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Cluster Synchronization on Multiple Nonlinearly
Coupled Dynamical Subnetworks of Complex

Networks With Nonidentical Nodes
Lili Zhou, Chunhua Wang, Sichun Du, and Ling Zhou

Abstract— In this paper, cluster synchronization on multiple
nonlinearly coupled dynamical subnetworks of complex networks
with nonidentical nodes and stochastic perturbations is studied.
Based on the general leader–follower’s model, an improved
network structure model that consists of multiple pairs of match-
ing subnetworks, each of which includes a leaders’ subnetwork
and a followers’ subnetwork, is proposed. Moreover, the dynami-
cal behaviors of the nodes belonging to the same pair of matching
subnetworks are identical, while the ones belonging to different
pairs of unmatched subnetworks are nonidentical. In this new
setting, the aim is to design some suitable adaptive pinning
controllers on the chosen nodes of each followers’ subnetwork,
such that the nodes in each subnetwork can be exponentially
synchronized onto their reference state. Then, some cluster syn-
chronization criteria for multiple nonlinearly coupled dynamical
subnetworks of complex networks are established, and a pinning
control scheme that the nodes with very large or low degrees are
good candidates for applying pinning controllers is presented.
Suitable adaptive update laws are used to deal with the unknown
feedback gains between the pinned nodes and their leaders.
Finally, several numerical simulations are given to demonstrate
the effectiveness and applicability of the proposed approach.

Index Terms— Exponential convergence, hybrid control,
multiple dynamical subnetworks of complex networks, noniden-
tical nodes, nonlinear coupling.

I. INTRODUCTION

S INCE the small-world and scale-free network models
were constructively proposed in 1998 and 1999, respec-

tively, the study of complex dynamical networks has gained
increasing attention. The main reason is that many real sys-
tems can be described by complex dynamical networks, such
as Internet networks [1], biological networks [2], epidemic
spreading networks [3], collaborative networks [4], and social
networks [5], to name just a few. Synchronization, as one of
an important and interesting collective behavior of complex
dynamical networks, has been widely studied in many research
and application fields, such as secure communication and
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information processing. As a result, many different kinds
of synchronization patterns have been introduced [6]–[11].
Cluster synchronization means that the complex networks can
be split into many clusters, such that the nodes belonging to
the same cluster can achieve synchronization individually, but
the synchronous states of these clusters are mutually different.
In view of its importance in biological science [12], [13] and
communication engineering [14], [15], the cluster synchro-
nization of complex networks has been extensively studied.

In the case where the whole network cannot synchronize by
its intrinsic structure, some control schemes may be designed
to drive the network to synchronization. However, the complex
networks usually consist of large numbers of nodes and links,
and thus, it is very difficult and unrealistic to control these
complex networks by adding the controllers to all nodes.
To save control cost, we can divide the larger-scale complex
networks into multiple subnetworks, then apply control actions
to just a small fraction of network nodes in each subnetwork
so as to force the whole network to synchronize. This is
what is known as cluster synchronization on multiple subnet-
works via pinning control. Nowadays, cluster synchronization
of complex networks with pinning control has been widely
studied. In [16], the problem of driving a general network
to a selected cluster synchronization pattern by means of
a pinning control strategy was proposed, and some detailed
steps on how to construct the coupling matrix and modify
the control strengths were given. The cluster synchronization
problem for linearly coupled networks with intermittent pin-
ning controls was investigated in [17]. In [18], the issue of
mean square cluster synchronization in directed networks con-
sisting of nonidentical nodes with communication noises was
investigated.

