, 175, 170), (175, 176, 166, 172) and
(167, 169, 169, 170). For the first block, 𝐺(𝐩) = 𝐺(170, 168, 175, 170) =
11∕3 < 𝑇 , it belongs to lower level, 𝑘1 = 2 and 𝑏1 = 41. Calculate
the function value 𝐹 (170, 168, 175, 170) = 26, 𝑠(1) = mod (8508, 41) =
21, and then 𝑑 = 36. The suitable vector 𝐱 = (0,−1, 0, 0) satisfies
𝐹 (𝐱) = 36, so 𝐩′′ = (170, 167, 175, 170) and 𝐺(𝐩′′) = 14∕3 > 𝑇 . Since
𝐺(𝐩) and 𝐺(𝐩′′) belong different levels, the receiver cannot extract
the secret digit 𝑠(1) exactly, and we have to execute the ‘‘adjusting
step’’. 𝐱(1) = (−1, 0, 0,−2) in Case 1 and 𝐱(2) = (1, 0, 0,−3) in Case
2. log241

‖𝐱1‖2
> log2129

‖𝐱2‖2
, Case 1 provides larger payload with smaller em-

bedding distortion. Thus, replace (170, 168, 175, 170) and 𝑚 = 8508 by
(169, 168, 175, 168) and 𝑚 = (8508 − 21)∕41 = 207. For the second
block, 𝐺(𝐩) = 𝐺(175, 176, 166, 172) = 25∕3 > 𝑇 , it belongs to higher
level, 𝑘1 = 3 and 𝑏1 = 129. Calculate 𝐹 (175, 176, 166, 172) = 38,
𝑠(2) = mod (207, 129) = 78 and 𝑑 = 40. The suitable vector 𝐱 =
(−2,−1, 1, 0) such that 𝐹 (𝐱) = 40, so 𝐩′′ = (173, 175, 167, 172). Since
𝐺(𝐩) and 𝐺(𝐩′′) belong the same level, the secret digit 𝑠(2) has been
embedded successfully. Replace (175, 176, 166, 172) and 𝑚 = 207 by
(173, 175, 167, 172) and 𝑚 = (207 − 78)∕129 = 1. For the third block,
𝐺(𝐩) = 𝐺(167, 169, 169, 170) = 7∕3 < 𝑇 , it belongs to lower level, 𝑘1 = 2
and 𝑏1 = 41. Calculate 𝐹 (167, 169, 169, 170) = 1, 𝑠(3) = mod (1, 41) = 1
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Fig. 2. A simple example of the proposed ‘‘Adaptive Embedding’’ framework.

and 𝑑 = 0. No modification for these pixels is needed, and the secret
digit 𝑠(3) has been embedded successfully. The stego image is obtained.

The secret data can be extracted without the original image. Par-
tition the stego image into three blocks. For each four-pixel block,
calculate the pixel correlation function value 𝐺(169, 168, 175, 168) =
8∕3, 𝐺(173, 175, 167, 172) = 19∕3 and 𝐺(167, 169, 169, 170) = 7∕3. Use
the threshold value 𝑇 = 4 to find out the level which 𝐺 belongs
to, 𝑏(1) = 41, 𝑏(2) = 129 and 𝑏(3) = 41. Extract the embedded digit
𝑠(1) = 𝐹 (169, 168, 175, 168) = 21, 𝑠(2) = 𝐹 (173, 175, 167, 172) = 78 and
𝑠(3) = 𝐹 (167, 169, 169, 170) = 1. According to Eq. (13), 𝑚 = 21 + 78 ×
41 + 1 × 41 × 129 = 8508, so we can obtain the embedded secret bits
100001001111002.

