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In this paper, a new memristor is proposed, and then an emulator built from off-the-shelf solid
state components imitating the behavior of the proposed memristor is presented. Multisim sim-
ulation and breadboard experiment are done on the emulator, exhibiting a pinched hysteresis
loop in the voltage–current plane when the emulator is driven by a periodic excitation voltage.
In addition, a new simple chaotic circuit is designed by using the proposed memristor and other
circuit elements. It is exciting that this circuit with only a linear negative resistor, a capacitor,
an inductor and a memristor can generate a chaotic attractor. The dynamical behaviors of the
proposed chaotic system are analyzed by Lyapunov exponents, phase portraits and bifurcation
diagrams. Finally, an electronic circuit is designed to implement the chaotic system. For the sake
of simple circuit topology, the proposed chaotic circuit can be easily manufactured at low cost.

Keywords : Memristor; chaotic circuit; breadboard experiment.

1. Introduction

Memristor as the fourth fundamental circuit ele-
ment besides resistor, inductor and capacitor, was
first postulated in 1971 by Chua [1971] and later the
concept was extended to a kind of dynamical sys-
tem called generalized memristor in 1976 by Chua
and Kang [1976]. Both the memristor and gener-
alized memristor have the common fingerprints of
pinched hysteresis loop in the current versus volt-
age plane under periodic excitation signal condition.
The pinched hysteresis loop shrinks as the frequency
of excitation signal is increased (the pinched hys-
teresis loop shrinks to a single-valued function when
the frequency of the excitation signal is increased
high enough) [Adhikari et al., 2013]. Though the
device was postulated theoretically, an actual phys-
ical device was not discovered. Until 2008, Strukov
and others in HP lab using nanoscale technol-
ogy first fabricated a physical memristor, which
is a two-terminal electrical device based on TiO2

material [Strukov et al., 2008]. Thus the status of
memristor as the fourth fundamental circuit ele-
ment was consolidated. From then on, more and
more researchers show great interest in the research
of circuits containing memristor. Different applica-
tion circuits based on memristor were proposed,
such as memristor-based ReRAM [Seok et al., 2014],
memristor-based synapses for neuromorphic circuits
[Prezioso et al., 2015], and memristor-based pro-
grammable logic circuits [Georgios et al., 2014].
Apart from these, the research of chaotic circuits
based on memristor has also become a hot topic.
For example, Lin and Wang proposed a new image
encryption algorithm based on chaos with PWL
memristor in Chua’s circuit [Lin & Wang, 2009].

In 2015, the knowm memristor invented by
Dr. Kris Campbell in Boise State University
was made available as a commercial component,
which is developed specifically for neuromemristive
applications [Campbell, 2015]. Different from the
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TiO2 memristor, the knowm memristor is formed
by metal W, Ag and Chalcogenide. However, the
cost of fabricating knowm memristor is high, and
the price is high. Therefore, it is still very neces-
sary to research and design the memristor mod-
els and emulators. In order to study the dynamic
behaviors of memristive circuit, a lot of memris-
tor models were proposed. For example, piecewise-
linear models [Itoh & Chua, 2008; Muthuswamy &
Kokate, 2009], and SPICE macromodels [Benderli &
Wey, 2009; Rak & Cserey, 2010; Batas & Fiedler,
2011] were proposed to emulate the memristor’s
behaviors. Although those models are useful for
simulating memristor, they cannot be used to phys-
ically build real-world application circuits based on
memristor. Therefore, designing a memristor emula-
tor would be very useful for experimentally explor-
ing the dynamic behaviors of a memristive circuit.
In 1971, Chua proposed the first memristor emu-
lator based on active devices [Chua, 1971]. How-
ever, this emulator circuit is relatively complex and
bulky. After that, Pershin and Di Ventra proposed
another emulator, which is based on microcontroller
[Pershin & Di Ventra, 2010]. Nonetheless, the fre-
quency range of this emulator circuit is limited to
approximately 50 Hz. Besides, a smooth continu-
ous nonlinear memristor emulator formed by opera-
tional amplifiers (Op-amps) and analog multipliers
was proposed by Muthuswamy [2010], which has
frequency content in the 0.5 kHz range. Recently,
Yang proposed a HP memristor emulator that con-
tains most features found in real memristor, such as
a sufficiently wide range of memristance, bimodal
operability of pulse and continuous signal inputs,
a long period of nonvolatility, floating operation,
operability with other devices, and the ability to
be implemented with off-the-shelf devices. Specif-
ically, the proposed emulator has a wide memris-
tance range [Yang et al., 2015]. However, when the
frequency of the sinusoidal input applied to this
emulator is equal to 1 kHz, the pinched hystere-
sis loop of this emulator shrinks to a single-valued
function, which means this emulator’s operation fre-
quency is no larger than 1 kHz.

