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a b s t r a c t 

Dissipative chaotic systems have been widely used in digital image encryption schemes in the past 20 

years. However, compared to conservative chaotic systems, the dissipative chaotic systems have attractors 

thus attacker can reconstruct the chaotic systems by reconstructing the attractors. Therefore, the conser- 

vative chaotic systems are more suitable in chaos-based encryption system because they have no attrac- 

tors thus can avoid the reconstructing attacks. Based on this, an image encryption scheme based on con- 

servative hyper-chaotic system and closed-loop diffusion between blocks is proposed in this paper. On the 

one hand, the conservative hyperchaotic system has strong pseudo-randomness and anti-reconstruction 

attack property. On the other hand, different from the existing closed-loop diffusion schemes which 

change pixel values one by one until the last pixel value is changed, the proposed closed-loop diffu- 

sion method cannot only generate the first ciphertext and other ciphertext blocks but also update the 

first ciphertext block using the other generated ciphertext block information. In addition, the key streams 

are related to plaintext and ciphertext. Consequently, the key, plaintext and ciphertext form an organic 

whole to ensure the sensitivity of the encryption system. Moreover, simulation results and analysis show 

that the encryption scheme has strong security and excellent performance. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

With the development of modern communication technology

nd the popularity of the Internet, most media files such as text,

mages, and videos are exposed to a shared and accessible net-

ork space. Therefore, communication security in a digital world

ecomes a serious problem and gains more and more attention

1] . For instance, some images carrying bio-signals of fingerprints,

rises, etc, can easily reveal important personal privacy and thus

ause the leakage of personal privacy when they are transmit-

ed on digital media without encryption. So the encryption of im-

ges is very necessary [2] . Thus, designing a secure digital image

ncryption method has also attracted the attention of many re-

earchers. Different from one-dimensional text information, image

ata has its unique properties such as large amount of data, high

edundancy, and strong correlation between adjacent pixels. These

eatures make traditional encryption algorithms such as DES and

ES for text encryption no longer suitable for image encryption

3,4] . 
∗ Corresponding author. 
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Chaotic systems are widely used in image encryption schemes

ecause of their unique properties such as pseudo-randomness, er-

odicity, unpredictability, and sensitivity to initial values and pa-

ameters [5–10] . In 1998, Fridrich first proposed the basic frame-

ork of image encryption, which consisted of scrambling and dif-

usion [11] . In the scrambling stage, the position of the pixels in

he image is scrambled, but the histogram of image doesn’t be

hanged because the number of pixel values in image is invari-

ble. While in the diffusion stage, the value of the pixels in the

mage can be changed, thus the histogram of the image can be

hanged. In recent decades, image encryption algorithms based on

haotic systems have appeared in large numbers [12–32] . Further,

hese encryption schemes can be divided into many categories

uch as schemes based on deoxyribonucleic acid (DNA) [12–16] ,

lock-based schemes [17–19] , schemes based on complex chaotic

ystems [20–22] , schemes based on special algorithms [23–27] ,

chemes based on new scrambling diffusion structures [28–32] and

o on. 

Chaos occurs mainly in three categories of dynamic systems

33] : (a) conservative systems; (b) dissipative systems; and (c)

uantum systems. Based on this, chaotic systems can be divided

nto dissipative chaotic system (DCS) and conservative chaotic sys-

em (CCS). CCS is a class of chaotic systems having the zero-sum

f the Lyapunov exponents (LEs) [34] while DCS does not have this



2 M. Zhou and C. Wang / Signal Processing 171 (2020) 107484 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

b  

w  

e

 

i  

u  

d  

f  

w

2

2

 

c  

u  

n  

s  

fi  

[⎧⎪⎪⎨
⎪⎪⎩

 

w  

w  

a  

p  

F  

7  

0  

t  

q  

g

 

v  

s  

c  

g  

s  

t  

b  

0  

4  

r  

f  

r⎧⎪⎨
⎪⎩  

w

 

C  

s  

n  

p  

l  

a  

e  

d  

g

property. DCSs are widely used in chaos-based image encryption

algorithms, mainly because DCSs can realize hyperchaos easily and

have strong pseudorandom behavior. These properties meet the re-

quirements of big key space and high randomness for encryption

system. For example, Zhang et al. [12] proposed a new image en-

cryption scheme which was based on the spatiotemporal chaos of

the Mixed Linear-Nonlinear Coupled Map Lattices (MLNCML) and

the strategy of DNA computing. Wu et al. [15] described an im-

age encryption algorithm which used two-dimensional Hénon-Sine

map (2D-HSM) and DNA approach. Both Yin and Wang [23] and

Li et al. [28] utilized hyperchaotic systems to generate the pseudo-

random numbers which were used in the scrambling and diffusion

stages. A dissipative chaotic system may have outstanding perfor-

mance in pseudo-randomness, nevertheless it generates a strange

attractor with fractional dimension, and its orbits approximately

approach a manifold of fractional dimension having zero volume.

Therefore, the risk that an attacker reconstructing the attractors

and then cracking the encryption scheme is greatly increased, thus

the image encryption schemes using the DCS are less secure. In

addition, most of the space around the attractor is not reachable

for orbit, hence the dissipative chaos are ergodicity-poor [33] . On

the contrary, a conservative chaotic system does not produce any

attractors, thus the attacker cannot decipher encryption algorithm

by reconstructing the chaotic system used in the encryption algo-

rithm, which can greatly improve the security and reliability of

encryption scheme. Meanwhile, the dimension of a conservative

chaotic system is an integer equaling to the system dimension,

which brings about a richer ergodicity than the DCS [35] . How-

ever, up to now, the image encryption scheme based on conserva-

tive chaotic system has not been reported. Therefore, in this paper,

we propose a new image encryption scheme based on conserva-

tive hyperchaotic system and closed-loop diffusion between blocks.

On the one hand, in contrast, the biggest Lyapunov exponent of

the conservative hyper-chaotic system is larger than that of gen-

eral conservative chaotic system, and the dynamic characteristics

of conservative hyper-chaotic system are better, so the image en-

cryption system using conservative hyperchaotic system is better

in security and pseudo-randomness. On the other hand, compared

with the open-loop encryption structure of the existing schemes

[16–18] , the closed-loop diffusion structure proposed in this paper

greatly improves the reliability of encryption system. 

In summary, an image encryption algorithm based on 5-

dimensional conservative hyper-chaotic system and closed-loop

diffusion between blocks is introduced. Firstly, the conservative

hyper-chaotic system used in this paper has no attractor, and the

biggest Lyapunov exponent is also very large. In consequence, it

can resist the attacker from deciphering the encryption scheme

by reconstructing the attractor. Additionally, the strong pseudo-

randomness of the conservative hyper-chaotic system can further

ensure the randomness and reliability of the encryption scheme.