3.4. Analysis

The adjusting step of the proposed framework is the essen-
tial technique, ensuring extracting the secret data successfully. It
is different from that of other ‘‘adaptive embedding’’ methods. In
Refs. [11,15,17,18,26,27], the pixels are only adjusted to guarantee the
same level that the pixel correlation function values belong to before
and after embedding (Case 1 in Step 6). However, there exists another
adjusting case (Case 2 in Step 6) in the proposed framework. The secret
data 𝑚 can be dynamically expressed as different digits 𝑠 in different
modulus 𝑏, so the digits to be embedded in each 𝑛-pixel block can be
modified.

According to the detailed embedding procedure, we know that the
secret data 𝑚 is recalculated by an iterative process 𝑚 = (𝑚 − 𝑠)∕𝑏, and
the secret data 𝑚 is expressed as digits (𝑠(1), 𝑠(2),… , 𝑠(𝑙)) in different bases
(𝑏(1), 𝑏(2),… , 𝑏(𝑙)), 𝑠(1) = mod (𝑚, 𝑏(1)), 𝑠(𝑖) = mod (𝑚−𝑠

𝑖−1

𝑏(𝑖−1)
, 𝑏(𝑖))(𝑖 ≥ 2), by

recalculating an iterative process 𝑚 = (𝑚−𝑠)∕𝑏. Thus, we can execute the
reverse operation ∑𝑙

𝑖=2(𝑠
(𝑖) ×

∏𝑖−1
𝑗=1𝑏

(𝑗)) + 𝑠(1) and then obtain the secret
data 𝑚 reversely, i.e., the receiver can exactly extract the secret data.

Compared with the proposed ‘‘Uniform Embedding’’ framework
in Section 2.2, Step 6 (‘‘adjusting step’’) in the proposed ‘‘Adaptive
Embedding’’ framework might introduce extra computational costs.
Fortunately, since the maximum searching range of each pixel is 28 in
the adjusting step, the computational cost is no more than 28 × 𝑛 even
if the exhaustive searching is used. Thus, the computation complexity
of Step 6 is 𝑂(𝑛). The total computation complexity of the proposed
framework is still 𝑂(𝑛𝑘2), and then the proposed ‘‘Adaptive Embedding’’
framework could be solved in polynomial time when the parameter 𝑘 is
small. In fact, the time cost for each image is less than 0.5 s. Specifically,
for the classic image ‘‘Lena’’, it will cost only 0.46 s.

3.5. Discussions

The following constructions of the functions 𝐹 and𝐺 make it possible
to derive some previous steganographic methods from the proposed
framework.

AdEMD [11]: AdEMD method executes two-pixel pair at a time, and
the coefficients of the function 𝐹 is changed to 𝑎1 = 1, 𝑎2 = 2𝑘1 + 1 and
𝑏 = 1. AdEMD restricts the modification of each pixel, so the constraints
are altered to |𝑥1| ≤ 𝑘1 and |𝑥2| ≤ 𝑘2. The function 𝐺 is defined as
Eq. (8). Furthermore, AdEMD only adjusts the pixels to guarantee the
same level that the pixel correlation function values belong to before
and after embedding, i.e., only Case 1 is included in the adjusting step
of embedding procedure.

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,

𝑥𝑖 ≡ 𝑝𝑖 mod (2𝑘𝑖 + 1), 𝑎𝑖 =
𝑖−1
∏

𝑗=0
(2𝑘𝑗 + 1), 𝑘0 = 0, 𝑏 = 1,

𝐺(𝑝1, 𝑝2) = |𝑝1 − 𝑝2|

(14)

where 𝑝1 and 𝑝2 are two neighboring pixels values.
DE-PVD [19]: DE-PVD method executes two-pixel pair at a time, and

the coefficients of the function 𝐹 is changed to 𝑎1 = 1, 𝑎2 = 2𝑘 + 1 and
𝑏 = 1 + 2𝑘 + 2𝑘2. The function 𝐺 is defined as Eq. (8).