In this paper, a new memristor is proposed
and an emulator is also presented. Different
from these piecewise-linear memristors proposed
by Muthuswamy and Kokate [2009], Itoh and
Chua [2008], our proposed memristor is a smooth
continuous nonlinearity memristor, which makes
the physical realization of this memristor easy.

Meanwhile, the memristor’s memductance function
only contains a quadratic nonlinearity term with-
out constant term, which can make the memris-
tor’s mathematical model simpler compared with
the abovementioned smooth continuous nonlin-
ear memristor [Muthuswamy, 2010]. And unlike
the emulator circuit proposed by Muthuswamy
[2010] who used the Op-amp AD711KN to real-
ize the current-inverter, we use the current feed-
back operational amplifier AD844 to realize the
current-inverter, which makes the design of emu-
lator more easy. Compared to the recent memris-
tor emulator proposed by Yang [Yang et al., 2015],
which is a completed current (or charge)-controlled
memristor emulator based on the HP memristor
mathematical model, our realized memristor emu-
lator is a generalized voltage-controlled memristor
emulator based on the proposed new memristor
mathematical model. According to the simulation
and experimental results we confirm our proposed
emulator can still show a pinched hysteresis loop
when the frequency of the sinusoidal input applied
to the emulator is equal to 1.5 kHz, so the emulator’s
operation frequency is larger than 1.5 kHz, which
shows a higher frequency range than the microcon-
troller emulator proposed by Pershin and Di Ventra
[2010], the abovementioned smooth continuous non-
linear emulator proposed by Muthuswamy [2010]
and the emulator proposed by Yang [Yang et al.,
2015].

In addition, due to the nonlinearity of mem-
ristor, memristor-based circuits can easily generate
a chaotic signal [Bao et al., 2011a]. Using mem-
ristor to construct chaotic system has attracted
a lot of interest. More and more chaotic circuits
based on memristor were proposed [Barboza &
Chua, 2008; Muthuswamy & Kokate, 2009; Li et al.,
2009; Wang et al., 2009; Muthuswamy & Chua,
2010; Muthuswamy, 2010; Bao et al., 2011a; Bao
et al., 2011b; Hrubos, 2012; Wang et al., 2012;
Buscarino et al., 2012a, 2012b; McCullough et al.,
2013; Setoudeh et al., 2014; Li et al., 2014] since
the first memristor-based chaotic circuit was pro-
posed by Itoh and Chua [2008]. A variety of chaotic
circuits based on HP memristor were proposed [Li
et al., 2014; Wang et al., 2012; Buscarino et al.,
2012a, 2012b; Setoudeh et al., 2014]. For exam-
ple, Buscarino et al. [2012b] proposed a memristor-
based chaotic circuit by making use of two HP
memristors in antiparallel to substitute the Chua’s
diode in the canonical Chua’s oscillator. However,
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the above proposed chaotic systems based on HP
memristor only made computer verification and
did not make experimental verification. Besides,
chaotic circuits based on piecewise-linear memris-
tor were proposed [Muthuswamy & Kokate, 2009;
McCullough et al., 2013; Li et al., 2009; Wang
et al., 2009]. For example, Muthuswamy and Kokate
[2009] proposed memristor-based chaotic circuits
with the memductance mathematically defined as
piecewise-linear discontinuous function W (ϕ) =
dq(ϕ)/dϕ. These memristor-based chaotic circuits
can generate various chaotic attractors. However,
the constitutive relations of these memristors are
nonsmooth piecewise-linear functions, resulting in
discontinuous nonlinear characteristics of the mem-
ristance M(ϕ) and memductance W (ϕ), which
makes the physical realization of such nonsmooth
memristors impossible [Bao et al., 2011a]. Chaotic
circuits based on smooth continuous nonlinear-
ity memristor were proposed [Bao et al., 2011a;
Muthuswamy, 2010; Bao et al., 2011b; Hrubos,
2012; Muthuswamy & Chua, 2010]. For example,
Bao designed a simple memristor-based chaotic cir-
cuit using a negative inductor, a negative resistor
and a negative capacitor in series with a parallel
combination of a memristor and a capacitor [Bao
et al., 2011a].

