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Memristive Circuit Implementation of
Context-Dependent Emotional Learning Network

and Its Application in Multi-Task
Cong Xu, Chunhua Wang, Jinguang Jiang, Jingru Sun, and Hairong Lin

Abstract—Emotional intelligence plays an important role in
artificial intelligence. The brain circuitry of emotion mainly
includes the prefrontal cortex, the amygdala, hippocampus and
et al. Many brain emotional learning models were proposed in
recent years, the existing brain emotional learning models failed
to consider the contextual information in practical applications,
and do not discuss the corresponding circuit implementation.
In this paper, a context-dependent emotional learning network
and its memristive circuit implementation are introduced. The
added context-dependent module is used to process the contextual
information, which makes the network context-dependent when
receiving the same input signals. For circuit implementation, the
memristive circuit design mainly contains the amygdala module
and orbitofrontal cortex module, which imitates the emotion
learning process in the brain. Besides, a multi-input multi-output
memristive circuit of the context-dependent emotional network
is applied to multi-task classification. PSPICE simulation results
verified the adaptability and flexibility of the context-dependent
emotional learning network.

Index Terms—Memristor; emotional learning; multi-task; clas-
sification; circuit implementation;

I. INTRODUCTION

W ITH the development of artificial intelligence (AI),
the neural network appears more frequently in pattern

recognition, natural language processing, intelligent robot,
autonomous driving, and other fields. The neural network
greatly enhances the development of artificial intelligence with
deeper researches. However, the traditional neural networks
have some defects in practical applications, such as slow
convergence rate, high computational complexity, and slow
training speed [1].

Recently, with extensive neuroscience researches on emo-
tion [2, 3], emotional intelligence is starting to play an impor-
tant role in AI. Since emotional intelligence was first proposed
by Salovey and Mayer in 1990 [4], it has been also studied
by many computer scientists. The researches of emotional
neuroscience showed that the limbic system theory of emotion
is an anatomical model of emotional brain [5, 6]. As shown in
Fig. 1 [7], the limbic system mainly includes the thalamus, the
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amygdala, the orbitofrontal cortex (OFC), the hippocampus,
the hypothalamus, and et al. The amygdala can generate
emotion and consolidate memory by sensory stimulus, which
is located in the center of the emotional circuit. By imitating
the emotional learning mechanism between the OFC and the
amygdala, the brain emotional learning (BEL) model was pro-
posed in 2002 [8], which has the advantages of simple struc-
ture, low calculation complexity, and fast calculation speed.
Besides, the network based on BEL overcomes the defect of
long training time of the traditional neural network, so it has
been widely used in classification [9], prediction [10, 11], and
pattern recognition [12-14]. To increase the practicability and
commonality of the BEL model, many modified versions of
the BEL model were proposed. Lotfi et al. [7, 10, 15] proposed
improved BEL-based emotional neural networks. In those
networks, the reward signal determined the rule of weight
adjustment, which is similar to the emotional learning process
in the brain. The improved emotional neural networks have
been applied in pattern recognition and prediction successfully.
Also, Lotfi [16] used the target output value to replace the
reward signal and updated the weight of the BEL network by
feedforward computing, but the adaptability of this method is
not strong. On this basis, the attenuation factor was introduced
into the reward signal [17], and the improved network was
used in the time series prediction problem, but this method
is not suitable for classification problems. To improve the
classification and recognition ability of the BEL model, many
intelligent algorithms, such as genetic algorithm (GA) [9] [18]
and particle swarm optimization (PSO) [19], were introduced
for parameter optimization, which improved the classification
accuracy.

· Amygdala: It collects sensory inputs from the thalamus 
and coordinates responses to the environment, playing 
an important role in the processing of fear and anger.

· Orbitofrontal cortex (OFC): One part of the prefrontal 
cor tex .  I t  is a prefrontal cortex region in the frontal 
lobes of the brain which is involved in the cognitive 
process of decision-making.

· Thalamus: It collects sensory inputs (visual, auditory 
and somatosensory) and has neurons which project 
impulses to relay these inputs to the amygdala and 
higher cortical regions for processing.

· Cerebral cortex: It contains sensory areas and motor 
areas. Sensory areas receive input from the thalamus 
and process information related to the senses.

· Hypothalamus :  I t regulates the autonomic nervous 
system by regulating the endocrine system which is 
involved in the release of different hormones into the 
bloodstream.

· Hippocampus: It retains memories and converts short-
term memory to long-term memory.

Fig. 1. The limbic system in the brain.
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In the above proposed BEL neural networks, they failed to
consider the contextual information in practical applications,
which cannot meet the complexity and inconstant application
requirements. Besides, they do not discuss the corresponding
circuit implementation. As we all know, human beings can
make different responses to the same stimuli according to
environments, different targets, internal states, and et al.,
which is one of the hallmarks of advanced intelligence. That is
to say, the responses of humans are context-dependent, which
is named cognitive control in neuroscience [20]. The prefrontal
cortex (PFC) is the key biological basis for context-dependent.
According to the different environments, PFC will do different
actions for the same sensory input and respond to uncertain
and complex environmental changes flexibly [21].

