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A B S T R A C T

Recently, a number of chaos-based image encryption algorithms that use low-dimensional chaotic map and
permutation-diffusion architecture have been proposed. However, low-dimensional chaotic map is less safe
than high-dimensional chaotic system. And permutation process is independent of plaintext and diffusion
process. Therefore, they cannot resist efficiently the chosen-plaintext attack and chosen-ciphertext attack. In
this paper, we propose a hyper-chaos-based image encryption algorithm. The algorithm adopts a 5-D multi-
wing hyper-chaotic system, and the key stream generated by hyper-chaotic system is related to the original
image. Then, pixel-level permutation and bit-level permutation are employed to strengthen security of the
cryptosystem. Finally, a diffusion operation is employed to change pixels. Theoretical analysis and numerical
simulations demonstrate that the proposed algorithm is secure and reliable for image encryption.

1. Introduction

Multimedia communication has become more and more important
with the rapid development in internet technology and multimedia
technology. Therefore, the security of image information has become
an increasingly serious issue. However, due to bulky data capacity, high
redundancy and strong correlations among adjacent pixels, traditional
encryption algorithms, such as DES and AES, are poorly suited to
image encryption [1].

Chaotic system has many excellent intrinsic properties, such as
ergodicity, aperiodicity, high sensitivity to initial conditions and control
parameters and random-like behaviors. Therefore, researchers have
proposed many image encryption algorithms based on chaotic systems
[2–21]. The typical ciphers based on chaotic map can be partitioned
into two stages: permutation and diffusion. In [2–12], a number of
image encryption algorithms using pixel-level permutation have been
proposed. The permutation operation of these algorithms just changes
the position of the pixel. And the chaotic sequence generated by chaotic
system is independent of the plaintext and diffusion process. Therefore,
the ciphertext can be easily deciphered by chosen-plaintext attack and
chosen-ciphertext attack [13–15]. In [16], an image encryption based
on one-time keys is proposed. In [17], a novel chaotic block image
encryption algorithm based on dynamic random growth technique is
proposed. Although the schemes adopt some measures in the encryp-
tion process to improve security, but they cannot resist chosen-
plaintext attack and chosen-ciphertext attack totally. To avoid attackers
crack cryptosystems by using the order from top to bottom and from

left to right, Wang et al. proposed dynamical pixel order for diffusion
and sub-images division method [18]. Belazi et al. [19] proposed a new
chaos-based partial image encryption scheme which encrypts only the
requisite parts of the sensitive information in frequency domain of
Lifting-Wavelet Transform (LWT) based on hybrid of chaotic maps and
a new S-box. Liu et al. [20] proposed a fast image encryption algorithm.
In this algorithm, the confusion and diffusion processes are combined
for one stage. Wang et al. [21] proposed a novel hybrid color image
encryption algorithm using two complex chaotic systems to enhance
the security and enlarge key space of color image encryption. In [22–
27], a variety of image encryption algorithms using bit-level permuta-
tion have been proposed due to the advantages of bit-level permuta-
tions, which can change the position and value of a pixel simulta-
neously. In [29], Wang et al. introduced the perceptron conception of a
neural network to a chaotic encryption system, and proposed a new bit-
level encryption algorithm based on mathematical model to improve
security. In [30], a new bit-level encryption algorithm based on the
spatiotemporal non-adjacent coupled map lattices which makes it
possible for any bit in pixels to break the limit of its bitplane without
extra space in permutation process. In [31], a novel bit-level image
encryption algorithm based on chaotic maps is proposed to modify the
statistical information that is in each bitplane. Recently, the character-
istics of DNA computing, massive parallelism, huge storage and ultra-
low power consumption have been found. A number of image encryp-
tion algorithms use DNA rule are proposed [28,32,33,37]. However,
they have the same weakness as pixel-level image encryption algo-
rithms.
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In addition, compared with high-dimensional chaotic systems,
image encryption algorithms employing the low-dimensional chaotic
maps are not safe. Because high-dimensional chaotic systems, espe-
cially hyper-chaotic systems, have a larger key space, better sensitivity,
more complex dynamic characteristics and randomness. The general
methods that can decipher low-dimensional chaotic maps, such as
phase space reconstruction and nonlinear prediction, are difficult to
decipher high-dimensional chaotic systems. Therefore, a number of
image encryption algorithms based on hyper-chaotic systems have
been proposed [28,34–38]. In [34], Gao and Chen proposed a hyper-
chaos-based image encryption algorithm using pixel-level permutation.
Although this algorithm has the advantage of large key space, Ruouma

and Belghith [35] proved that it could not resist the chosen-plaintext
attack and the chosen-ciphertext attack; moreover, Jeng et al. [36]
found that there is a weakness for Gao and Chen's algorithm and
Ruouma and Belghith's improved algorithm, i.e., low sensitivity to
change of plain-images. Meanwhile, hyper-chaos-based image encryp-
tion algorithms with DNA encoding were presented [28,37]. However,
to date, there are not image encryption algorithms using pixel-level
permutation and bit-level permutation.