However, the pinning schemes proposed in the above
literature are all based on the general single-leader–multiple-
follower model, in which the leader plays the role of a
command generator providing a reference state and it has
to be approached by all the followers. Only a fraction of
nodes in need of applying controllers in each followers’
subnetwork can receive the same information from the sole
leader, which restricts the actual application of these pinning
schemes to some extent. In addition, it is known to all
that the single-leader–multiple-follower network model is very
fragile to the deliberate attacks; if the sole leader is attacked,
the whole network can be in a mess and all of the nodes cannot
reach synchronization anymore. Therefore, a natural question
may arise: can we introduce a leaders’ network consisting
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of many leaders, such that the followers have much more
opportunities to receive information from their leaders, so as
to improve the robustness of the complex networks against
the deliberate attacks? Recently, a very few works have been
devoted to this study. He et al. [19] have investigated the
finite-time pinning control of second-order multiagent systems
with multiple leaders and followers under a fixed directed
communication topology, and a new continuous nonlinear pin-
ning control algorithm has been proposed to achieve pinning
tracking of the second-order multiagent systems. In [20], the
pinning synchronization on complex networks of networks
has been investigated. Based on the multiple-leader–multiple-
follower model, some synchronization criteria and a suitable
pinning scheme have been presented. However, in these
two papers, there are still several problems that have not been
well resolved, which can be listed as follows.

1) The nodes are all assumed to be identical. In fact,
it is not always practical to assume that all network
nodes are identical, since some real-world complex
networks may consist of different types of nodes [6], [8],
[11], [21]–[24].

2) The authors do not consider the influence of stochastic
disturbances and time-varying delays. Due to the wide-
spread of the random uncertainties and the finite speeds
of transmission, signals traveling through a network are
often associated with time-varying delays. In order to
make the network model a more realistic representation
of real networks, it is very important and necessary to
take the influence of these stochastic uncertainties and
time-varying delays into account [7]–[9], [24]–[29].

3) Only the nodes belonging to the same subnetwork can
connect with each other, while the nodes belonging to
different ones cannot connect with the others at all,
which does not accord with the real world. As in many
practical systems, the nodes belonging to the same or
different subnetworks may all need to communicate with
each other in a cooperative or even competitive way [17].

4) The proposed pinning schemes are all based on the
linearly coupled complex networks, while in many prac-
tical cases, it often happens that the coupling scheme is
nonlinear [21], [22].

5) The feedback gains of the controllers presented in [20]
are much larger than the required values, and this is
unrealistic. While the adaptive control approach, known
for its main advantage that the control parameters can
adjust themselves according to some suitable update
laws [30], [31], can deal with this problem very well.

Based on the above consideration, in this paper, we propose
an improved multiple-leader–multiple-follower network model
to realize the cluster synchronization on multiple nonlinearly
coupled dynamical subnetworks of complex networks with sto-
chastic disturbances and time-varying delays. In this improved
network model, the complex networks consist of multiple
pairs of matching subnetworks, each of which includes a
leaders’ subnetwork and a followers’ subnetwork. The dynam-
ical behaviors of the nodes belonging to the same pair of
matching subnetworks are identical, while the ones belonging
to different pairs of unmatched subnetworks are nonidentical.

Moreover, both the cooperation and competition are all con-
sidered simultaneously. The nodes belonging to the same
subnetwork can communicate with each other in a cooperative
way, while the ones belonging to different subnetworks can
communicate with each other in a cooperative or even com-
petitive way. In addition, suitable adaptive control technique
is applied to deal with the unknown feedback gains between
the pinned nodes and their leaders.

The remainder of this paper is organized as follows.
In Section II, an improved network structure model for
multiple nonlinearly coupled dynamical subnetworks of com-
plex networks with the consideration of both stochastic dis-
turbances and time-varying delays is presented, and some
necessary assumptions, definitions, and lemmas are given.
In Section III, some cluster synchronization criteria and a
pinning control scheme on multiple nonlinearly coupled
dynamical subnetworks of complex networks are proposed.
Some numerical simulation examples are provided to validate
all of the theoretical results in Section IV. Finally, the conclu-
sion is drawn in Section V.

Notation: In this paper, ⊗ represents the Kronecker product.
IN denotes an N-dimensional identity matrix. 1M and 0M

represent the M-dimensional column vectors with all the
elements being 1 or 0, respectively. 0 represents a zero
matrix. λmax(·) and λmin(·) represent the maximum and min-
imum eigenvalues of the corresponding matrix, respectively.
‖·‖ stands for the Euclidean vector norm. diag{· · · } represents
a diagonal matrix. E{·} denotes the mathematical expectation.
The superscript T is the transpose. If there are no special
instructions, all of the variables are the functions on t . For
convenience, the nonlinear function f (x(t)) is equal to f (x),
time-varying delay τ (t) is equal to τt , and error vector e(t−τt )
is equal to eτt .