Inspired by the mechanism of context-dependent process-
ing of PFC, we propose a context-dependent emotional
learning network and its circuit implementation, which can
flexibly work in the multi-task application. The proposed
network processes the contextual information by adding a
context-dependent module, which makes the network context-
dependent when it receives the same input signals. This
method accords with the properties of PFC, which receives
the sensory input and contextual information simultaneously.
So, the proposed network not only considers the features of
the input signal, but also considers contextual information in
practical application. As a nonvolatile programmable resistor,
memristor [22] has the advantages of high density, low power,
good scalability, and has the same regulation mechanism as the
weight regulation of synapse. So, the circuit of the context-
dependent emotional learning network is designed based on
memristor. The memristive circuit design mainly contains
the amygdala module and OFC module, which imitates the
emotional learning in the brain. Emotional learning is context-
dependent, the context can influence some classical emotional
learning processes [23, 24], such as habituation, acquisition
and extinction, which is demonstrated by the simulations of
the proposed memristive circuit. Besides, considering that the
most memristive neural networks are usually used to deal
with a single problem or task [25-29], we propose a multi-
input multi-output circuit of the context-dependent emotional
learning network and apply it to multi-task classification. In
the implementation of the circuit, the multiple tasks are trained
in parallel based on contextual information, which breaks the
traditional ideal of divide-conquer. The PSPICE simulation of
results indicated that the context-dependent emotional learning
network is adaptable and flexible. The main contributions of
this work are listed as follows.

1) A context-dependent emotional learning network is pro-
posed. The network receives the sensory input and con-
textual information simultaneously by adding the context-
dependent module, which makes the network context-
dependent in practical application.

2) A memristive circuit of the context-dependent emotion-
al learning network is designed. The circuit is mainly
composed of the amygdala module, OFC module, and
context-dependent module, which imitates the brain e-
motional learning process. The influence of context on

the classical emotional learning process is verified by
PSPICE simulation.

3) The multi-input multi-output memristive circuit is applied
to multi-task classification, which verified the adaptability
and flexibility of the context-dependent emotional learn-
ing network. Based on the contextual information, the
multiple tasks are training in parallel, which breaks the
traditional method of divide and rule.

The remainder of this paper is organized as follows. In
Section II, the basic backgrounds of brain emotional learning,
context-dependent, and memristor are given. Section III intro-
duces the context-dependent emotional network. Section IV
proposes the detailed circuit design of the emotional learning
network and shows the simulation results and analysis. Section
V proposes a multi-input multi-output memristive circuit of the
proposed network, applies the circuit in multi-task classifica-
tion, and analyzes the simulation results. Section VI makes a
discussion on the performance of proposed network. Section
VII presents the conclusion drawn from this work.

II. BACKGROUNDS

A. Brain emotional learning model

Emotion is a special ability of the human brain, which make
humans adapt to the changes in the environment and have a
different emotional response. If encountering external stimulus
which is beneficial to oneself, people will produce positive or
pleasant emotion and pay more attention to similar stimuli.
On the contrary, people will produce negative or disgusting
emotions, and lose attention or avoid these stimuli. Moreover,
the memory of the corresponding stimulus is generated in
the brain, it is strengthened when receives the same stimulus
constantly, and then corresponding emotions are produced to
the same or similar stimuli. Based on the limbic system theory
[6], these emotional reactions are mainly implemented by
the amygdala, OFC, thalamus, and other organs in the brain.
Anatomically, the amygdala is located in the center of the
emotional circuit, and it is the most critical part of emotion
processing. The OFC enhances or inhibits the learning of
the amygdala, which assists the emotional processing of the
amygdala.

Stimuli
Thalamus

Sensory 

Cortex Orbitofrontal 

Cortex

Amygdala

Short path

Long path

Responce

Fig. 2. The emotion circuit.

The thalamus receives an external stimulus and transfers it
to the amygdala through two paths [30] as shown in Fig. 2.
The first is a long path, in which stimulus transfers to the
sensory cortex, then to the amygdala, the second is a short
path, in which stimulus transfers to the amygdala directly from
the thalamus. In the long path, the OFC plays an auxiliary
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role in the learning of the amygdala [31]. The information
transmission path between amygdala and thalamus is short
and the processing speed is fast, which makes the calculation
complexity of the model is low, and the operating speed is
high. Inspired by the limbic system, the BEL model was first
proposed by Moren in 2002 [8], which imitates the information
transmission between the amygdala and OFC. As shown in
Fig. 3, the BEL model is composed of the thalamus, sensory
cortex, OFC, and amygdala.

Thalamus
Sensory 

Cortex
Orbitofrontal Cortex

Amygdala

∑
E

Sensory input: S

Reward signal: Rew

Ath

∑Oj

∑Aj

-

Fig. 3. The framework of the BEL model.

The essence of the brain emotion learning process is to
adjust the weights of the amygdala and OFC constantly. The
sensory input is S, the output of OFC is Oj , Aj is the output
of the amygdala. Based on the description in [8], the rules of
learning are described as follows.

∆vi = α(S ·max(0,Rew−
∑
j

Aj)) (1)

∆wi = β(S ·
∑
j

(Oj − Rew)) (2)

where vi and wi are the weights of amygdala and OFC,
respectively, α and β are the learning rates, which range from
0 to 1.

B. Context-dependent

As one of the hallmarks of advanced intelligence, human
beings can make different responses to the same stimuli
according to environments, different targets, internal states,
and et al., [32], that is to say, responses of humans are
context-dependent. The PFC is the key biological basis for
context-dependent [20]. In different environments, PFC can
respond to the same sensory input with different actions, then
respond to the uncertain environmental changes flexibly [21]
[33]. In the experiment of human cognition, patients with PFC
impairment lose the ability to respond to the weak but highly
task-related stimulus correctly [34]. The cognitive experiment
proved that PFC is the key to context-dependent learning,
and many electrophysiological studies in non-human primates
have also proved that PFC neurons can represent some kinds
of context-dependent information [21] [33]. As we all know,
PFC is the core cortex responsible for cognitive control in the
brain, it receives sensory inputs and contextual information
simultaneously, and guides the response relevant to the tasks.
Overall, the method of context-dependent processing is more
flexible in practical application, which is different from the
traditional neural network.