To overcome the weaknesses above, this paper proposes a hyper-
chaos-based image encryption algorithm using pixel-level permutation
and bit-level permutation. First, the algorithm employs a hyper-chaotic
system to resist the general methods which can decipher low-dimen-

Fig. 1. Phase portraits of system (1) with parameters a=10, b=60, c=20, d=15, e=40, f =1, g =50, h =10, (a) 3D view in the x1–x2–x3 space; (b) projection on x1–x2 plane; (c) projection
on x1–x3 plane; (d) projection on x2–x3 plane; (e) projection on x1–x5 plane; (f) projection on x3–x4 plane.
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sional chaotic map. Meanwhile, the chaotic sequence generated by
chaotic system is relevant to characteristics of plain-image. Therefore,
different plain-images could get completely different chaotic sequences.
The chosen-plaintext attack and chosen-ciphertext attack are void.
Then, a pixel-level permutation is employed. Next, we use a bit-level
permutation to scramble the image. Combining with pixel-level per-
mutation and bit-level permutation can strengthen security of the
cryptosystem. Finally, in diffusion operation, we add the pixels after
pixel-level permutation. Compared with the existing hyper-chaos-
based image encryption algorithms, the algorithm we propose is safer
because we use pixel-level permutation, bit-level permutation and
more complex chaotic system. Experiment results and simulation have
shown that this algorithm not only performs well, but also can resist
different attacks.

The paper is organized as follows. In Section 2, the hyper-chaotic
system is introduced. In Section 3, we describe the proposed image
encryption algorithm in detail. In Section 4, the simulation results and
security analysis are presented, while the conclusions are reported in
Section 5.

2. Chaotic system

The paper adopts a 5-D multi-wing hyper-chaotic system as follow
[39]:

⎧

⎨
⎪⎪

⎩
⎪⎪

x ax x x
x bx fx
x cx gx x x
x dx hx
x ex x x

̇ = − +
̇ = − +
̇ = − + +
̇ = −
̇ = −
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2 2 5

3 3 4 1 2

4 4 1

5 5 2 1
2

(1)

where x1, x2, x3, x4, x5 are state variables and a, b, c, d, e, f, g, h are
real constant parameters of system (1). Nonlinear terms in this
dynamical system are x2×3, x1×2 and x2×1

2. We measure the phase
portraits, dynamical behavior and bifurcation of the employed system
as below [39–41].

2.1. Phase portraits of the hyper-chaotic system

We choose a=10, b=60, c=20, d=15, e=40, f=1, g=50, h=10 and
initial conditions are (1, 1, 1, 1, 1). Also, the time step size to solve
system is 0.001. Lyapunov exponents are L1=9.979, L2=1.96,
L3=0.005362, L4=−19.13, L5=−27.82; therefore, system (1) is hy-
per-chaotic. We can see chaotic behavior by phase portraits of the
system (1) in Fig. 1.

2.2. Dynamical analysis of the hyper-chaotic system

The evolution of chaotic attractors in the system (1) will be
presented through bifurcation diagrams. The system will be focused
on parameter d for describing the dynamical behavior of the new
system, and we set time step size 0.001, keep the absolute and relative
error 0.000001 and choose the initial conditions x1(0)=1, x2(0)=1,
x3(0)=1, x4(0)=1, x5(0)=1. The results will be obtained via varying
parameter d by fixing the other parameters. When a=10, b=60, c=20,
e=40, f=1, g=50, h=10, and d is variable in region [−5,20], the
proposed system has different dynamical behaviors such as periodic
orbit, chaotic and hyper-chaotic. The spectrum of Lyapunov exponents
of the system (1) with respect to parameter d is shown in Fig. 2(a).
When d∈[−5, 0], the maximum Lyapunov exponent is zero and system
(1) has a periodic orbit. For d ∈ [0, 8.8], one positive Lyapunov
exponent appears, and system (1) is chaotic. When d∈[8.8, 20] two
positive Lyapunov exponents appear, therefore, system (1) is hyper-
chaotic.