Secondly, the initial values of chaotic sequences used for scram-

bling and diffusion are generated in different ways. The initial val-

ues of chaotic sequences used for scrambling are constructed by

using the SHA 256 hash of the plain image, while the initial values

of chaotic sequences used for diffusion are quantified according to

the size and the pixel values of plaintext. These ways make the key

sequences for scrambling and diffusion related to plaintext, and

they ensure that the encryption scheme can resist chosen-plaintext

attacks. Finally, the block-based encryption scheme really realizes

closed-loop diffusion. The generation of the current cipher block

depends on the current plaintext block, a random cipher block,

and the key block. The random cipher block locates before the

current plaintext block, and the key block corresponds to the cur-

rent cipher block. The generation of first cipher block depends on

the plaintext block and the initial key block, but when the last ci-

phertext block is generated, the first cipher block is updated. The
losed-loop diffusion structure makes the key block, the plaintext

lock and the cipher text block together form a closed-loop organic

hole, so that the attacker cannot find the attack window and thus

nsure the security of the encryption scheme. 

The rest of the paper is organized as follows: in Section 2 , we

ntroduce the five-dimensional conservati ve hyper-chaotic system

sed in this work. Then the proposed encryption scheme and the

ecryption process are presented in Section 3 . After that, the per-

ormance analysis of the encryption system is showed in Section 4 ,

hile Section 5 concludes the paper. 

. Preliminary works 

.1. 5D conservative hyper-chaotic system 

Existing conservative chaotic systems can be divided into two

ategories. One is the Hamiltonian CCS (HCCS) [36–38] , whose vol-

me and total Hamiltonian are both conserved. The other one is

on-Hamiltonian CCS (non-HCCS) [39–41] , whose volume is con-

ervative but total Hamiltonian is not conserved. Here we use a

ve-dimensional HCCS (5D-HCCS) in our image encryption scheme

42] . It can be described by the following Eq. (1) . 
 

 

 

 

 

 

 

˙ x = ay + cv 
˙ y = −ax + bxu 

˙ z = du 

˙ u = −bxy − dz 
˙ v = −cx 

(1)

here a, b, c and d are the parameters of the chaotic system. When

e fix the parameters of the system (a, b, c, d) to (30, 30, 10, 30)

nd set its initial value formed by two negative numbers and three

ositive numbers, the system exhibits hyper-chaotic characteristics.

or example, when we set the initial value of this system as (0.25,

, −2, 2.5, −0.7), we can see from Fig. 1 that its LEs are (6.755464,

.849765, 0.039421, −0.377339, −7.188469), which indicates that

his system produces hyper-chaos and its pseudo-randomness is

uite strong. As a result, this system is ideal as a random number

enerator for image encryption systems. 

In order to compare the LEs of the five-dimensional conser-

ative hyperchaotic system with the general conservative chaotic

ystems, we consider the following four-dimensional conservative

haotic system (4D-CCS) shown in Eq. (2) [35] . Meanwhile, Fig. 2

ives the distribution maps of the LEs of the 4D-CCS. It can be

een from Fig. 2 that when the initial values ( x 0, y 0, z 0, w0 ) of

he 4D-CCS are set as (0.25, 7, −2, 2.5) and the parameters (a,

, c, d) of it are fixed as(30, 30, 10, 30), the LEs of it are (-

.0 0 0 0 0 0, −0.0 0 0 0 0 0, 0.391222, −0.391222), which shows that the

D-CCS can only produce the chaotic phenomenon and its pseudo-

andomness is not strong due to its biggest LE is close to 0. There-

ore, the 4D-CCS is not suitable for generating a series of pseudo-

andom numbers required for image encryption systems. 
 

 

 

 

 

˙ x = (c − b) × y × z + (d − c) × z × w 

˙ y = (a − c) × x × z 
˙ z = (b − a ) × x × y + (a − d) × x × w 

˙ w = (c − a ) × x × z 

(2)

here a, b, c and d are the parameters of the chaotic system. 

From the distribution maps of LEs of the 5D-HCCS and the 4D-

CS, we can see that although the general conservative chaotic

ystems have no attractor, they can only produce chaotic phe-

omenon, and their largest LE is always too small, thus their

seudo-randomness is not strong enough. On the contrary, the

argest LE of the 5D-HCCS is large enough, thus it can fully function

s a pseudo-random number generator required for chaotic image

ncryption. The 5D-HCCS not only has no attractor, but also pro-

uces hyperchaos, therefore we use it as a pseudorandom number

enerator in our image encryption system. 
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Fig. 1. (a) Finite-time local LEs of the 5D-HCCS with the initial value ( x 0, y 0, z 0, u 0, v 0) set as (0.25, 7, −2, 2.5, −0.7), and when t ∈ (6.9, 7.05), the LEs stabilizes to(6.755464, 

0.849765, 0.039421, −0.377339, −7.188469). 

Fig. 2. Finite-time local LEs of the 4D-CCS with the initial value ( x 0, y 0, z 0, w0 ) set as (0.25, 7, −2, 2.5), when t ∈ (7, 9), the LEs stabilizes to (-0.0 0 0 0 0 0, −0.0 0 0 0 0 0, 

0.391222, −0.391222). 
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. The proposed encryption scheme 

.1. Key generation process 

In our encryption algorithm, the methods of key generating for

crambling and diffusion are different, and the specific ways are

escribed in detail in this section. 

.1.1. Key generating for permutation process 

A 256-bit external secret key is used in the permutation pro-

ess, which is generated by SHA 256 hash function of the plain

mage. The 256-bit key K is divided into 8-bit blocks. It can be ex-

ressed as follows: 

 = k 1 , k 2 , . . . , k 32 , subject to : k i = { k i, 0 , k i, 1 , . . . , k i, 7 } (3)

here in the k i , j , i represents the serial number of the blocks and

 is the number of bits in the k i . In order to make the 256-bit key

rouping more clearly, here we give a schematic table of the key

rouping, as shown in Table 1 below. 

Obviously, the initial value (x 
p 
0 

, y 
p 
0 

, z 
p 
0 

, u 
p 
0 

, v p 
0 
) of chaotic system

or scrambling process are generated by using these bit-level keys
Table 1 

The grouping of the secret key K. 

K 1 ~K 4 K 5 ~K 8 K 9 ~K 12 K 13 ~K 16 K 17 
roups, and the formula is as follows. 
 