II. DESCRIPTION OF THE NETWORK MODEL

AND SOME PRELIMINARIES

In this literature, cluster synchronization on multiple
nonlinearly coupled dynamical subnetworks of complex net-
works with nonidentical nodes and stochastic disturbances will
be studied. In our network model, the large-scale complex
networks can be divided into two types of networks: a global
leaders’ network consisting of many leaders and a global
followers’ network consisting of a host of followers. These
leaders and followers, assigned to different pairs of match-
ing subnetworks according to their function of orientation,
constitute multiple leaders’ subnetworks and follower’ sub-
networks, respectively. The nodes in each pair of matching
subnetworks have identical node dynamics, while the nodes
belonging to different pairs of unmatched subnetworks have
nonidentical ones. Furthermore, a leader, which represents
one side having a priori knowledge or the professional skill,
or a follower, has to cooperate with the others belonging to
the same subnetwork to complete a certain task; while in
different subnetworks, it may play the role of a competitor or
a partner in completing different tasks. The leaders belonging
to the same or different subnetworks can communicate with
each other directly, which is the same as the pinned nodes in
the global followers’ network; but as for the unpinned nodes,
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Fig. 1. Network structure diagram constructed by m leaders’ subnetworks
and m matching followers’ subnetworks.

they can only communicate with each other within the same
subnetwork. In addition, the leaders are only responsible for
providing the related information, such as the necessary priori
knowledge or professional skills, to their matching followers;
while the responsibilities of the pinned followers are to not
only receive information from their leaders but also organize
other followers belonging to the same or different subnetworks
to complete a certain task in a mutually cooperative way. The
corresponding network structure diagram is shown in Fig. 1.
Assume that the complex networks are composed of a global
followers’ network and a global leaders’ network, where the
global followers’ network contains m followers’ subnetworks
C1, C2, . . . , Cm and the global leaders’ network contains
m matching leaders’ subnetworks D1, D2, . . . , Dm . As shown
in Fig. 1, the nodes in the kth followers’ subnetwork Ck can
be represented as rk−1 + 1, rk−1 + 2, . . . , rk and the ones in
the kth matching leaders’ subnetwork Dk can be represented
as wk−1 + 1, wk−1 + 2, . . . , wk , where k = 1, 2, . . . , m. The
kth followers’ subnetwork has Nk = rk − rk−1 nodes and
the kth matching leaders’ subnetwork has Mk = wk − wk−1
nodes, where r0 = 0, rm = N, w0 = 0, and wm = M; thus,
we have

∑m
k=1 Nk = N and

∑m
k=1 Mk = M . That is to say,

N represents the total number of nodes in the global followers’
network and M represents the total number of nodes in the
global leaders’ network. In order to assign these N followers
and M leaders to m followers’ subnetworks and m matching
leaders’ subnetworks, respectively, we can introduce a map-
ping function, namely, μ : {1, 2, . . . , N} or {1, 2, . . . , M} →
{1, 2, . . . , m} to deal with it. If node i belongs to the
j th subnetwork, then we have μ(i) = μi = j . Consider
the global followers’ network consisting of N nonidentical
nodes with stochastic disturbances. The dynamic behavior of
the i th node can be described by the following stochastic delay
differential equation:

dxi (t) =
⎡

⎣Aμi xi (t) + fμi (t, xi (t), xi (t − τt ))

+ c
N∑

j=1

b(μi )
i j �g(x j (t))