By using the memristor proposed in this paper,
we designed a new simple memristor-based chaotic
circuit. The memristor-based chaotic circuit con-
sists of an inductor and a negative resistor in series
with a parallel combination of a memristor and
a capacitor, which is simpler compared to those
memristor-based chaotic circuits reported in the
abovementioned papers. Compared to circuit in
paper [Bao et al., 2011a], our proposed memristor-
based chaotic circuit requires only one negative ele-
ment, which is advantageous because it reduces the
number of active elements and reduces power con-
sumption accordingly.

This paper is organized as follows. In Sec. 2,
some fundamentals of memristor are illustrated, a
new memristor is proposed, and an emulator built
from off-the-shelf solid state components which imi-
tates the behavior of the proposed memristor is
presented. In Sec. 3, the memristor-based chaotic
circuit topology, system equations are described and
then the dynamics of chaos are confirmed by numer-
ical computation. In Sec. 4, an electronic circuit is
designed to implement the chaotic system. Finally,
conclusions are given in Sec. 5.

2. The Memristor and Emulator

According to Chua and Kang [1976], a generalized
memristor is defined by{

y = g(z, u)u

ż = f(z, u)
(1)

where u and y denote the input and output of
the system respectively, z denotes the state of the
system. The g is a continuous n-dimensional vec-
tor function and f is a continuous scalar function.
The output y is zero whenever the input u is zero,
regardless of the state z which incorporates the
memory effect. This property manifests that the
pinched hysteresis loop always passes through
the origin. A generalized current-controlled mem-
ristor is defined by{

v = M(z1, z2, . . . , zn)i

żk = fk(z1, z2, . . . , zn; i), k = 1, 2, . . . , n
(2)

where the memristance M is a continuous func-
tion of z1, z1, . . . , zn, and z1, z1, . . . , zn are the state
variables defined by n-order system of differen-
tial equations. Alternatively, a generalized voltage-
controlled memristor is defined by{

i = W (z1, z2, . . . , zn)v

żk = fk(z1, z2, . . . , zn; v), k = 1, 2, . . . , n
(3)

where the memductance W is a continuous function
of the state variables z1, z1, . . . , zn.

Now, we define a generalized voltage-controlled
memristor as {

i = αz2v

ż = −βv − λz + κvz
(4)

where α, β, λ, κ are parameters and α > 0 (the
intention for this choice is to keep the memristor
a passive one). z is the internal state of the memris-
tor. Compared with those memristors proposed by
Muthuswamy [2010] and Bao [Bao et al., 2011a], the
proposed memristor’s memductance W = αz2 only
contains a quadratic nonlinearity term and does not
contain constant term. The intention is to make the
mathematical model simpler and its emulator easier
to be implemented.

Now, an emulator built from off-the-shelf solid
state components which imitates the behavior of the
above proposed memristor is designed, as shown in
Fig. 1.
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Fig. 1. Schematic of the emulator.

With the properties of Op-amp TL082, mul-
tiplier AD633 and current feedback operational
amplifier AD844 (refer to the datasheet for further
information), we can see that U5 is the current-
inverter that implements

iM (t) = i(t) = i1(t) = −w4(t)
R4

. (5)

Multiplier U3 implements

w3(t) = −R5 + R6

10R5
v2(t) · v1(t). (6)

Multiplier U4 implements

w4(t) =
R7 + R8

10R7
w3(t) · v2(t). (7)

Op-amp U1 implements

v1(t) = vM (t). (8)

Op-amp U2 implements

dv2(t)
dt

= −w3(t)
R1C1

− v1(t)
R2C1

− v2(t)
R3C1

. (9)

Substituting for w3 from Eq. (6) into Eq. (7) and
then substituting w4 into Eq. (5) we can get the
following Eq. (10) after simplification

iM (t) =
(R5 + R6)(R7 + R8)

100R4R5R7
v2(t)2 · v1(t). (10)