 

 

 

 

 

 

 

 

 

 

 

 

x p 
0 

= 

k 1 + k 2 + k 3 + k 4 + k 29 + k 30 + k 31 + k 32 −224 
8 ×256 

y p 
0 

= 

k 5 + k 6 + k 7 + k 8 + k 25 + k 26 + k 27 + k 28 −244 
8 ×256 

+ 1 . 5 

z p 
0 

= − k 9 + k 10 + k 11 + k 12 + k 21 + k 22 + k 23 + k 24 −236 
8 ×256 

u 

p 
0 

= − k 13 + k 14 + k 15 + k 16 + k 17 + k 18 + k 19 + k 20 −216 
8 ×256 

− 1 . 5 

v p 
0 

= 

k 1 + k 2 + k 7 + k 8 + k 23 + k 24 + k 19 + k 20 −222 
8 ×256 

(4) 

According to the calculation formula given above, we know that

he initial values of chaotic system used for permutation depend

n the hash values of the original image. If there is a bit level

ifference between two original images, their hash values will be

ompletely different and then chaotic sequences used for scram-

ling them will be very different. Therefore, our algorithm is highly

ensitive to the plain image. 

.1.2. Key generating for diffusion process 

The key for the diffusion process is determined by the size and

ixel value of the plaintext. The size of the initial image is M × N,

hen according to the Eq. (5) we can calculate the initial values x d 
0 
,

 

d 
0 
, z d 

0 
, u d 

0 
, v d 

0 
of the chaotic system used for diffusing process. 

Like the key in the scrambling phase, the key in the diffusion

hase is directly related to the plaintext. As long as the size or
~K 20 K 21 ~K 24 K 25 ~K 28 K 29 ~K 32 
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pixel value of the original image changes slightly, the initial values

of the chaotic sequence will change greatly. Due to the chaotic se-

quence is highly sensitive to the initial value, the chaotic sequence

used to encrypt two slightly different images will be very differ-

ent. As a result, our encryption algorithm can effectively resist the

chosen-plaintext attacks. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x d 0 = 

∑ M 
i =1 

∑ N 
j=1 ( I i, j +2) 

3 ×M×N 
) 

y d 0 = mod ( 
∑ M 

i =1 

∑ N 
j=1 ( 

I i, j +18 

9 ) 

3 ×M×N 
× 10 

10 , 10) + 1 

z d 0 = −
∑ M 

i =1 

∑ N 
j=1 ( 

I i, j +36 

18 ) 

3 ×M×N 

u 

d 
0 = mod ( 

∑ M 
i =1 

∑ N 
j=1 ( 

I i, j +188 

94 ) 

3 ×M×N 
× 10 

10 , −10) 

v d 0 = 

∑ M 
i =1 

∑ N 
j=1 ( 

I i, j +228 

114 ) 

3 ×M×N 

(5)

where mod( a, b ) represents the modular operation of a for b and

( a + b ) means bitand(a, b). 

3.2. Closed-loop diffusion mechanism between blocks dependent on 

both plaintext and ciphertext (CDMBDPC) 

The closed-loop diffusion mechanism between blocks depen-

dent on both plaintext and ciphertext (CDMBDOC) is proposed in

this paper to diffuse the scrambled image, and it can be denoted

as Eq. (6) . 

 = CD (Q, X 2 , Y 2 , Z2 , U2 , V 2) (6)

where Q represents the image block converted from the scrambled

plaintext, CD(.) is the CDMBDPC function and X 2, Y 2, Z 2, U 2, V 2

are five key blocks. The image block is composed of 4 × 4 small

blocks, and the total number of blocks is M × N/(4 × 4) which is

based on that the size of the scrambled plaintext as M × N . Firstly,

we can obtain five sets of pseudorandom sequences by solving the

equations of 5-dimensional conservative hyperchaotic system in-

troduced in Section 2.1 . Then we can convert them to 5 initial key

blocks X 2, Y 2, Z 2, U 2, V 2, which have the same size as Q . 

The image is divided into small blocks based on the MAT-

LAB cell array tool in this paper. Each block of an image W

can be represented as W { i, j }, in which i represents the num-

ber of rows in the cell array, and j represents the number of

columns. Therefore, in the order from left to right and from

top to bottom, each block of an image W can be represented

as W { 1 , 1 } , W { 1 , 2 } , . . . , W { 1 , r } , W { 2 , 1 } , . . . , W { r, r } , where r in-

dicates the row and column labels of the last block and r =√ 

( M × N ) / ( 4 × 4 ) . The diffusion of the current plaintext block W { i,

j } is related to the previous ciphertext block P { i, j } and random ci-

phertext block S { p, q }, where the position of P { i, j } is located in

front of the W { i, j } and the position of S { p, q } is located before P { i,

j }. Since this is a block-by-block diffusion process, the index num-

ber i and j of the previous ciphertext block P depend on the index

numbers of the current ciphertext block C { i, j }. Consequently, the

specific P { i, j } can be given by the following formula: 

P { i, j} = 

⎧ ⎨ 

⎩ 

C{ r, r} , i = 1&& j = 1 

C { i − 1 , r } , i � = 1&& j = 1 

C{ i, j − 1 } others 

(7)

Meanwhile, the row number p and the column number q of the

random ciphertext block S are also related to the index numbers

of the current ciphertext block C { i, j } and they can be obtained

according to Eqs. (8) and (9) : 

p = 

{
1 , i = 1 

mod (r × r, i − 1) + 1 i � = 1 

(8)

q = 

{
1 , j = 1 

mod (r × r, j − 1) + 1 j � = 1 

(9)
It can be seen from the above formulas that when i and j are

oth equal to 1, both p and q are set as 1. Fig. 3 gives a spe-

ific closed-loop diffusion flow chart. Assuming that the size of the

crambled image is M × N and the length of five sets of pseudo-

andom sequences are all M × N , then the detailed steps are as

ollows: 

Step 1 : First of all, the scrambled plaintext Q is

evenly divided into small blocks, the size of which

are all 4 × 4. Thereby, it can be represented as

Q { 1 , 1 } , Q { 1 , 2 } , . . . , Q { 1 , r } , Q { 2 , 1 } , . . . , Q { r, r } . Meanwhile,

five sets of pseudorandom sequences mentioned above are

firstly transferred to the matrix of M × N , then we divide

each one of them evenly into small blocks of 4 × 4 and

they can be marked as base key blocks X 2, Y 2, Z 2, U 2, V 2. 

Step 2 : Generate key blocks b and d for generating the initial

first ciphertext block and the updated first ciphertext block.

Since only one small block of b and d are involved in the

generation of initial and updated first ciphertext blocks, the

calculation method of the used blocks is given here. 

b{ 1 , 1 } (k, l) = mod ( floor (X 2 { 1 , 1 } (k, l) ∗ 10 

10 ) , 256) (10)

d{ r, r} (k, l) = mod ( floor (X 2 { r, r} (k, l) ∗ 10 

10 ) , 256) (11)

where k and l represent the label of the row and the col-

umn in each block respectively. It is clearly that 1 ≤ k ≤ 4,

1 ≤ l ≤ 4 and in the following steps, they also represent

these meanings. 

Step 3 : The initial first ciphertext block is constructed by the

first plaintext block and the last plaintext block and the key

block b . The calculation formula is as follows. 