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,
‖𝐱‖1 ≤ 𝑘, 𝑎𝑖 = (2𝑘 + 1)𝑖−1, 𝑏 = 1 + 2𝑘 + 2𝑘2,

𝐺(𝑥1, 𝑥2) = |𝑥1 − 𝑥2|
(15)

where 𝑥1 and 𝑥2 are two neighboring pixels values.
EMD-ADFPV [27]: EMD-ADFPV method executes four-pixel block

at a time, and the coefficients of the function 𝐹 is changed to 𝑎1 = 1,
𝑎2 = 2𝑘1 + 1, 𝑎3 = (2𝑘1 + 1)(2𝑘2 + 1), 𝑎4 = (2𝑘1 + 1)(2𝑘2 + 1)(2𝑘3 + 1)
and 𝑏 = 1. The function 𝐺 is defined as Eq. (10). EMD-ADFPV restricts
the modification of each pixel |𝑥𝑖| ≤ 𝑘𝑖. Only Case 1 is included in the
adjusting step of embedding procedure.

𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏,

𝑥𝑖 ≡ 𝑝𝑖 mod (2𝑘𝑖 + 1), 𝑎𝑖 =
𝑖−1
∏

𝑗=0
(2𝑘𝑗 + 1), 𝑘0 = 0, 𝑏 = 1,

𝐺(𝑝1, 𝑝2, 𝑝3, 𝑝4) =
∑

𝑝𝑖∈𝑆
(𝑝𝑖 − 𝑝min)∕3,

𝑝min = min{𝑝1, 𝑝2, 𝑝3, 𝑝4}, 𝑆 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} ⧵ {𝑝min}

(16)

where 𝑝1, 𝑝2, 𝑝3 and 𝑝4 are four neighboring pixels values.

4. Experimental results

In this section, several experimental results are given to demonstrate
the effectiveness of our proposed ‘‘uniform embedding’’ and ‘‘adaptive
embedding’’ methods.
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Fig. 3. Three cover images (a) Lena (b) Baboon (c) Peppers.

Fig. 4. Three stego images created by the proposed ‘‘Ours-UE’’ method (a) Lena (60 000 bits, PSNR=44.72 dB, SSIM=0.9792) (b) Baboon (60 000 bits, PSNR=44.72 dB, SSIM=0.9816)
(c) Peppers (60 000 bits, PSNR=44.72 dB, SSIM=0.9937).

4.1. General setup

The peak signal to noise ratio (PSNR) and structure similarity index
(SSIM) [39] are utilized to evaluate the quality of stego images. For a
𝑀 ×𝑁 grayscale image, the PSNR value is

𝑃𝑆𝑁𝑅 = 10 × log10
255 × 255 ×𝑀 ×𝑁
∑𝑀

𝑖=1
∑𝑁

𝑗=1(𝑝𝑖,𝑗 − 𝑞𝑖,𝑗 )2
(𝑑𝐵) (17)

where 𝑝𝑖,𝑗 and 𝑞𝑖,𝑗 denote the pixel values in row 𝑖 and column 𝑗 of
the cover image and stego image, respectively. SSIM is a full reference
metric for measuring image similarity by considering the human eye
perception.

The image steganographic security is analyzed by employing modern
universal steganalysis techniques, and the performance is evaluated
using the detection error rate 𝑃𝐸𝑟𝑟, which is an unbiased estimate of
the minimal total testing error under equal priors.