Substituting for v1 from Eq. (8) into Eq. (10) we
can get

iM (t) =
(R5 + R6)(R7 + R8)

100R4R5R7
v2(t)2 · vM (t). (11)

Finally, substituting for w3 and v1 from Eqs. (6)
and (8) into Eq. (9) we can get the following differ-
ential equation governing the internal state of the

(a) (b)

(c) (d)

Fig. 2. The iM–vM characteristics of memristor, the excitation signal is a sinusoid voltage with 1.5 V amplitude, (a) and (b)
are the Multisim simulation results with a frequency of 300 Hz and 1.5 kHz respectively, the scales are 2.0 V/div for w4 and
1.0 V/div for vM , (c) and (d) are the corresponding experimental results.
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emulator
dv2(t)

dt
= −vM (t)

R2C1
− v2(t)

R3C1

+
(R5 + R6)vM (t) · v2(t)

10R1R5C1
. (12)

Along with the above function Eqs. (11) and (12)
we have



iM (t) =
(R5 + R6)(R7 + R8)

100R4R5R7
v2(t)2 · vM (t)

dv2(t)
dt

= −vM (t)
R2C1

− v2(t)
R3C1

+
(R5 + R6)vM (t) · v2(t)

10R1R5C1
.

(13)

Now, we consider the above proposed memris-
tor defined by Eq. (4). Comparing Eq. (13) with
Eq. (4), and making i = iM (t), v = vM (t), z =
v2(t) (the internal state of the memristor), α =
(R5+R6)(R7+R8)

100R4R5R7
, β = 1

R2C1
, λ = 1

R3C1
, κ = (R5+R6)

10R1R5C1
,

we can see that Fig. 1 indeed realizes the above pro-
posed memristor. And unlike Muthuswamy [2010]
who used the Op-amp AD711KN to realize the
current-inverter, we use the current feedback oper-
ational amplifier AD844 to realize the current-
inverter, which makes the design more easy.

When R1 = R4 = 10KΩ, R2 = R3 = 25KΩ,
R5 = R7 = 1KΩ, C1 = 300 nF, R6 = R8 =
9KΩ, we can obtain the experimental results of
the iM–vM characteristics, as shown in Figs. 2(c)
and 2(d), which are entirely consistent with the
results obtained by Multisim simulation shown in
Figs. 2(a) and 2(b). From the simulation and exper-
imental results we know that our proposed emulator
shows a higher frequency range than the microcon-
troller emulator proposed by Pershin and Di Ventra
[2010], the smooth continuous nonlinear emulator
proposed by Muthuswamy [2010] and the emulator
proposed by Yang [Yang et al., 2015]. From Eq. (5)
we know that iM (t) = −w4(t)/R4. In order to con-
veniently measure the current iM we use the voltage
w4 to substitute the current iM , which just makes
a transformation on a −1/R4 scale.

3. Chaotic System

In this section, the chaotic circuit topology, system
equations and dynamical characteristics including

Fig. 3. Schematic of the proposed chaotic system.

bifurcation diagram, Lyapunov exponent spectrum,
equilibrium points and eigenvalues are described.

3.1. Circuit topology and system
equations

By adding an inductor, a capacitor, a linear neg-
ative resistor to the above proposed memristor, a
new chaotic circuit is designed, as shown in Fig. 3.

Based on Fig. 3, we can see that vM = vC .
By applying Kirchhoff’s voltage law to the loop D
and using the constitutive relations of the inductor,
capacitor and linear negative resistor, we can get
the following equations

vL + v−G − vC = 0

⇒ L
diL
dt

= −v−G + vC

⇒ diL
dt

=
1
L

(−v−G + vC)

⇒ diL
dt

=
1
L

(G · iL + vC).

(14)

By applying Kirchhoff’s current law to the node A
and using the constitutive relations of the inductor,
capacitor, memristor and linear negative resistor,
we can get the following equations

iC + iM + iL = 0

⇒ C
dvC

dt
= −iL − iM

⇒ dvC

dt
=

1
C

(−iL − iM )

⇒ dvC

dt
=

1
C

(−iL − α · z2 · vM )

⇒ dvC

dt
=

1
C

(−iL − α · z2 · vC).