C. Memristor

Nowadays, the hardware design of the neural network is
gaining more and more attention. The analog circuits of the
neural network have properties of high speed and parallel
computing, which meet the needs of practical application. As
the fourth basic circuit element, the memristor was proposed
in 1971 by Leon Chua [22] and physically realized in 2008
by HP labs [35]. For the memristor model with a threshold
voltage, when the input voltage exceeds the threshold voltage
of the memristor, the memristance will change. Otherwise,
the memristance remains unchanged. As a nonvolatile pro-
grammable resistor, memristor has the advantages of high
density, low power, good scalability, and its application is
wide, such as memristive chaotic circuit [36-41], memristive
neural network [42-47]. Besides, memristor has the same
regulation mechanism as the weight regulation of synapse.
So, the memristor has become the most promising device for
implementing electronic synapses and designing circuits of
neural networks [48-51], which have been applied in pattern
recognition, classification, image processing, and other fields
of AI.

III. PROPOSED CONTEXT-DEPENDENT EMOTIONAL
LEARNING NETWORK

A. Architecture

The BEL model with simple structure has good performance
in learning, it has been widely used in classification [9], pre-
diction [10, 11], and recognition [12-14]. In the existing BEL
model, the OFC module only contains the sensory information,
without considering the impact of contextual information.
However, OFC not only receives sensory information but also
receives contextual information [20, 21, 33]. To mimic this
biological characteristic of OFC, the contextual information is
used as the input to the OFC module like sensory information.
Sensory information and contextual information are connected
in the OFC module. The architecture of the proposed context-
dependent emotional learning network (CD-ELN) is shown in
Fig. 4.
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Fig. 4. The architecture of context-dependent emotional learning network.

The proposed CD-ELN has five main modules. The in-
formation transmission among the thalamus module, sensory
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cortex module, OFC module, and amygdala module is based
on the amygdala-OFC interconnection in the emotion circuit
of the brain. The added context-dependent module is inspired
by the biological feature of OFC, which is used to process
contextual information. Each module contains some nodes,
which are corresponding to the dimension of input. The plastic
weights are used to connect input and output in amygdala
module, OFC module, and context-dependent module.

As shown in Fig. 4, the sensory input S = [S1, S2, , Sn],
the Ath is the max stimulus from thalamus:

Ath = max[S1, S2, ..., Sn] (3)

The weight of the amygdala is v, the output of the amygdala
is EA, and it is obtained by the following equations:

Ai = Si · vi, i = 1, 2, ..., n (4)

EA =
n∑

i=1

Si · vi +Ath · vn+1 (5)

For the context-dependent module, CI is contextual infor-
mation, and weight is denoted as u. For OFC, the weight is
w, and its output Eo can be calculated by

EO =

n∑
i=1

Si · wi +

m∑
j=1

CIj · uj (6)

By adding the contextual information, the output of the
proposed CD-ELN is expressed as follows:

E=EA − EO

= (
n∑

i=1

Sivi +Ath · vn+1)−(
n∑

i=1

Si · wi +
m∑
j=1

CIj · uj)

(7)
EA is the output of the amygdala. EO is the output of the

OFC, which contains sensory information S and contextual
information CI . Ath is the max value of S. v, w, u are
denoted weights. When giving the same sensory input S and
fixed weights, the output E is affected by the contextual
information CI . The added context-dependent module can
change the output while keeping sensory inputs unchanged.
That is to say, it enables the CD-ELN context-dependent when
receiving identical sensory inputs. In conclusion, the proposed
CD-ELN can treat the same sensory inputs differently based
on contextual information.

In the learning process of the CD-ELN, the weights are
adjusted by award signal Rew, when solving the practical
problem, the reward signal is set as the target valve T . Refer
to the learning rules in [8], the learning rules of CD-ELN are
expressed as follows.

∆vi = α(Si ·max(0,T−EA)),i = 1, 2, ...n+ 1 (8)

∆wi = β(Si · (E − T )), i = 1, 2, ...n (9)

∆ui = δ(CIi · (E − T )), i = 1, 2, ...m (10)

where α, β, and δ are the learning rates, which range from 0
to 1.

B. Analysis of the learning process

The learning process of CD-ELN mainly includes the learn-
ing of the amygdala and OFC. The learning process of the
amygdala is the dynamic adjustment of weight v, and the OFC
assists the learning of the amygdala by adjusting the weight
w, it makes the actual output close to the target value. The
detailed analysis of weight adjustment are as follows.

a. The adjustment of weight v
Case 1: The input signal is positive (Si > 0). If the output

of the amygdala is less than the target value T (EA < T ),
based on (8), the weight vi will increases constantly until the
output reached the target value. If the output is greater than
or equal to T , the weight vi will cease to adjust.

Case 2: The input signal is negative (Si < 0). If the output
of the amygdala is less than the target value T (EA < T ), then
based on (8), the weight vi will decreases constantly until the
output reached the target value. If the output is greater than
or equal to T , the weight vi will cease to adjust.

Base on the above analysis, the adjustment of weight v
is monotonically increasing or decreasing depending on the
positive or negative of input signals, these rules accord with
the learning characteristics of the amygdala in the brain, which
is permanent once an emotional response is learned by the
amygdala.

b. The adjustment of weight w
Case 1: The input signal is positive (Si > 0), if the output of

the network is less than the target value (E < T ), the weight
wi will decreases as expressed in (9), then the output O of
OFC have a negative increase. So the output E will increases.
This process indicates that the OFC plays a positive feedback
role in the learning of the amygdala.