C{ 1 , 1 } (k, l) = Q{ 1 , 1 } (k, l) � b{ 1 , 1 } (k, l) � Q{ r, r} (k, l) 

(12)

where a �b means bitxor (a, b) and it is also the same mean-

ing when it appears in the formulas below. 

Step 4 : The key blocks a and c are gained by combining the

initial key blocks Y 2, Z 2, U 2, V 2 with the previous ciphertext

block P { i, j } according to Eqs. (13) and (14) , in which the

specific form of P { i, j } is given by Eq. (7) . 

a { i, j} (k, l) = mod ( floor ((Y 2 { i, j} (k, l) + Z2 { i, j} (k, l) 

+ P { i, j} (k, l)) ∗ 10 

8 ) , 256) (13)

c{ i, j} (k, l) = mod ( floor ((U2 { i, j} (k, l) + V 2 { i, j} (k, l) 

+ P { i, j} (k, l)) ∗ 10 

8 ) , 256) (14)

where 1 ≤ i ≤ r , 1 ≤ j ≤ r , 1 ≤ k ≤ 4, 1 ≤ l ≤ 4, and the
index numbers in the key blocks all correspond to the index

number in the current plaintext block Q which need to be

diffused. 

Step 5 : Set an intermediate variable f , which is determined by

P { i, j }, and it can be calculated by the following formula: 

f = mod ( sum (P { i, j} (k, l) ∗ 10 

14 ) , 2) (15)

where the sum(.) operator means accumulating the values of

every pixels in P . Obviously, The value of f is 0 or 1. We can

select two encryption methods for the next small blocks to

be diffused based on the value of f . 

Step 6 : The encryption of the second to the last plaintext block

is performed according to the value of f . The specific encryp-

tion method of each ciphertext block is obtained by Eq. (16) .

C{ i, j} (k, l) = 

{
Q{ i, j} (k, l) � a { i, j} (k, l) � C{ p, q } (k, l) , if f = 0 , 

Q{ i, j} (k, l) � c{ i, j} (k, l) � C{ p, q } (k, l) , if f = 1 . 

(16)
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Key blocks X2, 
Y2, Z2,U2,V2
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ciphertext 

block P

Random 

ciphertext 

block S

Scrambled 
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blocks a, c
Y2,Z2,
U2,V2

Key blocks b, dX2
C1,1

C i, j
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C i, j

b

f = 0

f = 1

d

Integration
Cipher 

image C

Fig. 3. The flow chart of CDMBDPC. 

 

 

 

 

 

 

 

 

 

 

 

 

d  

s

where the C {p, q}(k, l) is the pixel of the ciphertext block

S at any random position before the current plaintext block

which need to be encrypted. 

Step 7 : Repeat Step 6 until all plaintext blocks are encrypted. 

Step 8 : When the overall ciphertext is obtained, we need to use

key block d , the original first ciphertext block and the last

ciphertext block to update the first ciphertext block, so that

the closed-loop diffusion can be realized. The updating way

is as follows: 

C ′ { 1 , 1 } (k, l) = C{ 1 , 1 } (k, l) � d{ r, r} (k, l) � C{ r, r} (k, l) 

(17) 
Algorithm 1 CDMBDOC. 

Variables : t , the length of a small block; r , r = 

√ 

( M × N ) / ( 4

number p and the column number q of the random ciphert

S , a random ciphertext block; P , the previous ciphertext blo

ciphertext block C { i, j }; count, encryption rounds. 

Input: Q , the image block converted from the scrambled pla

are all 4 × 4; X2, Y2, Z2, U2, V2, 5 initial key blocks. 

Output: C , the cipher image. 

1: cc = 1;count = cc; 

2:while (count) 

3: if (cc is equal to1) 

4: key blocks b { 1 , 1 } ( k , l ) = mod ( floor (X2 { 1 , 1 } ( k , l ) ∗10 1

5: The first cipher block C { 1 , 1 } ( k , l ) = Q { 1 , 1 } ( k , l ) bitxo

6: else 

7: Q = C 

8: end if 

9 : S = C{p,q} 

10: if (i and j are both equal to 1) 

11: P = C{r,r} 

12: elseif (i is not equal to 1 and j is equal to 1) 

13: P = C{i-1,r} 

14: else 

15: P = C{i,j-1} 

16: end if 

17: one key blocks a { i , j } ( k , l ) = mod ( floor (( Y2 { i , j } ( k , l ) +
18: the other key blocks c { i , j } ( k , l ) = mod ( floor (( U2 { i , j } ( k
19: f = mod ( sum (P { i , j } ( k , l ) ∗10 14 ) , 2) 

20: if (i is not equal to 1 or j is not equal to 1) 

21: if (f is equal to 0) 

22: C { i , j } ( k , l ) = Q { i , j } ( k , l ) bitxor a { i , j } ( k , l ) bitxor C { p
23: elseif (f is equal to 1) 

24: C { i , j } ( k , l ) = Q { i , j } ( k , l ) bitxor c { i , j } ( k , l ) bitxor C { p
25: end if 

26: end if 

27: key blocks d { r , r } ( k , l ) = mod ( floor (X2 { r , r } ( k , l ) ∗10 10 ) ,

28: The updated first cipher block C { 1 , 1 } ( k , l ) = Q { 1 , 1 } ( k
29: count = count-1 

30:end while 
where the C {1, 1}( k, l ) and C ′ {1, 1}( k, l ) are separately the

original and the updated first ciphertext block. 

Step 9 : After all the ciphertext blocks are generated, we inte-

grate the updated first ciphertext block and other ciphertext

block to obtain a complete ciphertext block. Then we con-

vert it to a matrix of the same size as the original plain im-

age to obtain the final cipher image C . 

The closed-loop diffusion mechanism between blocks depen-

ent on both plaintext and ciphertext (CDMBDOC) explained in the

teps above is given in Algorithm 1 . 
 × 4 ) , the length of the cell array; p, q , the row 

ext block S ; 

ck depended on the index number of the current 

intext, divided into small blocks, the size of which 

0 ) , 256) 

r b { 1 , 1 } ( k , l ) bitxor Q { r , r } ( k , l ) 

 Z2 { i , j } ( k , l ) + P { i , j } ( k , l ) ) ∗10 8 ) , 256) 

 , l ) + V2 { i , j } ( k , l ) + P { i , j } ( k , l ) ) ∗10 8 ) , 256) 

 , q } ( k , l ) 

 , q } ( k , l ) 

 256) 

 , l ) bitxor b { 1 , 1 } ( k , l ) bitxor Q { r , r } ( k , l ) 
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SHA 256( )K P� �

Plain image P

0 0 0 0 0Convert  in  ,,to , ,p p p p px y z u vK

CHCS5

Plain image P

1X 1Y

 Whole

permutation

     Block

 permutation

Closed-loop 

   diffusion

CHCS5

0 0 0 0 0

Quantify the Sum( ) to

, ,  ,,d d dd dx y z u v
P

Cipher image

 C

Fig. 4. The Flow chart of the encryption process. 
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From the perspective of the flow of the block-to-block closed-

loop diffusion mechanism which is dependent on the plaintext

and the ciphertext(CDMBDPC), we can see some highlights in our

encryption scheme. First of all, the basic key block is formed

by a certain number of iterations of the hyperchaotic system. In

addition, the initial values of the chaotic system are generated

by the quantification of the size and pixel values of the plain-

text. While the key block used to encrypt each plaintext block

is constructed by the base key block and the ciphertext block

generated in front of the current plaintext block, which makes

the key block determined by the plaintext and the ciphertext.