There is a trade-off among embedding capacity, visual imperceptibil-
ity and attack-resistance. It would sacrifice embedding capacity a little
for acquiring better image quality and steganographic security, and vice
versa. Therefore, the comparisons of different image steganographic
methods should be based on the same criterion: a steganographic
method is preferred if it can provide better imperceptibility and un-
detectability when concealing the same embedding capacity. Therefore,
we will conduct the comparative experiments based on the same embed-
ding capacity. All the parameter settings ensure that the corresponding
methods can provide enough capacity while maintaining the smallest
image distortions and highest statistical undetectability. In DE [8]
method, the parameter 𝑘 = 2. In APPM [9] method, the parameters 𝐵 =
9 and 𝐶 = 3. In AdEMD [11] method, 𝐷𝑙ℎ = 15, ⟨𝑙𝑘1, 𝑙𝑘2⟩ and ⟨ℎ𝑘1, ℎ𝑘2⟩
are set ⟨2, 3⟩ and ⟨4, 5⟩. In EA-PVD [17] method, 𝐷12 = 7, 𝑙−ℎ is set 2−3.
In DE-PVD [19] method, 𝑇0 = 4, 𝑘𝑙 = 2, 𝑘ℎ = 3. We construct the special
image steganographic methods by using the proposed frameworks in the
case of four neighboring pixel as a processing unit. We set 𝑘 = 2 in the
proposed ‘‘uniform embedding’’ method (abbreviated as ‘‘Ours-UE’’). In
the proposed ‘‘adaptive embedding’’ method, 𝑇 = 2, 𝑘𝑙 = 2, 𝑘ℎ = 3, the
pixel correlation function 𝐺 is respectively defined as Eqs. (10) and (12)
(abbreviated as ‘‘Ours-AE1’’ and ‘‘Ours-AE2’’).

4.2. Performances for classic images

Ten grayscale images with size of 512 × 512 are used in the experi-
ments as cover images, and three of them are shown in Fig. 3. A series of
pseudo-random numbers as the secret bit stream are embedded into the

Table 1
Comparison of PSNR values of ‘‘Uniform Embedding’’ methods based on classic images.

Ours-UE DE [8] APPM [9]

350 000 600 000 350 000 600 000 350 000 600 000

Elaine 51.05 44.71 49.22 43.48 50.64 44.32
Lena 51.04 44.72 49.22 43.47 50.64 44.32
Baboon 51.05 44.72 49.21 43.48 50.64 44.32
Peppers 51.05 44.71 49.22 43.48 50.64 44.32
Toys 51.05 44.72 49.22 43.48 50.64 44.32
Girl 51.05 44.72 49.22 43.47 50.64 44.32
Gold 51.05 44.71 49.22 43.48 50.64 44.32
Barb 51.04 44.72 49.21 43.48 50.64 44.32
Zelda 51.05 44.72 49.22 43.47 50.64 44.32
Tiffany 51.05 44.72 49.22 43.48 50.64 44.32
Average 51.05 44.72 49.22 43.48 50.64 44.32

Table 2
Comparison of SSIM values of ‘‘Uniform Embedding’’ methods based on classic images.

Ours-UE DE [8] APPM [9]

350 000 600 000 350 000 600 000 350 000 600 000

Elaine 0.9969 0.9867 0.9953 0.9828 0.9857 0.9843
Lena 0.9951 0.9792 0.9926 0.9726 0.9775 0.9757
Baboon 0.9957 0.9816 0.9931 0.9755 0.9800 0.9782
Peppers 0.9985 0.9937 0.9979 0.9917 0.9933 0.9924
Toys 0.9956 0.9813 0.9934 0.9753 0.9800 0.9780
Girl 0.9955 0.9806 0.9926 0.9736 0.9786 0.9772
Gold 0.9965 0.9853 0.9949 0.9809 0.9843 0.9823
Barb 0.9969 0.9869 0.9953 0.9832 0.9860 0.9844
Zelda 0.9973 0.9885 0.9957 0.9852 0.9878 0.9863
Tiffany 0.9954 0.9803 0.9931 0.9744 0.9787 0.9770
Average 0.9963 0.9844 0.9944 0.9795 0.9832 0.9816

cover images. Stego images created by the proposed ‘‘Ours-UE’’, ‘‘Ours-
AE1’’ and ‘‘Ours-AE2’’ method are shown in Figs. 4–6. It is shown that
the embedding distortions are imperceptible to human vision, and the
stego images are visually indistinguishable from the cover images.