Case 2: The input signal is positive (Si > 0), if the output
of the network is greater than the target value (E > T ), the
weight wi will increase as expressed in (9), then the output O
of OFC has a positive increase. So the output E will decrease.
This process indicates that the OFC has an inhibition effect
on the learning of the amygdala.

Similarly, if the input signal is negative (Si < 0), the weight
adjustment of wi also can make the output E approaching
the target value T . Based on the above analysis, the rule
adjustment of weight w reflects that the OFC assists the
learning of the amygdala by enhancement or inhibition, which
avoid “insufficient learning” or “over learning” of the network.

IV. CIRCUIT DESIGN OF CD-ELN AND SIMULATION
RESULTS

A. Memristor model

In this paper, the voltage-controlled memristor model with
threshold voltage [52] is used in all simulations. If the input
voltage exceeds the threshold, the memristance will change,
else it remains unchanged. The expression of the memristor
model is described as follows.

R(t) = Ron
ω(t)

D
+Roff (1−

ω(t)

D
) (11)
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dω(t)

dt
=


µv

Ron

D
ioff

ion
f(ω(t)), v(t) < VT− < 0

0, VT− ≤ v(t) ≤ VT+

µv
Ron

D
ioff

i(t)−i0
f(ω(t)), v(t) > VT+ > 0

(12)
where µv denotes the average ion mobility, i0, ioff , and
ion are constants, VT− and VT+ is the negative and positive
threshold voltage, respectively, and the window function is

f(ω(t)) = 1− (
2ω(t)

D
− 1)2p (13)

where the positive integer p is a parameter of the window
function.

As shown in Fig. 5, the change of memristance is opposite
under a positive and a negative voltage, which is larger than
the threshold of the memristor. The memristance remains un-
changed under the input voltage below the threshold. Besides,
the memristor parameters of the simulation are shown in Table
I.
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Fig. 5. PSPICE simulation of memristance change.

TABLE I
SIMULATION PARAMETERS OF MEMRISTOR

Parameter Value
Ron 800Ω
Roff 10kΩ
D 10nm
uv 1×10−12m2s−1Ω−1

ion 1A
ioff 5.1× 10−7A
i0 1× 10−5A
VT+ 1.2V
VT− -1.2V
p 10

B. Circuit design of CD-ELN

Based on the amygdala and OFC learning method in the
brain, a memristor-based circuit of CD-ELN is shown in Fig.

6. The learning operation of memristive emotional learning
mainly consists of two stages: (1) Learning in the amygdala
module. (2) Learning in OFC module for assisting the learning
of the amygdala module.

a. Amygdala module
Based on the adjustment rule of weight in the amygdala,

the main blocks of the amygdala module consist of input
signal control with switch, memristive weight, max function,
difference calculation, and threshold selector. In this module,
the switching of input voltage is performed by transmission
gate switches SW, the memristive weight is adjusted by the
input signal S and the feedback signal Vfa alternately.

As shown in Fig. 6, Va is the output of the amygdala, it can
be expressed as:

Va =
n∑

i=1

R2

Mi
· Vi = R2

n∑
i=1

vi · Vi (14)

where

vi =
1

Mi
(15)

Vi =

{
Si, ifVc > 0
Vfai, ifVc < 0

(16)

the memristance of Mi is updated by the corresponding
feedback voltages Vfai. The memristance will decrease if the
feedback voltage is positive, otherwise, it will increase. The
calculation of feedback voltages as following:

∆Va = max (0, T − Va) =

{
0, ifVa ≥ T
T − Va, ifVa < T

(17)

Vfai =

{
Si · (∆Va + VT+), if∆Va > 0
Si · (∆Va + VT−), if∆Va < 0

(18)

where T is the target value, VT+, and VT− are the positive
and negative threshold of the memristor.

The max function circuit is designed by difference calcula-
tion and an analog voltage-controlled switch, which imple-
mented the calculation of equation (17). Besides, only the
applied input voltage exceeds the threshold, the memristance
will change, else it remains unchanged. So, the threshold
selector ensures that the feedback voltages are larger than
the threshold of the memristor. When the difference between
actual and target ouput is zero, the adjustment of memristor
will cease.

b. The OFC module
The module of OFC is used for assisting the learning of

the amygdala module, which can ensure the output Vout of
the network approaching the target value T correctly. This
module mainly consists of input signal control with switch
SW, memristive weight, difference calculation, and threshold
selector.

In one branch of the OFC module, the polarity of memristor
Mi1 is opposite to that of Mi2, so the memristance change of
Mi1 and Mi2 is opposite under a positive or a negative voltage,
which can implement positive and negative weights. In the
OFC module, the memristance is adjusted by the input signal
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Fig. 6. The memristor-based circuit design of CD-ELN.

and feedback voltage Vfo alternately, which is controlled by
the transmission gate switch. The output Vo is expressed as

Vo = R1

(
n∑

i=1

( 1
Mi1

− 1
Mi2

) · V ′
i +

m∑
j=1

( 1
M ′

j1
− 1

M ′
j2
) · C ′

j

)
= R1(

n∑
i=1

wi · V ′
i +

m∑
j=1

uj · C ′
j)

(19)
where

wi =
1

Mi1
− 1

Mi2
(20)

uj =
1

M ′
j1

− 1

M ′
j2

(21)

V ′
i =

{
Si, ifVc > 0
Vfoi, ifVc < 0

(22)