Therefore, the key, plaintext and ciphertext constitute an inter-

related organic whole, rather than being separated from each

other, which better proves that the encryption system proposed

in this paper cannot only resist the chosen-plaintext attack, but

also resist the chosen-ciphertext attack, and thus has good secu-

rity and reliability. Secondly, our diffusion process is a dynamic

process. In addition to the key blocks which participate in each

step of the encryption process is selected, a random ciphertext

block at any position before the current plaintext block partic-

ipates in the encryption process too. The dynamic structure re-

alizes the true meaning of diffusion, that is, the change in the

pixel values of any one of the encrypted image blocks is well used

to affect the change in the pixel values of the unencrypted im-

age blocks. Finally, by updating the first ciphertext block in Step

8 , a closed-loop diffusion from C {1, 1} to C { r, r }, and to C ′ {1,

1} is achieved in a true sense, which is not reflected in other

papers. 

3.3. Encryption process 

In our algorithm, the original image first experiences a global

scrambling, and then experiences the block scrambling, and next

through the closed-loop diffusion between blocks in Section 3.2 .

After these steps, we can get the cipher image. 
Fig. 4 shows a complete schematic diagram of the encryp-

ion process and the plain image is denoted as P, whose size is

 = M × N , then the specific steps are described as below: 

Step 1 : Use a SHA-256 hash function for plain image P to pro-

duce a 256-bit key sequence K . Then use Eq. (4) to convert

K into a set of initial value ( x 
p 
0 
, y 

p 
0 
, z 

p 
0 
, u 

p 
0 
, v p 

0 
) of the 5D con-

servative hyper-chaotic system(CHCS5), and the equation of

CHCS5 is given by Eq. (1) . 

Step 2 : We iterate the Eq. (1) L + N0 times using the ini-

tial value ( x 
p 
0 
, y 

p 
0 
, z 

p 
0 
, u 

p 
0 
, v p 

0 
) and the four parameters a, b,

c , and d . The initial value is generated in the previous step

and a, b, c , and d are set as 30, 30, 10 and 30 respectively.

Then, we get 5 pseudorandom sequences. To get rid of the

transient effect of the chaotic system, we discard the first

N 0 numbers of each sequence. Then five pseudorandom se-

quences X 1, Y 1, Z 1, U 1, V 1 with L length can be obtained.

Here, N 0 is set to 1600. 

Step 3 : Convert the plain image matrix P into a sequence P ( i ) of

the same length as X 1, and sort the X 1 in ascending order,

thereby obtaining an index sequence T = { t(i ) } L 
1 
, where t ( i )

means the component of T . 

Step 4 : Scramble the plain image sequence P ( i ) to get the shuf-

fled sequence P ′ ( i ) by 

P ′ (i ) = P (t(i )) (18)

where i = 1 , 2 , ..., L . 

Step 5 : Convert the image after the overall scrambling

into a matrix of M × N , and then evenly divide

it into 4 small blocks and the number of blocks is

r × r = M × N/ ( 4 × 4 ) . Then the image can be repre-

sented as P ′ { 1 , 1 } , P ′ { 1 , 2 } , . . . , P ′ { 1 , r } , P ′ { 2 , 1 } , . . . , P ′ { r, r } or

in the sense of using a one-dimensional sequence to

represent each block, the image can be expressed as

P ′ (1) , P ′ (2) , . . . , P ′ ( r × r ) . Here, we can set the index num-

bers of the blocks as G (i ) = 1 , 2 , ..., r × r, where i =
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o  
1 , 2 , ..., r × r. Thereby, the overall-scrambled image block can

be represented as P ′ ( G ( i ). 

Step 6 : Extract r × r numbers from X 1 to form a new chaotic

sequence X 1 ′ , and then sort X 1 ′ in ascending order to get an

index sequence T ′ = { t ′ (i ) } r×r 
1 

, where t ′ ( i ) means the compo-

nent of T ′ . 
Step 7 : Scramble G ( i ) to get the new index numbers of blocks

G 

′ ( i ) by 

G 

′ (i ) = G (t ′ (i )) (19)

where i = 1 , 2 , ..., r × r. 

Step 8 : Scramble the overall-scrambled image block P ′ ( G ( i )) to

get the shuffled image block Q ( G 

′ ( i )) by 

Q(G 

′ (i )) = P ′ (G (t ′ (i ))) (20)

After the block scrambling, we get a new scrambled im-

age Q which can be expresesed as Q { 1 , 1 } , Q { 1 , 2 } , . . . ,
Q { 1 , r } , Q { 2 , 1 } , . . . , Q { r, r } . 

Step 9 : After two scrambling, the permutated image Q can be

sent to diffusion stage. Firstly, we calculate the Eq. (5) based

on the size of the plain image and the sum of each of its

pixel values to obtain the five keys of the diffusion phase,

namely the other set of initial value (x d 
0 
, y d 

0 
, z d 

0 
, u d 

0 
, v d 

0 
) of

the CHCS5. 

Step 10 : We iterate the Eq. (1) L + N1 times with the initial

value x d 
0 
, y d 

0 
, z d 

0 
, u d 

0 
, v d 

0 
and the four parameters a, b, c , and d .

The initial value is generated in the previous step and sent

to the CHCS5, and a, b, c , and d are set as 30, 30, 10 and 30

respectively. Then we can get 5 pseudorandom sequences. To

get rid of the transient effect of the chaotic system, we dis-

card the first N 1 numbers of each sequence. Then five pseu-

dorandom sequences X 2, Y 2, Z 2, U 2, V 2 with L length can be

obtained. Here, N 1 is set to 1500. 

Step 11 : Perform the first to the ninth step in Section 3.2 in

order to complete the closed-loop diffusion between blocks

dependent on both plaintext and ciphertext (CDMBDPC). 

Since the scrambling and diffusion phases are successively ex-

erienced, we can get a complete cipher image C . 

.4. Decryption process 

The decryption scheme is the reverse process of the encryption

cheme. The key used for decryption is exactly the same as the

ncryption, and the key should be transmitted by the sender to

he receiver via a secure transmission channel before decryption.

n the algorithm proposed in this paper, the secret key consists of

0 values, namely the first set of initial value of chaotic sequences

sed in the scrambling phase ( x 
p 
0 
, y 

p 
0 
, z 

p 
0 
, u 

p 
0 
, v p 

0 
) and the other set of

nitial value of chaotic sequences used in the diffusion phase (x d 
0 
,

 

d 
0 
, z d 

0 
, u d 

0 
, v d 

0 
) . 