4.3. Comparisons of performances

The comparison results of PSNR and SSIM values among Ours-
UE, DE [8] and APPM [9] are given in Tables 1–2, using ten classic
images at low embedding capacity (350 000 bits) and high embedding
capacity (600 000 bits). The experimental comparisons among Ours-
AE1, Ours-AE2, AdEMD [11], EA-PVD [17] and DE-PVD [19] are shown
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Fig. 5. Three stego images created by the proposed ‘‘Ours-AE1’’ method (a) Lena (60 000 bits, PSNR=44.85 dB, SSIM=0.9826) (b) Baboon (60 000 bits, PSNR=44.85 dB, SSIM=0.9846)
(c) Peppers (60 000 bits, PSNR=44.85 dB, SSIM=0.9939).

Fig. 6. Three stego images created by the proposed ‘‘Ours-AE2’’ method (a) Lena (60 000 bits, PSNR=47.54 dB, SSIM=0.9903) (b) Baboon (60 000 bits, PSNR=46.67 dB, SSIM=0.9914)
(c) Peppers (60 000 bits, PSNR=47.71 dB, SSIM=0.9964).

Table 3
Comparison of PSNR values of ‘‘Adaptive Embedding’’ methods based on classic images.

Ours-AE1 Ours-AE2 AdEMD [11] DE-PVD [19] EA-PVD [17]

350 000 600 000 350 000 600 000 350 000 600 000 350 000 600 000 350 000 600 000

Elaine 50.67 44.85 50.74 46.93 44.94 40.87 47.54 43.36 44.73 39.99
Lena 50.67 44.85 50.95 47.54 45.57 41.69 48.06 43.79 46.11 40.81
Baboon 50.67 44.85 50.68 46.67 43.99 39.30 47.46 43.37 44.55 39.01
Peppers 50.67 44.85 50.99 47.71 45.49 42.24 48.09 43.81 46.15 40.96
Toys 50.67 44.85 51.02 47.86 45.66 42.06 48.04 43.67 46.31 40.95
Girl 50.67 44.85 50.91 47.41 45.38 41.79 47.87 43.65 45.43 40.68
Gold 50.67 44.85 50.89 47.40 45.55 41.54 47.88 43.61 45.67 40.45
Barb 50.67 44.85 50.84 47.03 44.86 39.63 47.73 43.52 45.30 39.38
Zelda 50.67 44.85 50.91 47.71 45.62 42.69 47.95 43.71 45.97 41.15
Tiffany 50.67 44.85 50.98 47.69 45.48 42.05 48.01 43.78 45.92 40.73
Average 50.76 45.01 50.89 47.39 45.25 41.39 47.86 43.63 45.61 40.41

Table 4
Comparison of SSIM values of ‘‘Adaptive Embedding’’ methods based on classic images.

Ours-AE1 Ours-AE2 AdEMD [11] DE-PVD [19] EA-PVD [17]

350 000 600 000 350 000 600 000 350 000 600 000 350 000 600 000 350 000 600 000

Elaine 0.9967 0.9873 0.9968 0.9925 0.9885 0.9752 0.9934 0.9826 0.9862 0.9598
Lena 0.9949 0.9826 0.9952 0.9903 0.9845 0.9712 0.9910 0.9755 0.9851 0.9483
Baboon 0.9956 0.9846 0.9958 0.9914 0.9852 0.9756 0.9920 0.9790 0.9872 0.9535
Peppers 0.9984 0.9939 0.9985 0.9964 0.9957 0.9885 0.9974 0.9920 0.9952 0.9828
Toys 0.9954 0.9841 0.9957 0.9914 0.9868 0.9759 0.9923 0.9783 0.9880 0.9545
Girl 0.9950 0.9838 0.9954 0.9914 0.9841 0.9743 0.9908 0.9762 0.9858 0.9501
Gold 0.9965 0.9871 0.9967 0.9926 0.9889 0.9788 0.9936 0.9824 0.9882 0.9625
Barb 0.9969 0.9884 0.9970 0.9935 0.9894 0.9810 0.9940 0.9840 0.9893 0.9661
Zelda 0.9972 0.9899 0.9974 0.9943 0.9899 0.9824 0.9946 0.9864 0.9908 0.9686
Tiffany 0.9952 0.9830 0.9954 0.9909 0.9865 0.9745 0.9915 0.9762 0.9866 0.9522
Average 0.9962 0.9865 0.9964 0.9925 0.9880 0.9777 0.9931 0.9813 0.9882 0.9598

in Tables 3–4. It is observed that the proposed steganographic methods
can obtain better image quality when concealing the same embedding
capacity.