C ′
j =

{
CIj , ifVc > 0
Vfcj , ifVc < 0

(23)

Based on (9) and the circuit design, the feedback voltages Vfoi

and Vfcj are calculated as follows:

∆Vo = (Va − Vo)− T (24)

Vfoi =

{
Si · (∆Vo + VT+), if∆Vo > 0
Si · (∆Vo + VT−), if∆Vo < 0

(25)

Vfcj =

{
CIj · (∆Vo + VT+), if∆Vo > 0
CIj · (∆Vo + VT−), if∆Vo < 0

(26)

Fig. 7 showed the learning process in the OFC module. The
forward propagation and feedback adjustment are executed
alternately, which is controlled by signal Vc. For instance, in
one cycle (0-1s), the input signal is set 1V in the forward

propagation stage (0-0.5s), which is below the threshold of
the memristor, so the memristances remain unchanged. The
positive feedback voltage Vfo is larger than the threshold
in the feedback adjustment stage (0.5-1s), the memristance
of M11 is decreased and M12 is increased. The feedback
adjustment voltage Vfo decreased constantly in the whole
learning process, until equal to the threshold of the memristor.
The memristance and output voltage are remain unchanged
after 5s, it indicated that the learning process completed.
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Fig. 7. Learning process in OFC module. Vc is the control signal of the switch.
V ′ is the alternation of S and Vfo. M11 and M12 are the memristances. w is
the weight of the OFC module. Vo is the output voltage of the OFC module.

c. Learning process analysis of the memristive CD-ELN
In the emotional learning process, the weight of amygdala

increase or decrease monotonously, which may cause the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on October 11,2021 at 01:20:19 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3116463, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

XU et al.: MEMRISTIVE CIRCUIT IMPLEMENTATION OF CONTEXT-DEPENDENT EMOTIONAL LEARNING NETWORK AND ITS APPLICATION IN MULTI-TASK 7

phenomenon of “insufficient learning” or “over learning”. The
OFC can avoid this phenomenon by enhancing or inhibiting
the learning of the amygdala. To verify the effectiveness of the
proposed circuit, the PSPICE simulation results of the learning
process are shown in Fig. 8, which is consistent with the above
theoretical analysis in Section III.

The output of the memristive circuit is Vout, the output
voltage of the amygdala module and OFC module is Va and
Vo, respectively. Fig. 8 showed the changes of all output
variables with time in the learning process. This process is
mainly divided into two stages as follows.

c.a. “Insufficient learning”
In this stage (0-34s), the output Vout did not reach the target

value. For the module of amygdala module, and the output Va

increases monotonously throughout the whole stage. For the
OFC module, the output Vo decrease in the positive direction
firstly, then increase in the negative direction, it enhanced
the learning of the amygdala, which make the output Vout

approaching the target value.
c.b. “Over learning”
In this stage (34-46s), the output Vout exceeded the target

value. The output Vout of the model reached the target value
at 34s, but it did not stop increasing by the learning of the
amygdala module, which caused the over learning of the
network.

As we can see, during 34-41s, the output Vo decrease in
the negative direction, and the increased speed of output Vout

became lower, it indicated that the OFC module inhibited
the learning of the amygdala in this stage. During 41-46s,
the amygdala module stops learning, then the output Vout

decreased gradually by the inhibition of the OFC module.
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Fig. 8. The learning process of the memristive circuit. (a) The sensory input:
positive voltage pulse (Duty cycle is 50%). (b) The output Va of the amygdala
module. (c) The output Vo of the OFC module. (d) The output Vout of the
memristive network.

C. Simulation results of classical emotional learning

Emotional learning is context-dependent, the context in-
fluences some classical emotional learning [23, 24], such
as habituation, emotional acquisition and extinction. In this

section, two simple simulations are used to show the role
of context in emotional learning. In this work, the voltage-
threshold memristor model [52] is used to imitate weight
regulation of neural network, and its memristance is controlled
by the voltage pulse applied to both ends. When input pulse
is applied to the memristor, the memristance is decreased or
increased depending on voltage pulse amplitude and width.
Besides, in the circuit implementation of bionic systems based
on memristor, consecutive positive voltage pulses are used to
imitate the repetitive stimuli from the external environment
[53-56], then these voltage pulse signals modulate the change
of synaptic weight, then results in responses of habituation,
sensitization, and so on, which are similar to the biological
ones. Classical emotional learning (such as habituation, acqui-
sition, and extinction) is a process in which the response to
identically repeated stimuli [23, 24]. Therefore, the positive
voltage pulse is selected to represent the repeated stimuli
of sensory information and contextual information in this
work, then classical emotional learning process of CD-ELN
is simulated under these voltage pulse stimuli.

a. Habituation
The habituation phenomenon is that a spontaneous response

is weak or gradually disappeared when the repeated stimulus
does not predict any important or interesting things. The input
sensory signal is a positive voltage pulse, the habituation phe-
nomenon can be divided into two phases as shown in Fig. 9. In
the first phase (0-50s), a weak response is generated firstly and
then disappeared without a reward signal. In the second phase
(50-100s), a weak emotional response is regenerated when the
contextual information changed, and then habituation again
without a reward signal. The results indicate that contextual
information can influence habituation, the change of context
will cause the reappear of response.