(15)

Finally, according to Eq. (4) we get the equation
governing the internal state of the memristor as
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follows
dz

dt
= −β · vM − λ · z + κ · vM · z. (16)

Substituting vM = vC into Eq. (16) we can get the
following equation

dz

dt
= −β · vC − λ · z + κ · vC · z. (17)

By combining Eqs. (14), (15) and (17), a set of three
first-order differential equations defining the rela-
tion among the three variables are obtained



diL
dt

=
1
L

(G · iL + vC)

dvC

dt
=

1
C

(−iL − α · vC · z2)

dz

dt
= −β · vC − λ · z + κ · vC · z.

(18)

We have x(t) ∆= iL (current through inductor L)
and y(t) ∆= vC (voltage across capacitor C). The

parameter values are L = 1, C = 3, G = 0.2, α =
κ = 1, β = λ = 0.4. The above circuit equations
can be described as



ẋ = 0.2x + y

ẏ = −1
3
x − 1

3
yz2

ż = −0.4y − 0.4z + yz.

(19)

The phase portraits of system (19) are investi-
gated by numerical simulation with initial condi-
tion x(0) = y(0) = z(0) = 0.1, as shown in
Fig. 4. The projections of phase portrait on x–y,
x–z, y–z planes are shown in Figs. 4(a)–4(c), respec-
tively. The 3D view in the x–y–z space is shown in
Fig. 4(d). From the numerical simulation results we
know system (19) can generate a chaotic attractor.

3.2. Lyapunov exponents and
bifurcation diagram

Lyapunov exponents provide empirical evidence of
chaotic behavior. They characterize the rate of

(a) (b)

(c) (d)

Fig. 4. Chaotic phase portraits of system (19). (a) Projection on x–y plane, (b) projection on x–z plane, (c) projection on
y–z plane and (d) 3D view in the x–y–z space.
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(a) (b)

Fig. 5. (a) Lyapunov exponents versus parameter λ of system (18) and (b) bifurcation diagram for increasing parameter λ
of system (18).

separation of infinitesimally close trajectories in
state space [Eckmann & Ruelle, 1985; Wolf et al.,
1985]. The rate of separation can be different for
different orientations of the initial separation vec-
tor, hence the number of Lyapunov exponents is
equal to the number of dimensions in phase space.
So for a three-dimensional autonomous continuous
time system, we will have three Lyapunov expo-
nents. A positive Lyapunov exponent implies that
the trajectory of a system expands in phase space.
However, if the sum of Lyapunov exponents is neg-
ative, then the trajectory of the system contracts
a little in phase space. These two seemingly con-
tradictory properties indicate chaotic behavior in a
dynamical system.

To explore the dynamic behaviors of the
memristor-based chaotic circuit, the Lyapunov
spectrum of system (18) is calculated, as shown
in Fig. 5(a) (with the parameter values L = 1,
C = 3, G = 0.2, α = κ = 1, β = 0.4 and
λ = 0 ∼ 1). Notice that when λ = 0.4, the cor-
responding Lyapunov exponents are: LE1 = 0.046,
LE 2 = 0, LE3 = −0.397. There is a positive Lya-
punov exponent and the sum of the Lyapunov expo-
nents is negative, which indicate chaotic behavior
of system (18). Figure 5(b) shows the bifurcation
diagram of system (18) with the parameter values
L = 1, C = 3, G = 0.2, α = κ = 1, β = 0.4 and
λ = 0 ∼ 1. It can be observed that system (18)
evolves into chaos through double-period bifurca-
tion route.

3.3. Equilibrium points and
stability analysis

According to system (19), let ẋ = ẏ = ż = 0, the
equilibrium point equations can be expressed as




0.2x + y = 0

−1
3
x − 1

3
yz2 = 0

−0.4y − 0.4z + yz = 0.