The bifurcation diagram versus d is illustrated in Fig. 2(b). By
increasing d, Fig. 2(b) clearly shows the generation of the chaotic

attractor.

3. The proposed image encryption algorithm

The encryption process in the paper is shown in Fig. 3. First, the
chaotic sequence generated by chaotic system is relevant to character-
istics of plain-image. Then, a pixel-level permutation is employed to
shuffle the plain-image. Next, a bit- level permutation is utilized to
strengthen security of the cryptosystem. Finally, we can get cipher-
image by a diffusion operation.

3.1. Pixel-level permutation process

We utilize a pixel-level permutation process to confuse plain-image
totally. It can disrupt the correlation of adjacent pixels. The pixel-level
permutation process is stated as follows.

Step1 Convert digital image matrix Am×n to one-dimensional vector
P={p1，p2，p3，···，pm×n}.
Step2 Calculate the sum of all pixels in the plain-image, and
calculate the initial keys x1, x2, x3, x4, x5 of chaotic system (1)
according to formula (2).

⎪

⎪⎧⎨
⎩

x

x x i

=

= mod( × 10 , 1) = 2, 3, 4, 5

sum S
S

i i

1
+

2 +

−1
6

23

(2)

Fig. 2. Spectrum of Lyapunov exponents and bifurcation diagram of system (1) versus
the parameter d∈[−5, 20].

Fig. 3. The encryption process.
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where S is size of the plain-image.

Step3 Make the chaotic system (1) for N0+MN times iterations and
discard the former N0 values to avoid harmful effects. The chaotic
sequence has MN elements, L={L1，L2，L3，···，Lm×n}.
Step4 The chaotic sequence is sorted in ascending order. According
to the pixel position in the initial sequence, we can obtain sequence
L′={ L′1，L′2，L′3，···，L′m×n }. Then, the sequence L′ is applied
to permute the image pixel positions P and get a shuffled sequence
Q={Q1，Q2，Q3，···，Qm×n}.

3.2. Bit-level permutation process

In the process, we employ a bit-level permutation, to change bits of
the pixel. Bit-level permutation process will recreate four new bytes to
change bits of each byte by combining four bytes. Actually, it is mean
that a column multiply a constant matrix. The bit-level permutation
process is described as follows.

Step1 Divide the shuffled sequence Q into MN/16 matrices which
are 4×4.
Step2 Get a new 4×4 matrix by to multiply a constant matrix and a
4×4 matrix, the constant matrix and the inversion matrix shown in
Fig. 4.
Step3 Repeat Step2 until MN/16 matrices have executed a round of
bit-level permutation operation. Then, we can obtain a matrix Dm×n

by combining MN/16 matrices.

3.3. Diffusion process

Diffusion process can enhance the resistance to statistical attack
and differential attack greatly, in which the histogram of the cipher-
image is fairly uniform and is significantly different from that of the
plain-image. To a good diffusion process, a key stream strongly related
to plain-image should be used. When encrypting different plain-
images, we can get completely different chaotic sequences in the
encryption algorithm. The diffusion process is outlined as follows.

Step1 Utilize chaotic sequence L to obtain key stream according to
formula (3).

K abs L floor abs L= mod(( ( ) − ( ( ))) × 10 , 256)i i i
14 (3)

Step2 Encrypt pixel values of the image matrix Dm×n by formula (4)
and formula (5).

C D C Q K= mod( + , 256) ⊕ mod( + , 256)1 1 0 1 1 (4)

C D C Q K i m n= mod( + , 256) ⊕ mod( + , 256) = 2, 3,…, ×i i i i i−1

(5)

where C0 is a constant, it can also be used as the encryption key.

Step3 Repeat Step2 until i=m×n, and we can get cipher-image C.

3.4. The decryption

The decryption procedure is the reverse process of encryption.
First, we should obtain the chaotic sequence generated by chaotic
system. Then, inverse operation of diffusion is implemented by formula
(6) to get the scrambled image Di’. Next, divide the scrambled image D′
into MN/16 matrices and utilize the inversion matrix in section 2.3 to
carry out inverse operation of bit-level permutation. Finally, we can
obtain the plain-image P′ by the inversion operation of pixel-level
permutation.

D C Q K C i

m n

′ = mod(( ⊕ mod( + ′ , 256) + 256) − , 256) = 2,

3,…, ×
i i i i i−1

(6)

4. Experimental results and performance analysis

In this section, we analyze the performance of the proposed scheme,
including histograms, correlation coefficients, key space analysis, key
sensitivity analysis and differential analysis. In the experiments, the
images for testing are the 256×256 ‘Lena’ image.