0 10 20 30 40 50 60 70 80 90 100
(a)

0

0.25

0.5

S
 (

V
)

0 10 20 30 40 50 60 70 80 90 100
(b)

0

0.5

1

C
I 

(V
)

0 10 20 30 40 50 60 70 80 90 100
(c)

Time (s)

0

0.2

0.4

0.6

V
o
u

t 
(V

)

Fig. 9. PSPICE simulation results of habituation by context change. (a) The
input signal: positive voltage pulse (Duty cycle is 30%), which imitated a
repeated stimulus. (b) The input contextual information. (c) The output voltage
of the memristive circuit, which imitated the emotional response.

b. Emotional acquisition and extinction
An emotional response generates when receiving a stimulus

with a reward or reinforces signal, then it will extinguish
gradually once the reward or reinforce signal disappears. As
shown in Fig. 10. From top to down, S is the input signal,
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CI is contextual information, Rew is the reward signal, Vout

is the output of the memristive circuit, which represents the
emotional reaction. In the first phase of acquisition (0-60s),
the intensity of the reaction increased when the input signal is
paired with a reward signal. In the second extinction phase (60-
200s), the emotional reaction is gradually disappeared when
the reward signal disappears. In the third phase (200-250s),
when the context change, an emotional reaction is generated
and extinguished again owing to the absence of a reward
signal. So, the change of context will cause a new reaction
in the extinction phase.
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Fig. 10. PSPICE simulation results of acquisition and extinction by context
change. (a) The input signal: positive voltage pulse (Duty cycle is 30%). (b)
The contextual information. (c) The reward signal. (d) The output voltage of
the memristive circuit.

V. CIRCUIT DESIGN OF MULTI-INPUT MULTI-OUTPUT
CD-ELN AND APPLICATIONS

Based on the architecture of the CD-ELN, which is shown in
Fig. 4, the memristive circuit of the multi-input single-output
CD-ELN is designed as shown in Fig. 11. It can be expanded
to a multi-input multi-output network as shown in Fig. 12,
and the number of output based on the categories in practical
classification. Besides, the memristive circuit is applied to a
multi-task classification, which benefits from the method of
context-dependent. The classification results not only depend
on the features of the input but also related to contextual
information.

A. Circuit design

As shown in Fig. 11, S is the sensory input signal, CI
is the contextual information, and T is the target label. The
memristive circuit of the CD-ELN consists of input of con-
textual information and the selector of the label, which ensure
the implementation of the context-dependent method. When
receiving the sensory signal, the proposed circuit can handle

multiple classification tasks based on contextual information.
The detailed blocks of the memristive circuit are described as
follows.

(A) The input signal control of OFC: The OFC module
receives sensory input S and contextual information CI si-
multaneously. The memristive weight is adjusted by the input
signal and the feedback signal Vfo, which is controlled by
switch SW. Besides, the switch is composed of two transmis-
sion gates.

(B) The calculator of the network output: Difference calcu-
lating between OFC output Vo and amygdala output Va.

(C) Error calculator of the OFC: Error calculating between
the network output Vout and target value Rew.

(D) The input signal control of the amygdala: The memris-
tive weight is adjusted by the input signal S and the feedback
signal Vfa, which is controlled by switch SW.

(E) Error calculator of the amygdala: Error calculating
between amygdala output Va and target value Rew.

(F) The selector of multi-label: For supervised learning,
there are multiple labels in multi-task applications. In the
proposed circuit, the corresponding label is selected by the
transmission gate for multiple tasks, which is controlled by
contextual information CI . When CI is at a high logic level,
the switch is turned on, otherwise, the switch is turned off. So
the result of classification is not only related to the sensory
input, but also related to the contextual information.
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TABLE II
THE SETTING RULE OF LABEL FOR THREE TASKS

Tasks Digit Color Parity
Input ‘0’ ‘1’ ‘2’ · · · ‘6’ Red Green Blue odd even
Label 0 0 0 0 0 1 0 1 0 · · · 1 1 0 0 1 1 0 1 1 0 1 1 0

TABLE III
THE MAPPING RULE OF CONTEXT AND LABEL IN MULTI-TASK CLASSIFICATION

Sensory input S
Context CI Label T

CI1 CI2 CI3 T[1] T[2] T[3] T[4] T[5] T[6] T[7]

Green image ‘1’
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1

Red image ‘4’
1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0

B. Application
Nowadays, most memristive neural networks are used to

deal with a single problem or task. There are internal connec-
tions between many problems or tasks. Multi-task learning was
first proposed by Caruana [57], it breaks the traditional idea
of divide and rule, the relationship between related tasks can
be considered when training multiple related tasks in parallel.
Combined with the context-dependent method, the proposed
memristive CD-ELN is applied to a multi-task classification. In
the simulations, the voltage-controlled memristor model [52]
is used, which is described in detail in section IV-A. The pa-
rameters of memristor used for simulation were set as: Ron =
500Ω, Roff = 16kΩ, µv = 1 × 10−12m2s−1Ω−1, ion =
1A, ioff = 5.1×10−7A, i0 = 1×10−5A, VT+ = 1.2V, VT− =
−1.2V, p = 10. Besides, The frequency of the circuit was 1Hz,
and the supply voltage was ±5V .