To further evaluate the performances, three image databases are
used in the experiments as follows.

(1) UCID Database [40]: 1338 uncompressed images with size of
384 × 512 or 512 × 384.

(2) McGill Database [41]: 1034 uncompressed images with size of
768 × 576 or 576 × 768.

(3) Ground Truth Database [42]: 1333 uncompressed images with
size of 756 × 504 or 504 × 756.

3705 test images include (but not limited to) landscapes, plants,
animals, people and buildings, and have been converted into grayscale

images. Stego images are created with payload 0.1 bpp (bit per pixel),
0.2 bpp, 0.3 bpp, 0.4 bpp and 0.5 bpp using these image steganographic
methods. The comparison results of PSNR and SSIM values are shown in
Tables 5–8, respectively. It is shown that the proposed steganographic
methods can provide better visual imperceptibility with the same pay-
load. Specially, the PSNR values of ‘‘Uniform embedding’’ are increased
by 0.24–2.89 dB, and those of ‘‘Adaptive embedding’’ are improved by
2.71–7.69 dB.

4.4. Comparisons of steganographic security

The steganographic security is analyzed by employing the follow-
ing three universal steganalysis techniques. The image features are
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Table 5
Comparison of PSNR values of ‘‘Uniform Embedding’’ methods based on the databases.

Ours-UE DE [8] APPM [9]

0.1 bpp 62.21 59.37 61.97
0.2 bpp 59.21 56.37 58.95
0.3 bpp 57.45 54.63 57.18
0.4 bpp 56.21 53.39 55.93
0.5 bpp 55.32 52.43 54.99

Table 6
Comparison of SSIM values of ‘‘Uniform Embedding’’ methods based on the databases.

Ours-UE DE [8] APPM [9]

0.1 bpp 0.9996 0.9990 0.9996
0.2 bpp 0.9993 0.9981 0.9993
0.3 bpp 0.9990 0.9973 0.9989
0.4 bpp 0.9987 0.9965 0.9986
0.5 bpp 0.9984 0.9958 0.9983

extracted from the cover images and stego images, respectively. The ste-
ganalyzer is constructed by using soft-margin supporting vector machine
(SVM) [43] with the Gaussian kernel. The values of the penalization
parameter  and the kernel parameter 𝛾 are searched by the genetic
algorithms, and then the lowest detection error rate 𝑃𝐸𝑟𝑟 is obtained.

(1) Li [44]: A set of universal steganalytic 110-dimensional features
are extracted from the normalized histograms of the local linear trans-
form coefficients of an image.

(2) SPAM [45]: The local dependences between differences of
neighboring cover elements are modeled as a Markov chain, and the
transition probability matrix is used as the 686-dimensional features for
steganalysis.

(3) SRM [46]: The 34,671-dimensional features consisting of many
submodels. The submodels consider various types of relationships
among neighboring samples of noise residuals obtained by linear and
non-linear filters.

The experimental results are shown in Tables 9 and 10, respec-
tively. The detection error rates 𝑃𝐸𝑟𝑟 obtained by the propose image
steganographic methods are higher than those of other existing methods,
indicating that the propose image steganographic methods are less
detectable when concealing the same embedding payload. For example,
with the payload of 0.5 bpp, the detection error rates of DE [8] and
APPM [9] against SPAM steganalysis are 18.75 and 19.27. The detection
error rate of the proposed ‘‘Uniform Embedding’’ method is 19.96, which
is improved by 6.5% and 3.5%.