. Simulation results and performance analysis 

This part gives detailed security analyses and experimental re-

ults to evaluate the performance of the proposed algorithm. To

erify the validity and efficiency of our proposed algorithm, several

umerical simulations performed on several images taken from a

ell-known database [43] are conducted on the Matlab2016a plat-

orm and discussed in the following subsections. The chosen sam-

le image are the standard 256 grayscale images of Black, White,

eppers, Elaine, Lena, Goldhill, Baboon, Man, Airplane, and Airport,

here the first four images, the middle three images and the last

hree images measure 256 × 256 pixels, 512 × 512 pixels and

024 × 1024 pixels respectively. Fig. 5 shows the encryption and
ecryption results for the Elaine, Baboon, and Airport images. Ac-

ording to Fig. 5 , we can conclude that the encrypted images were

imilar to the noisy images without any visual information leak-

ge, and the decrypted images with the corrected key were iden-

ical to the plain images. In addition, in the following performance

nalysis, the performance parameters of our encryption scheme are

btained after only one round of encryption. 

.1. Key space analysis 

The size of the key space is the total number of different keys

hat can be used in a cryptosystem. A larger key space means that

he algorithm has higher security. To guarantee the security of the

ryptosystem, the key space should be larger than 2 112 to resist

rute-force attacks [44] . In the proposed algorithm, the key com-

rises the initial values x 
p 
0 

, y 
p 
0 

, z 
p 
0 

, u 
p 
0 

, v p 
0 

, x d 
0 
, y d 

0 
, z d 

0 
, u d 

0 
, and v d 

0 
.

e assume that the initial values are double-precision numbers.

ecause the computational precision of the double-precision num-

ers is 10 −16 , the size of the key space of the proposed algorithm

or one round of encryption would be bigger than 

 ( 10 

16 ) 3 × (0 . 49 × 10 

16 ) 2 ] 2 ≈ 2 

399 , 

hich is sufficiently large to resist all types of brute-force attacks. 

.2. Key sensitivity analysis 

A high security cryptosystem must be very sensitive to tiny dif-

erences in secret keys. In the encryption process, almost com-

letely different cipher images should be produced when slightly

ifferent keys are employed to encrypt the same plain image. Sim-

larly, a slight change to the key used for decryption will lead to

n unsuccessful decryption. In this test, we check the sensitivity of

he key in the encryption phase and decryption phase. 

In the encryption phase, the original keys and the slightly

odified keys are used to encrypt the Elaine (256 ∗256) image re-

pectively. The original keys are set as ( x 
p 
0 

= 0.4 98046 8750 0 0 0 0 0,

 

p 
0 

= 1.934082031250 0 0 0, z 
p 
0 

= −0.2949218750 0 0 0 0 0, u 
p 
0 

 −2.110839843750 0 0 0, v p 
0 

= 0.30 0292968750 0 0 0, x d 
0 

 0.330312093098958, y d 
0 

= 7.822916984558106, z d 
0 

=
0.335266113281250, u d 

0 
= −0.692708015441895, v d 

0 
=

.356084187825521) and the slightly modified keys are set

s ( x 
p 
0 

= 0.4 98046 8750 0 0 0 01, y 
p 
0 

= 1.934082031250 0 0 0,

 

p 
0 

= −0.2949218750 0 0 0 0 0, u 
p 
0 

= −2.110839843750 0 0 0,

 

p 
0 

= 0.30 0292968750 0 0 0, x d 
0 

= 0.330312093098958, y d 
0 

 7.822916984558106, z d 
0 

= −0.335266113281250, u d 
0 

=
0.692708015441895, v d 

0 
= 0.356084187825521). The original

laine image is shown in Fig. 6 (a), and the two cipher images are

hown in Fig. 6 (b) and (c) which correspond to original keys and

lightly modified keys respectively. The difference between the

wo cipher images is shown in Fig. 6 (d). It is clear that slightly

ifferent keys will produce two completely different cipher images.

In the decryption phase, the correct and the incorrect decryp-

ion keys are used to decrypt the same cipher image respectively.

he correct and incorrect decryption keys are the same as the orig-

nal and the slightly modified encryption keys respectively. The

riginal Elaine image and the corresponding cipher image of the

riginal keys are shown in Fig. 7 (a) and (b). The decrypted im-

ges using the incorrect decryption keys and the correct decryp-

ion keys are shown in Fig. 7 (c) and (d). 

.3. Histogram analysis 

As we know, the image histogram represents the distribution

f the pixel intensity values in an image. The more random are
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Fig. 5. Experimental results: (a)–(c) plain Elaine, Baboon, and Airport images, respectively; (d)–(f) cipher images for (a)–(c); and (j)–(l) images retrieved from (d)–(f) with 

the corrected key. 

Fig. 6. Key sensitivity test for image encryption: (a) Elaine image, (b) encrypted image using the original key, (c) encrypted image using the modified key and (d) the 

difference between (b) and (c). 

Fig. 7. Key sensitivity test for image decryption: (a) Elaine image, (b) encrypted image using the original key, (c) decrypted image using the correct decryption key and (d) 

decrypted image using the incorrect decryption key. 
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(a)                     (b)                     (c)                      (d)

Fig. 8. Histogram plots of several images: Histograms (b) of the original images (a); histograms (d) of the related cipher images (c). 
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i  
he pixel values of the cipher image and the better is the perfor-

ance against statistical attacks, the more uniform and flattened

ill be the distribution of the histogram of the cypher image. Fig. 8

resents original test images (a), their cipher image counterparts

c) and histograms plots of them (b, d). As seen from the figure,

fter one round encryption process, all the test images with non-

niform histogram distributions are changed to cipher images with

niformly distributed histograms. Thus it is also proved that the
roposed image encryption algorithm can resist statistical attacks

ell. 

.4. Correlation analysis 

There is a high correlation between the adjacent pixel values

f plain images in horizontal, vertical and diagonal directions. An

deal encryption algorithm can greatly reduce the correlation of
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Table 2 

Correlation coefficients between adjacent pixels in the plain and cipher images. 