To prove the adaptability and flexibility of the proposed

S5
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S7
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S9
5x3 

image
S10 S11 S12

S13 S14 S15

Fig. 13. The color digit images.

network, the memristive network was trained to classify the
digital images according to multiple task requirements. There
are five groups data set of image for classification training, and
seven images in every group. Fig. 13 shows two sets of images.
The color digit images have a size of 5×3. Three classification
tasks are set in simulation: classified according to digit, color,
and parity, respectively. The contextual information is used
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Fig. 14. PSPICE simulation of multi-task classification for green image ‘1’. CI1-CI3 are the contextual information. Vout1-Vout7 are the output of network.
[CI1, CI2, CI3]= [1V, -1V, -1V] represents the classification task by digit. [CI1, CI2, CI3]= [-1V, 1V, -1V] represents the classification task by color. [CI1,
CI2, CI3]= [-1V, -1V, 1V] represents the classification task by parity.

to represent the task name. According to the three tasks,
the rule of label setting is shown in Table II. For multi-task
classification, the mapping rule of context and label in multi-
task classification is shown in Table III, which takes the digit
‘1’ and the digit ‘4’ as examples. The contexts represent task
name, for example, [1,0,0] represent the first classification task
by digital, [0,1,0] represent the second classification task by
color, [0,0,1] represent the third classification task by parity of
number. For the label vector, the first three number is related to
digital classification task, the fourth to fifth number is related
to color classification task, and the last two number is related
to the parity classification task.

In the simulation, the proposed memristive circuit of CD-
ELN for multi-task contains 15 inputs and 7 outputs. The
sensory inputs were denoted as S = [S1, S2, ..., S15], which
are the pixel average value of R, G, B three channels. The
inputs were normalized to (-1, 1) firstly, and then translated
to (-0.5V, 0.5V). The contextual information (0, 1) were
translated to (-1V, 1V). The output target value (0, 1) were
translated to (-1V, 1V). The pixel of image ‘1’ and the
corresponding contextual information of three tasks are set
as the input of the circuit. The PSPICE simulation results of
image ‘1’ are shown in Fig. 14. For the multi-task learning
phase (0-120s), the memristive circuit of CD-ELN was trained
iteratively based on three tasks. For example, 0-3s was an
iteration cycle, it contains the three contextual information,
which corresponding to three tasks. The results of the training
process shown that the outputs changed gradually and then

kept in a stable state. For the testing phase (120s-130s), the
image ‘1’ and the corresponding contextual information as
inputs. As we can see, when the contexts is [1, -1, -1]V, the
outputs are [-1, -1, 1, -1, -1, -1, -1] V, the contexts is [-1, 1,
-1] V, the outputs are [-1, -1, -1, 1, -1, -1, -1] V. the contexts
is [-1, -1, 1] V, the outputs are [-1, -1, -1, -1, -1, -1, 1] V. The
test results indicated that the output of the proposed network
is context-dependent when receiving the same sensory input.

After trained by using all image training data set, the
memristive circuit of CD-ELN is tested by validation sets. The
classification accuracy for the color digit images is 97.2%. The
testing result of three cases is shown in Fig. 15. During the
testing process, the sensory input is green digit ‘1’(0-3s), red
digit ‘4’(3-6s) and blue digit ‘6’(6-9s), respectively. In the first
phase (0-3s), three classification tasks are tested in order when
receiving the same sensory input. The classification results
are not only related to the sensory input but also related to
the contextual information. Based on the target label in Table
III, the digit image is correctly classified by the proposed
memristive circuit. So, the proposed memristive circuit of CD-
ELN is effective in multi-task classification.

C. Comparison with other memristor-based neural networks

A comparison between the memristor-based CD-ELN and
other memristor-based neural networks is shown in Table IV.
In [25], the proposed memristor-based network realized syn-
chronous weight adjustment, but the training mode of network
is off-chip, which means that the adjustment of weights are
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TABLE IV
COMPARISON OF MEMRISTOR-BASED CD-ELN WITH OTHER MEMRISTOR-BASED NEURAL NETWORKS

The proposed CD-ELN The work in Yang et al. [25] The work in Mohammad et al. [26]
Training mode On-chip Off-chip On-chip
Training algorithm Brain emotional learning Widrow-Hoff OCTAN algorithm
Context-dependent Yes No No
Pattern classification multi-task classification single task classification single task classification
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Fig. 15. The validation results of the proposed memristive network by PSPICE
simulation. CI1-CI3 are the contextual information. Vout1-Vout7 are the
output of network. [CI1, CI2, CI3]= [1V, -1V, -1V] represents the classification
task by digit. [CI1, CI2, CI3]= [-1V, 1V, -1V] represents the classification task
by color. [CI1, CI2, CI3]= [-1V, -1V, 1V] represents the classification task by
parity.

calculated by the software and then downloaded to the circuit.
Off-chip training failed to consider the variations between
devices. In [26], an on-chip training algorithm for memristive
circuits was introduced, while the memristor-based network
with OCTAN (On-Chip Training Algorithm for the memristive
Neuromorphic circuits) was only applied to solving single task
pattern classification. The rule of brain emotional learning of
the proposed CD-ELN imitates the learning mechanism in
the human brain, which has advantages of simple structure
and low calculation. Besides, the proposed memristor-based
CD-ELN with on-chip training is context-dependent when
receiving the same sensory input. In practical application, there
are internal connections between multiple tasks, so the ability
of processing multi-task is important. Based on mechanism
of the contextual-dependent processing, the memristive circuit
of CD-ELN can handle multi-task classification effectively,
which breaks the traditional method of divide and rule.

VI. DISCUSSION

The performance of the proposed CD-ELN network is
assessed in this section. Firstly, comparison to the-state-of-
art training algorithms are described. Then, the impacts of
temperature and process variation are presented by considering
the imperfections of the fabrication process.

A. Comparison to the-state-of-art training algorithms

1) Training time and accuracy: To test the effectiveness
of the proposed CD-ELN on a larger dataset, a multi-task
classification was implemented on the MNIST dataset. For
the contextual information, [1, 0] represents the classification
by digit, [0, 1] represents the classification by parity. The
pixels of images were normalized to (-1, 1) firstly, and
then translated to (-0.5V, 0.5V). The contextual information
(0, 1) were translated to (-0.5V, 0.5V). The parameters of
memristor were set as: Ron = 500Ω, Roff = 16kΩ, µv =
1 × 10−10m2s−1Ω−1, ion = 1A, ioff = 5.1 × 10−7A, i0 =
1× 10−5A, VT+ = 1V, VT− = −1V, p = 10.