4.1. Key space

The key space is the total number of different keys that can be used
in the encryption procedure. In the proposed algorithm, the secret
keys include the initial values of the chaotic system, iteration
times N0 and the constant C0. The computational precision of
double-precision number is taken as 1016. The precision of
initial values are Hx1=Hx2=Hx3=Hx4=Hx5=1016 and the constant
are C0=28.Therefore, the total key space is
H=N0C0Hx1Hx2Hx3Hx4Hx5=N0×28×1080≈N0×2

273.
Especially when N0 is known, the key space is approximately 2273.

For an effective cryptosystem, the size of the key space should not be
smaller than 2100 to make brute-force attacks infeasible [42]. It is clear
that the encryption algorithm has a sufficiently large key space to resist
all types of brute-force attacks.

4.2. Histogram analysis

An image histogram represents the distribution of the pixel
intensity values within an image. A secure encryption system can make
the encrypted image have a uniform histogram to resist any statistical
attacks. The histograms of the Lena image and the corresponding
cipher images are shown in Fig. 5. In Fig. 5(d), all of the grayscale
values of the cipher image are distributed uniformly over the interval
[0255], which is significantly different from the distribution of the Lena
image shown in Fig. 5(b).

For quantity analyses of each key, we calculate variances of
histograms to evaluate the uniformity of the distribution of the
ciphered image [43]. The lower value of variances indicates the higher
uniformity of ciphered images. We also calculate the two variances of
ciphered images which are encrypted by different secret keys on the
same plaintext image. The closer of the two values of variances
indicates the higher uniformity of ciphered images when the secret
keys are varying. The variance of histograms is presented as follows:

∑ ∑z
n

z zvar( ) = 1 1
2

( − )
i

n

j

n

i j2
=2 =2

2

(7)

where Z is the vector of the histogram values which are Z ={z1, z2, …,
z256}, zi and zj are the numbers of pixels whose gray values are equal
to i and j respectively. In simulation experiments, we calculate two
variances of histograms of two ciphered images by Eq. (7) from the
same plaintext image with different secret keys. Only one parameter of
secret keys is changed in such different secret keys. Table 1 lists theFig. 4. The constant matrix and the inversion matrix.
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variances of histograms of ciphered Lena. In Table 1, the variances are
obtained by the initial key x1, x2, x3, x4, x5, and parameters N0, C0.
The variance values are about 250, which indicate that the average
fluctuation of number of pixels in each gray value is about 13 pixels.
However, the variance value is 33860.0547 for histogram of the
plaintext image Lena. Therefore, the proposed algorithm can resist
any statistical attacks.

4.3. Correlation analysis

The adjacent pixels of the original image have a high correlation in

the horizontal, vertical and diagonal directions. An ideal encryption
algorithm can make the correlation coefficients of the pixels in the
encrypted image have a sufficiently low correlation to resist statistical
attacks. To analyze and compare the correlations of the adjacent pixels
in the plain and cipher image, 10,000 pairs of adjacent pixels in each
direction are randomly chosen from the plain image and its encrypted
image. The correlation distribution of two adjacent pixels in three
directions is shown in Fig. 6. As observed, the distributions of adjacent
pixels in the original image are highly concentrated, which means that
the original image has a strong correlation. However, the distributions
of the adjacent pixels in the original image's ciphered image are
random, which means that the ciphered image has a low correlation.

Moreover, for calculating the correlation coefficient rxy of each
pair, we have used the following formulas:

∑E x
N

x( ) = 1

i

N

i
=1 (8)

Fig. 5. Histogram analysis. (a) Original image (b) encrypted image (c) Histogram of the original image (d) Histogram of the encrypted image.

Table 1
Variances of histograms to all secret keys in the proposed algorithm.

Secret keys x1 ×2 x3 ×4 x5 N0 C0

Variances of
ciper image

259.938 279.227 271 246.102 238 266.031 245.836
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Fig. 6. Correlation of adjacent pixels in the plain-image and in the cipher-image: (a), (c) and (e) for the plain-image; (b), (d) and (f) for the cipher-image.
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∑D x
N

x E x( ) = 1 ( − ( ))
i

N

i
=1

2

(9)

∑x y
N

x E x y E ycov( , ) = 1 ( − ( ))( − ( ))
i

N

i i
=1 (10)

ρ x y
D x D y

= cov( , )
( )⋅ ( )xy

(11)

where x and y are the grayscale values of two adjacent pixels in the
image, and N is the total number of pixels selected from the image. The
results are shown in Table 2, which show that the correlation
coefficients of the original image are close to 1, while those of the
encrypted image are approximately 0 along all three directions. Table 2
shows that the adjacent pixels of the encrypted image have extremely
low correlation and the proposed image encryption scheme has good

confusion and diffusion properties.