4.5. Analysis

Compared with prior works, the proposed image steganographic
methods can provide better imperceptibility and undetectability when
concealing the same embedding capacity. The proposed methods fully

take advantage of the steganographic embedding function 𝐹 and pixel
correlation function 𝐺, and the detailed analysis is given as follows.

The proposed steganographic embedding function 𝐹 restricts the
maximal modification of n-pixel block, rather than the maximal mod-
ification of each pixel. The non-overlapping n-pixel block can be syn-
chronously modified and fully considered, which would contribute to
the embedding distortion minimization. Furthermore, the constructions
of the function coefficients not only guarantee the exact data extraction,
but also increase the embedding capacity.

The proposed pixel correlation function 𝐺 utilizes the average differ-
ences and variances to discriminate the image smoothness. The features
of edge are considered sufficiently and the pixels in edge areas could
tolerate much more changes without making perceptible and detectable
distortion. In addition, the dynamical adjustment could modify the
embedded digit. The secret data are dynamically expressed as different
digits in multiple-base, and the digits to be embedded in each pixel block
can be flexibly adjusted, so as to minimize the embedding distortion.

The experiment results show that, if the embedding capacity is
low, Ours-UE, Ours-AE1, Ours-AE2 could obtain good performance of
image quality and anti-steganalysis. However, if more payloads would
be embedded, Ours-AE1 and Ours-AE2 could obtain higher PSNR values,
SSIM values and detection error rates than Ours-UE, when concealing
the same capacity. In general, the ‘‘adaptive embedding’’ methods could
obtain better performances because it considers the characteristics of
human visual system and image textures. Thus, the proposed ‘‘adaptive
embedding’’ framework can be considered as more suitable for practical
data hiding, so as to acquire better visual imperceptibility and stegano-
graphic security.

5. General-purpose strategies

The presented frameworks can be considered as the general and
flexible strategies to acquire new data hiding methods. For the given
steganographic embedding function 𝐹 and pixel correlation function
𝐺, the proposed frameworks provide efficient tools for constructing
practical image steganographic methods, i.e., we can directly obtain new
image steganographic methods according to the proposed embedding
and extracting procedures. Therefore, the design of image steganogra-
phy methods are converted into the construction of two functions 𝐹 and
𝐺.

The general form of the steganographic embedding function 𝐹 would
be 𝐹 (𝐱) = 𝐀𝐱𝑇 mod 𝑏. The definition domain 𝛺 and coefficients 𝐀 and 𝑏
are important. Their general forms are as follows.
{

𝛺 ∶ {𝐱|‖𝐱‖𝑙 ≤ 𝑘}, 𝑙 ∈ {1, 2,∞}
𝐀 = (𝑓1(𝑘, 1),… , 𝑓1(𝑘, 𝑖),… , 𝑓1(𝑘, 𝑛)), 𝑏 = 𝑓2(𝑘).

(18)

The design of 𝐹 is determined by the construction of the subfunctions
𝑓1 (a function of two independent variables 𝑘 and 𝑖), and 𝑓2 (a function

Table 7
Comparison of PSNR values of ‘‘Adaptive Embedding’’ methods based on the databases.

Ours-AE1 Ours-AE2 AdEMD [11] DE-PVD [19] EA-PVD [17]

0.1 bpp 62.23 62.41 56.35 59.59 55.21
0.2 bpp 59.21 59.38 53.31 56.56 51.99
0.3 bpp 57.30 57.47 51.53 54.76 50.09
0.4 bpp 56.04 56.28 50.26 53.47 48.72
0.5 bpp 55.18 55.33 49.27 52.48 47.64

Table 8
Comparison of SSIM values of ‘‘Adaptive Embedding’’ methods based on the databases.