Test images Original image Cipher image 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Peppers 0.868501 0.933391 0.892350 0.000476 −0.009531 0.007338 

Elaine 0.955971 0.936554 0.873894 −0.012954 0.006684 0.033789 

Lena 0.964227 0.982430 0.965609 −0.038118 −0.029142 0.002736 

Goldhill 0.960441 0.961766 0.846811 0.005502 0.001494 −0.020027 

Baboon 0.554351 0.755668 0.586725 −0.014340 0.011214 0.001345 

Man 0.987193 0.992968 0.946781 −0.009565 −0.000507 0.007117 

Airplane 0.824170 0.566200 0.214058 −0.008918 −0.015649 −0.002008 

Airport 0.883983 0.660332 0.241429 0.004946 0.017340 −0.006176 
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adjacent pixels in the three directions of the cipher image to re-

sist statistical attacks. To test the correlations between two adja-

cent pixels in an image, we randomly select N pairs of two adja-

cent pixels (either horizontal, vertical, or diagonal) from the plain

image and its corresponding cipher image and calculate the corre-

lation coefficient r xy for each pair using the following formula: 

E(x ) = 

1 

N 

N ∑ 

i =1 

x i (21)

D ( x ) = 

1 

N 

N ∑ 

i =1 

( x i − E(x )) 
2 

(22)

cov( x , y ) = 

1 

N 

N ∑ 

i =1 

( x i − E(x ))( y i − E (y) ) (23)

r xy = 

cov (x, y ) √ 

D (x ) • D (y ) 
(24)

where we used N = 10 0 0 0 and x i and y i ( i = 1, 2, …, N ) are

the grayscale values of two adjacent pixels in the image. E(x) and

D(x) denote the expectation and variance of variable x , respectively.

Fig. 9 plots the correlation of two adjacent pixels of the plain im-

age Lena and its cipher image in the horizontal, vertical and diago-

nal direction. Moreover, Table 2 shows the coefficients of two adja-

cent pixels in the plain and cipher images. According to the Fig. 9 ,

it is clear that the distributions of adjacent pixels in the original

image are highly concentrated, which means that the original im-

age has a strong correlation. However, the distributions of the ad-

jacent pixels in ciphered image are random, which means that the

cipher image has a low correlation. From the Table 2 , we can see

that the correlation coefficients of two adjacent pixels in the origi-

nal images are all bigger than 0.5, so the correlations between ad-

jacent pixels are strong. Nevertheless, the correlation coefficients

of the cipher images are all smaller than 0.1, which indicates the

strong correlations between adjacent pixels in the plain images are

greatly reduced in the cipher images. 

4.5. Entropy analysis 

Normally, we use information entropy to characterize the in-

tensity of randomness of a system. For the encryption system, the

closer to 8 the measured information entropy of the cipher im-

age is, the more secure the encryption algorithm is, and the more

difficult the attacker can decode the encryption algorithm. For a

gray-scale image, the information entropy measures the distribu-

tion of intensity values in it. Information entropy with a greater

value means more uniform distribution of intensity values [45] .

The entropy is defined as 

H ( m ) = 

M−1 ∑ 

i =0 

p(m ) log 
1 

p( m i ) 
(25)
here M is the total number of symbols m i ∈ m and p ( m i ) denotes

he probability of symbols. We can get theoretical value H(m ) = 8

y calculating Eq. (25) . Therefore, the more the information en-

ropy gets close to 8, the less possible for attackers to decode ci-

her images. Table 3 shows the measurement results of informa-

ion entropy and the comparison with previous studies [13,24,30] .

t should be noted here that just one round encryption are per-

ormed to achieve the measured information entropy value and the

lgorithms, and the compared other encryption schemes also made

ne round encryption to achieve their information entropy values,

hus this comparison is feasible. From Table 3 , it can be known

hat entropies of cipher images are close to 8, so the proposed al-

orithm has a good property of information entropy. In addition,

ompared with the previous studies, it can be seen that our infor-

ation entropy results have made some progress in some ways. 

.6. Differential attack analysis 

In order to resist the differential attack, a good encryption sys-

em should be highly sensitive to subtle changes in the plain im-

ge. Generally, NPCR (Number of Pixels Change Rate) and UACI

Unified Average Changing Intensity) are used to measure invul-

erability to differential attacks [45–47] and they are calculated as

ollows: 

PCR = 

1 

W × H 

W ∑ 

i −1 

H ∑ 

j=1 

D (i, j) × 100% (26)

ACI = 

1 

W × H 

W ∑ 

i =1 

H ∑ 

j=1 

| C 1 (i, j) − C 2 (i, j) | 
255 

× 100% (27)

here C 1 and C 2 are the two cipher images encrypted by the

roposed algorithm with the same size W × H in consequence

f a slight change in the chosen plain image and D ( i, j ) is

efined as: 

 ( i , j ) = 

{
0 C 1 (i, j) = C 2 (i, j) 
1 C 1 (i, j) � = C 2 (i, j) 

(28)

In order to test the sensitivity of the plain images, one pixel is

andomly selected from each plain image. Then we alter the last

it of the pixel at the same location to obtain a modified plain

mage. The original image and the slightly modified image are en-

rypted with the same key, and two cipher images are generated.

he NPCR and UACI values between the two encrypted images are

alculated. For each sample image, we make 30 sets of tests with

nly one pixel variation and calculate the average values of UACI

nd NPCR, whose results are shown in Table 4 . In addition, we se-

ect the position of the changed pixel at the front, middle and the

nd of the three groups of image respectively to compute the val-

es of UACI and NPCR. The test results are presented in Table 5

nd it proves that our test is valid. 
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Fig. 9. Correlation coefficients computed for the image Lena. (a) horizontal correlation of original image; (b) vertical correlation of original image; (c) diagonal correlation of 

original image; (d) horizontal correlation of cipher image; (e) vertical correlation of cipher image; (f) diagonal correlation of original image. 
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From the two tables, it can be seen that the value of NPCR is

lose to 99.6% and the value of UACI is close to 33.4%. Therefore,

he proposed algorithm can effectively resist differential attacks. 

.7. Plaintext and ciphertext attacks analysis 

As we all know, a good encryption scheme needs to have good

erformance against known-plaintext attacks and chosen-plaintext
ttacks. Some encryption algorithms that are not very resistant to

nown plaintext attacks and chosen-plaintext attacks can be easily

eciphered, making the encryption less secure. For example, Ref.

48] and Ref. [49] used the proposed chosen-plaintext attack al-

orithms to decipher the existing image encryption schemes and

ave two improved encryption schemes. In our image encryption

rocess, there are some ways to enhance the performance of our

ncryption scheme to resist known-plaintext attacks and chosen-
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(d)                           (e)                          (f)

(a)                           (b)        (c)

Fig. 10. Experimental results for the special images: (a) all-black original image; (b) the cipher image of (a); (c) the histogram of(b); (d) all-white original image; (e) the 

cipher image of (d); (f) the histogram of(e). 

Table 3 

The measurement results of information entropy. 