4.4. Key sensitivity analysis

To guarantee the security of the cryptosystem, a good cryptosystem
should be sensitive to the key. The key sensitivity must be analyzed.
The incorrect plain image will be produced when we use different keys
to decrypt the cipher-image. We use the original key to encrypt the
Lena image and the modified key to decrypt the cipher-image. Their
difference lies in the last digit after the decimal point of the first
parameter. The original key is (0.765677163767260,
0.163767260150053, 0.260150052607060, 0.052607059478760
,0.059478759765625), and the modified key is (0.765677163767261,
0.163767260150053, 0.260150052607060, 0.052607059478760,
0.059478759765625). The original Lena image is shown in Fig. 7(a),
and the corresponding cipher-image of the original key is shown in
Fig. 7(b). The decrypted image for the incorrect decryption key is
shown in Fig. 7(c), and the decrypted image for the correct decryption
key is shown in Fig. 7(d). It is clear that the slightly different decryption
key cannot decrypt the cipher-image. Therefore, the key sensitivity test
shows that the proposed cryptosystem has perfect sensitivity to the key.

4.5. Differential analysis

To resist a differential attack, a good cryptosystem should ensure
that any tiny modification in the plain-image should cause a significant
difference in the cipher-image. The NPCR (number of pixels change
rate) and UACI (unified average changing intensity) [44] are usually

Table 2
Correlation coefficients of adjacent pixel.

Direction Horizontal Vertical Diagonal

Plain image 0.9422 0.9682 0.9320
Cipher image −0.0015 −0.0032 0.0008
Ref. [11] 0.0021 0.0046 0.0033
Ref. [12] −0.0180 0.0035 0.0020
Ref. [23] 0.0242 0.0194 0.0024
Ref. [26] −0.0230 0.0019 −0.0034
Ref. [28] 0.0056 0.0065 0.0073
Ref. [34] 0.0142 0.0074 0.0183

Fig. 7. Key sensitivity analysis. (a) The Lena image; (b) the encrypted image using the original key; (c) the decrypted image with an incorrect security key; and (d) the decrypted image
with the correct security key.
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used for differential attack analysis. The ideal values of NPCR and
UACI are 99.61% and 33.46%, respectively. These concepts are defined
by Eqs. (12) and (13) below:

∑ ∑R
M N

D i j= 1
×

( , ) × 100%NPCR
i

M

j

N

=1 =1 (12)

∑ ∑I
M N

C i j C i j= 1
×

( , ) − ( , )
255

× 100%UACI
i

M

j

N

=1 =1

1 2

(13)

where C1and C2 are two cipher-images whose plaintext has only a
different pixel, and D(i,j) is defined as:

⎧⎨⎩D i j
C i j C i j
C i j C i j

( , ) =
0 ( , ) = ( , )
1 ( , ) ≠ ( , )

1 2

1 2 (14)

To compare the performance, we choose 500 cipher-images whose
plaintext has only a different pixel. As observed, the NPCR and UACI
are obtained as shown in Fig. 8 by the proposed algorithm. This finding
shows that the proposed scheme can resist differential attack effec-
tively.

4.6. Information entropy analysis

The information entropy is the most important measure of random-
ness. The source of information is defined as m, and we can obtain the
following formula for calculating information entropy:

∑H m p m
p m

( ) = ( )log 1
( )i

M

i
i=0

−1

(15)

where M is the total number of symbols mi∈m; p(mi) denotes the
probability of symbols. It is assumed that an information source sends
out 256 symbols, and we may get theoretical value H(m)=8 by Eq. (15).
The more it gets close to 8, the less possible for attackers to decode
cipher images. Table 3 shows the comparison of information entropy.
From Table 3, it is known that entropies are close to 8, so the proposed
algorithm has a good property of information entropy.

5. Conclusions

In this paper, we propose a hyper-chaos-based image encryption
algorithm using pixel-level permutation and bit-level permutation. It
can overcome the common weaknesses of the algorithm based on low-
dimensional chaotic map for it is based on a hyper-chaotic system.
Then, pixel-level permutation and bit-level permutation are employed
to strengthen security of the cryptosystem. We carry out many
experiments, including histogram analysis, key sensitivity analysis,
key space analysis, correlation analysis and differential analysis to
show that the proposed algorithm is secure and reliable for image
encryption.
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