Based on the training results of OCTAN (On-Chip Training
Algorithm for the memristive Neuromorphic circuits), and
RWC (Random Weight Change) algorithm on the MNIST
dataset, which were reported in [26]. Comparisons of training
time and training error among CD-ELN, OCTAN, and RWC
are shown in Fig. 16. Compared with the RWC algorithm,
the proposed CD-ELN has better training time and training
accuracy. Besides, the training time of CD-ELN is longer than
that of OCATN while its training accuracy is better than that
of OCTAN. Also, the classification accuracy of CD-ELN was
95%, which is higher than that of OCTAN (91% in [26]).
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Fig. 16. The training time and training error of CD-ELN, OCTAN, and RWC.

2) Power consumption: Power consumption is a key per-
formance index in circuit implementation. In the proposed
circuit of CD-ELN, the switches in the circuit are composed
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of MOSFETs, so the powers of switches are too small and
can be neglected. In the circuit simulation, the circuit power
consumption was shown in Table V, which was obtained by the
PSPICE simulation report. It is indicated that the main power
is composed of the components such as memristor, operation
amplifier, and resistor. The number of these components can
be calculated from Fig. 6. In the case of one set sensory
input and one set of contexts input, the number of memristor,
amplifier, and resistor is 5, 15, and 32, respectively. By simple
mathematical calculation, the total power consumption of a
circuit with only one set of inputs is 9.010mW. Besides, in
the case of multiple sets of inputs, the number of memristor
is changed based on the number of inputs, and the total power
consumption can be approximate calculated based on the num-
ber and average power consumption of circuit components.

TABLE V
POWER CONSUMPTION FOR THE MAIN COMPONENTS OF THE CIRCUIT

Circuit Components Average Power Consumption
Memristor 0.05mW
Amplifier 0.20mW
Resistor 0.18mW

The proposed CD-ELN was simulated for the 2-input parity
problem, then a comparison of power consumption is shown
in Table VI. The results reveal that the power consumption of
the CD-ELN is lower than that of RWC and OCTAN, which
were reported in [26]. In addition, the power consumption of
resistance is affected by the voltage provided, so the power
consumption of the circuit can be lowered by reducing the
voltage threshold of the memristor appropriately. Besides,
reducing the number of amplifiers is beneficial for achieving
lower power consumption.

TABLE VI
COMPARISON OF POWER CONSUMPTION

On-chip method Power Consumption
CD-ELN 9.160mW
OCTAN 9.979mW

RWC 9.982mW

B. Impacts of process variation and temperature

The uncertainly of the memristor parameters is one of the
main challenges in the hardware design. The variations of
parameters during the fabrication process of memristor may
affect the performance of the circuit system. To study the
effect of variations in memristor parameters, the classification
accuracy was measured in different cases with variation of 5%,
10%, and 20% in parameters.

For the process variation of memristor, three major pa-
rameters (Ron, Roff , Vth) were considered in the simulation.
Random noises with a normal distribution are added to the
main parameters, then the accuracy of the network is mea-
sured in the presence of these variations. The impacts of
Ron, Roff , Vth with a variation of 5%, 10%, and 20% are
tested successively, and the corresponding results were shown

in Fig. 17. The results indicated that the impact of parameter
Ron is minimal. Furthermore, the classification accuracy of
the network with a memristor variation of 20% remains above
90%.

In addition to the memristor process variation, the temper-
ature in the environment may impact the performance of the
circuit. A simulation of temperature sweep was performed in
PSPICE to test the effect of temperature on the whole circuit.
In the simulation of temperature sweep, the circuit was tested
under different temperature conditions. The error output (∆Vo)
between the actual output and target output was shown in Fig.
18. It is indicated that the impact of temperature is small.
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Fig. 17. Classification accuracy of the proposed network in the presence of
parameters variation of 5%, 10%, and 20%.

Fig. 18. Temperature analysis.

VII. CONCLUSION

In this paper, a context-dependent emotional learning net-
work and its circuit implementation were proposed. The pro-
posed CD-ELN mainly contains the amygdala module, OFC
module, and context-dependent module, which receives the
sensory input and contextual information simultaneously. The
working of the learning rule of the CD-ELN was analyzed
and verified. Besides, the circuit of CD-ELN was designed
based on memristor. Some classical emotional learning pro-
cesses, such as habituation, acquisition and extinction, were
simulated by PSPICE. Finally, the memristive circuit of multi-
input multi-output was applied to multi-task classification.
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The multiple tasks were trained in parallel, which breaks the
traditional method of divided and conquer. The training results
on MNIST database revealed that the accuracy of the proposed
CD-ELN is better than that of OCTAN and RWC algorithms.
Besides, the impacts of temperature and memristor process
variation on the circuit accuracy were also investigated.

In the simulation, the application ability of the memristor-
based CD-ELN was tested. The simulation results verified
the adaptability and flexibility of the CD-ELN in practical
application. However, the proposed memristive circuit adopts
discrete components to realize the training process and weight
adjustment, which is still power-wasting and is not suitable
for large-scale integration. In the future, our work will focus
on designing a more concise and low power consumption
memristive neural network and its hardware implementation.
Besides, we will imitate the more complex learning process
in the human brain to promote the development of artificial
intelligence.
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