(20)

By solving Eq. (20) we get three equilibrium points
S0 = (0, 0, 0)T , S1 = (−2.4357, 0.4871, 2.2361)T ,
S2 = (−1.6965, 0.3393,−2.2361)T . The stability of
equilibrium point can be judged by the eigenval-
ues of the characteristic equation det(λI − J) = 0.
Jacobian matrix of system (19) is shown in Eq. (21)

J =




0.2 1 0

−1
3

−1
3
z2 −2

3
yz

0 −0.4 + z −0.4 + y


. (21)

For equilibrium point S0, the characteristic equa-
tion is as follows,

det(λI − J) =

∣∣∣∣∣∣∣∣∣

λ − 0.2 −1 0

1
3

λ 0

0 0.4 λ + 0.4

∣∣∣∣∣∣∣∣∣
= λ3 + 0.2λ2 + 0.2533λ + 0.1333

= 0. (22)

The solutions (also called as eigenvalues) of the
above equation are λ1,2 = 0.1± 0.5686i, λ3 = −0.4.
The stability of system (19) near the equilibrium
point S0 is uniquely determined by these eigenval-
ues. From the solutions, we know there are one real
eigenvalue and a pair of complex conjugate eigen-
values (a so-called index-2 saddle-focus), which are
the criteria to generate chaotic attractor. Similarly,
the stability of system (19) near the equilibrium
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Fig. 6. The schematic of the chaotic circuit based on mem-
ristor. The power supplies for the ICs are ±15 V. The circuit
in the N1 is a linear negative resistor and N2 is the proposed
memristor.

points S1 and S2 are determined by the eigen-
values λ1,2 = −0.7796 ± 0.9368i, λ3 = 0.1795 (a
so-called index-1 saddle-focus) and the eigenvalues
λ1,2 = −0.8427 ± 0.9892i, λ3 = 0.1579 (a so-called
index-1 saddle-focus) respectively. From the equi-
librium point analysis, we know the system (19)
contains one index-2 saddle-focus (the premise to

generate chaotic attractor) and two index-1 saddle-
focus, which provide the possibility to generate
chaotic attractor [Yu, 2011].

4. Circuit Implementation

In this section, the system (19) is realized by an
electronic circuit, as shown in Fig. 6.

The corresponding circuit equations can be
described as


diL
dt

=
1
L

(
vC +

R9R11

R10
· iL

)

dvC

dt
=

1
C

(
−iL − (R5 + R6)(R7 + R8)

100R4R5R7
· vC · v2

2

)

dv2

dt
= − vC

R2C1
− v2

R3C1
+

R5 + R6

10R1R5C1
· vC · v2

(23)

where G = (R9R11)/R10, α = (R5 + R6)(R7 +
R8)/(100R4R5R7), β = 1/(R2C1), λ = 1/(R3C1),

(a) (b)

(c) (d)

Fig. 7. Phase portraits of system (19) obtained by Multisim simulation. (a) x–y plane, (b) x–z plane, (c) y–z plane and
(d) time-domain waveform of x.
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(a) (b)

(c) (d)

Fig. 8. Phase portraits of system (19) observed from an oscilloscope. (a) x–y plane, (b) x–z plane, (c) y–z plane and (d) the
physical implementation of circuit.

κ = (R5+R6)/(10R1R5C1). Thus in order to get the
parameter values L = 1, C = 3, G = 0.2, α = κ = 1,
β = λ = 0.4, we set R9 = 200Ω, R10 = 100KΩ,
R11 = 100Ω, R4 = R5 = R7 = 100Ω, R6 =
R8 = 9.9KΩ, R2 = R3 = 25KΩ, R1 = 100KΩ,
C1 = 100nF, C = 3F, L = 1H. The experimental
results of Fig. 6 are shown in Figs. 8(a)–8(d), which
are entirely consistent with the results obtained by
Multisim simulation shown in Figs. 7(a)–7(d).

5. Conclusions

In this paper, in order to design and realize a sim-
ple memristor-based chaotic circuit, a memristor
with a simple mathematical model is proposed, and
then its emulator is also presented. By adding an
inductor, a capacitor, and a linear negative resistor

to the proposed memristor, a new simple chaotic
circuit is proposed. The new constructed system
can generate an attractor with the unusual fea-
ture of having three equilibrium points, which is
unlike the reported memristive systems having a
line of equilibrium points. Some basic properties
of the new system are investigated including phase
portraits, equilibrium, Lyapunov exponent spec-
trum and bifurcation diagram. Moreover, a practi-
cal equivalent circuit of the memristor is presented.
Based on the equivalent circuit of memristor, the
new chaotic circuit can be easily designed, and
the experimental results of the chaotic circuit are
entirely consistent with the simulation results. The-
oretical analysis, numerical simulation and experi-
mental results have confirmed the effectiveness of
this approach.
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