Test image size Entropy of original image Entropy of cipher image Ref. [13] Ref. [24] Ref. [30] 

Black 256 ∗256 0 7.997536 – – –

peppers 256 ∗256 7.539904 7.997002 – 7.9973 –

Elaine 256 ∗256 7.509576 7.997222 – – –

Lena 512 ∗512 7.445507 7.999239 7.9993 7.9971 7.999276 

Baboon 512 ∗512 7.357949 7.999301 7.9993 7.9992 –

Goldhill 512 ∗512 7.477780 7.999183 7.9994 – –

Airport 1024 ∗1024 6.830330 7.999818 – – 7.999832 

Airplane 1024 ∗1024 5.641454 7.999859 – – –

Man 1024 ∗1024 7.523737 7.999829 – – 7.999826 

Table 4 

Average values of NPCR and UACI for different images. 

Test images Elaine Peppers Lena Baboon Man Airport 

UACI (%) 33.4333 33.4245 33.4523 33.4039 33.4713 33.2875 

NPCR (%) 99.6022 99.6115 99.6114 99.6016 99.6089 99.6043 

 

 

 

 

 

 

 

c  

k  

a  

t  

e  

e  

p

plaintext attacks. Firstly, the key stream for scrambling is gener-

ated by performing a hash function on the pixel values of the plain

image, and the key stream for diffusion is generated by perform-

ing a series of quantization on the sum of the pixel values of the

plaintext image. It can be seen that the generation process of key

stream in our encryption scheme is closely related to the origi-

nal image, thus our encryption scheme is highly sensitive to the
hange of the plain image. Secondly, in the diffusion process, the

ey block, the plain image block, and the cipher image block form

n organic whole. Moreover, the pixel values of the current plain-

ext block and the generated ciphertext blocks can affect the gen-

ration process of the next ciphertext image block. Therefore, our

ncryption scheme cannot only resist known-plaintext and chosen-

laintext attacks, but also can resist known ciphertext attacks. 
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Table 5 

The three groups of image for different positions. 

Test images (1,2) (125,127) (250,253) 

Elaine UACI (%) 33.6424 33.3921 33.4139 

NPCR (%) 99.6384 99.5956 99.6078 

Lena UACI (%) 33.4099 33.4807 33.4809 

NPCR (%) 99.6315 99.6124 99.5876 

Baboon UACI (%) 33.4024 32.9595 33.3699 

NPCR (%) 99.6117 99.5407 99.6071 

Table 6 

Encryption results of all-black and all-white images. 

Images NPCR (%) UNCI 

(%) 

Information 

entropy 

Correlation coefficient 

Horizonal Vertical Diagonal 

Cipher 

image for 

all-black 

99.6328 33.4965 7.997536 0.009463 −0.024885 0.002679 

Cipher 

image for 

all-white 

99.6129 33.5079 7.997426 0.031301 0.021430 0.008299 
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Table 7 

PSNR for the encryption. 

PSNR Ours Ref. [50] Ref. [51] 

Peppers(256 ∗256) 9.0178 9.0442 8.8772 

Lena(256 ∗256) 8.4265 9.1772 9.2337 

Brain(256 ∗256) 5.7800 8.9604 9.1145 

Baboon(512 ∗512) 9.5322 – –
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d  
Some attackers may choose plain images which are all-black or

ll-white to decipher the encryption scheme. When these two spe-

ial images are encrypted, the scrambling procedure will not work,

hen the overall performance of encryption will be worse in some

ay. In this two special encryption process, the attacker may find

ome information missing from the encryption process to decipher

he encryption scheme. However, in our encryption scheme, in ad-

ition to the position of image pixels can be changed by the scram-

ling process, the size of pixel values can also be changed by the

losed-loop diffusion process, thus this encryption method can en-

ure high security whatever original image is. Fig. 10 below shows

he all-black and all-white original image, their cipher images and

he histograms of the cipher images. All of the images measured

56 × 256. Table 6 shows the information entropy, NPCR, UNCI,

nd correlation coefficients of the encryption process of these two

pecial images. 

From Fig. 10 , we can see that the distribution of the histograms

f the cipher images of all-black and all-white images are both

niform, thus the decipherer cannot obtain any useful informa-

ion from the cipher images and the encryption system cannot be

roken. Therefore, it confirms that our image encryption algorithm

an resist the chosen-plaintext attacks. In addition, from the test

ata listed in Table 6 , we can see the encryption processes of these

wo special images both are quite safe and highly sensitive to the

riginal images. 

.8. Peak signal-to- noise ratio analysis 

We use the PSNR (peak signal-to-noise ratio) to measure en-

ryption performance and it can be calculated by the following

quations: 

SE = 

1 

M × N 

M ∑ 

i =1 

N ∑ 

j=1 

[ P (i, j) − C(i, j) ] 
2 

(29) 

SNR = 10 × lg 

(
I 2 max 

MSE 

)
(30) 

here M × N is the size of image. Moreover, P ( i, j ) and C ( i, j )

re the pixel values of original image and encrypted image respec-

ively, and I max is the maximum pixel value of the image. It is obvi-

us that the value of PSNR should be as small as possible to ensure

he efficiency of the algorithm. 

To test the quality of the encryption scheme, we test the value

f PSNR when encrypting the image Peppers, Lena, Brain, Baboon
nd the results and comparative analysis with previous research

ata are presented in the Table 7 below. From the Table 7 , we can

ee that our measured PSNR values for different encrypted images

re all very low and when encrypting Lena, Peppers and Brain,

he proposed algorithm presents smaller PSNR values than those

n Ref. [50,51] . Therefore, the encryption quality of the proposed

lgorithm is superior. 

. Conclusion 

In this paper, a novel image encryption scheme based on con-

ervative hyperchaotic system and closed-loop diffusion between

locks is proposed. We use a five-dimensional conservati ve hyper-

haotic system to provide pseudo-random sequences in the scram-

ling and diffusion stages, and the methods of generating the ini-

ial values of the chaotic sequences of the two stages are differ-

nt. The first group is obtained by applying a hash function to

he plaintext image, and the second group is obtained by quan-

izing the pixel values of the plaintext image. First of all, our en-

ryption scheme has superiority to other schemes which are based

n general chaotic systems because that the conservative hyper-

haotic system we used not only has good randomness and ergod-

city, but also has the anti-reconstruction attack characteristic. Sec-

ndly, our encryption process focuses on the innovation of the dif-

usion structure, which is different from the most existing studies

hat focus on the innovation of scrambling structure. This specific

ncryption process can be briefly described as: scrambling the im-

ge as a whole, scrambling between blocks, and inter-block closed-

oop diffusion performed on the scrambled image. The key block

sed for generating each cipher block is determined by the cipher

lock located in front of the current cipher block. In addition, a

andom cipher block before the current cipher block is also in-

olved in the generation of the current cipher block. Besides, the

ixel value of the first cipher block is updated after the last ci-

her block is generated. Therefore, the key block depends on both

laintext and ciphertext thus to ensure the sensitivity and security

f the encryption system. Moreover, a large number of theoretical

nalysis and performance tests have been tested and evaluated for

ur encryption scheme. Obviously, from the results we can see that

he encryption scheme proposed in this paper has strong reliability

nd security. 
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