Ours-AE1 Ours-AE2 AdEMD [11] DE-PVD [19] EA-PVD [17]

0.1 bpp 0.9997 0.9997 0.9988 0.9994 0.9990
0.2 bpp 0.9994 0.9994 0.9977 0.9989 0.9980
0.3 bpp 0.9991 0.9991 0.9966 0.9983 0.9970
0.4 bpp 0.9988 0.9989 0.9956 0.9978 0.9961
0.5 bpp 0.9986 0.9986 0.9946 0.9974 0.9952
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Table 9
Comparison of detection error rates of ‘‘Uniform Embedding’’ methods.

Ours-UE DE [8] APPM [9]

Li SPAM SRM Li SPAM SRM Li SPAM SRM

0.1 bpp 24.37 23.93 28.90 24.13 23.16 24.02 23.17 22.90 25.06
0.2 bpp 23.60 23.09 22.54 23.47 22.41 18.56 22.51 22.41 19.56
0.3 bpp 21.58 21.36 19.12 21.39 21.36 15.69 21.52 21.27 16.21
0.4 bpp 21.36 20.93 16.85 20.77 20.16 13.55 20.76 20.09 14.04
0.5 bpp 20.64 19.96 15.04 20.09 18.75 11.59 20.33 19.27 12.33

Table 10
Comparison of detection error rates of ‘‘Adaptive Embedding’’ methods.

Ours-AE1 Ours-AE2 AdEMD [11] DE-PVD [19] EA-PVD [17]

Li SPAM SRM Li SPAM SRM Li SPAM SRM Li SPAM SRM Li SPAM SRM

0.1 bpp 24.60 24.18 30.44 24.62 24.40 30.62 23.01 23.57 18.05 23.58 22.68 10.55 23.83 23.86 24.03
0.2 bpp 23.80 23.48 24.35 23.96 23.66 24.58 22.36 22.69 15.83 22.66 22.02 5.98 22.58 22.97 18.07
0.3 bpp 22.28 21.86 20.57 22.60 21.98 20.78 21.40 21.40 13.30 21.86 21.06 4.10 20.87 20.95 13.26
0.4 bpp 21.72 21.40 18.02 21.90 21.44 18.28 20.68 20.57 11.32 20.98 20.41 2.94 18.40 19.52 10.12
0.5 bpp 21.11 20.71 16.04 21.18 20.70 16.12 20.08 19.77 9.59 20.48 19.81 2.21 15.59 18.54 7.13

of one variable 𝑘). Furthermore, the steganographic embedding function
𝐹 should be a bijective mapping.
{

𝐹 (𝐱1) ≠ 𝐹 (𝐱2) if 𝐱1 ≠ 𝐱2,
∀𝑦 ∈ N,∃ 𝐱 ∈ 𝛺, 𝐹 (𝐱) = 𝑦.

(19)

The embedding rate (the number of embedded bits in each pixel)
and embedding efficiency (a ratio between the number of embedded bits
and the embedding distortion 𝐷) are used for performance evaluation.
The embedding rate is ⌊log2𝑏⌋∕𝑛 = ⌊log2𝑓2(𝑘)⌋∕𝑛, and the embedding
efficiency is ⌊log2𝑏⌋∕𝐷 = ⌊log2𝑓2(𝑘)⌋∕𝐷. The embedding distortion 𝐷 is
determined by the domain 𝛺.

The pixel correlation function 𝐺 is limited as average differences and
variances of pixel values in this paper. It is worth investigating other
function forms for describing image textures fully, such as image entropy
and gray-level co-occurrence matrix. That is a part of our future work.

6. Conclusions

In this paper, the steganographic embedding function and pixel
correlation function are firstly introduced, and then two efficient
steganographic frameworks for ‘‘uniform embedding’’ and ‘‘adaptive
embedding’’ based on them are proposed. Some well-known image
steganographic embedding methods can be obtained from the proposed
frameworks. We construct the special data hiding methods in the case
of four neighboring pixel as a processing unit. Experimental results
demonstrate that the new image steganographic methods not only
improve the embedding capacity and stego image quality, but also
achieve better statistical undetectability compared with the prior works.
The presented work could be regarded as the off-the-shelf methodologies
that create the efficient image steganographic methods.
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