⎤

⎦ dt

+ δ(t, xi (t), xi (t − τt ))dω, i = 1, 2, . . . , N (1)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn represents
the state vector of node i , Aμi denotes a negative definite
matrix, fμi (t, xi (t), xi (t − τt )) : [0,+∞] × Rn × Rn → Rn

is a continuously differentiable vector function that describes
the local dynamics of the nodes in the μi th followers’ subnet-
work, τt is a continuously differentiable time-varying delay,
c is a coupling strength, � = diag{γ1, γ2, . . . , γn} is an
inner coupling matrix that satisfies the condition � ≥ In .
B(μi ) = (b(μi )

i j ) ∈ RNμi ×N is the coupling configuration matrix
representing the topological structure of the μi th followers’
subnetwork, which can be stated as follows: 1) when μ j = μi

and j = i , then b(μi )
i j = b(μi )

ii = −∑rμi
k=rμi −1+1,k �=i b(μi )

ik < 0;
2) when μ j = μi and j �= i , and if the node i receives the
information from the node j directly, then b(μi )

i j = b(μi )
j i > 0;

otherwise, b(μi )
i j = b(μi )

j i = 0; and 3) when μ j �= μi ,

and if the node i receives the information from the node j
directly, then b(μi )

i j �= 0 (b(μi )
i j > 0 or b(μi )

i j < 0); otherwise,

b(μi )
i j = 0, and it satisfies the condition

∑rμ j
k=rμ j −1+1 b(μi )

ik = 0.

B = [B(1)T B(2)T . . . B(m)T ]T ∈ RN×N is the coupling
configuration representing the topological structure of the
global followers’ network, as the global followers’ network is
undirected, and thus, the matrix B is symmetric. g(x j (t)) :
Rn → Rn is a nonlinear coupling function. ω(t) =
(ω1(t), ω2(t), . . . , ωn(t))T is an n-dimensional wiener process
defined on a complete probability space (�, F, P), where
� is the sample space, F is the σ -algebra of subsets of the
sample space, and P is the probability measure on F , and
it satisfies the conditions E{dω} = 0 and E{(dω)2} = dt .
δ : [0,+∞]× Rn × Rn → Rn×n is the noise intensity function
matrix. This type of stochastic perturbation can be regarded
as a result from the occurrence of random uncertainties that
affect the dynamic behaviors of the complex networks.

As we know, sometimes network (1) may not reach syn-
chronization by its own, and with the increase of network size,
it is not realistic to add controllers to all nodes for realizing the
cluster synchronization of network (1). To save control cost,
we can apply some control actions to just a small fraction of
nodes, which is known as pinning control. Without loss of
generality, we can rearrange the order of the nodes in the
μi th followers’ subnetwork, and let the first lμi nodes be
controlled. Therefore, the pinning-controlled μi th followers’
subnetwork with the influence of stochastic factors can be
written as

dx (μi )
i (t) =

⎡

⎣Aμi x
(μi )
i (t) + fμi

(
t, x (μi )

i (t), x (μi )
i (t − τt )

)

+ c
N∑

j=1

b(μi )
i j �g(x j (t)) + u(μi )

i (t)

⎤

⎦ dt

+ δ
(
t, x (μi )

i (t), x (μi )
i (t − τt )

)
dω

i = rμi −1 + 1, . . . , lμi

dx (μi )
i (t) =

⎡

⎣Aμi x
(μi )
i (t) + fμi

(
t, x (μi )

i (t), x (μi )
i (t − τt )

)

+ c
N∑

j=1

b(μi )
i j �g(x j (t))

⎤

⎦ dt

+ δ
(
t, x (μi )

i (t), x (μi )
i (t − τt )

)
dω

i = lμi + 1, . . . , rμi (2)
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where u(μi )
i (t) is a designed controller for the pinned nodes

in the μi th followers’ subnetwork.
Consider the global leaders’ network consisting of

M leaders, where the dynamics of the leaders are identical if
they belong to the same leaders’ subnetwork and nonidentical
if they belong to different leaders’ subnetworks. Each local
leaders’ subnetwork has Mk(k = 1, 2, . . . , m) leaders, and
then, the dynamics of the leaders can be described as

ds(k)
i (t) =

⎡

⎣Aks(k)
i (t) + fk

(
t, s(k)

i (t), s(k)
i (t − τt )

)

+ c
M∑

j=1

h(k)
i j �g(s j (t))

⎤

⎦ dt

+ δ
(
t, s(k)

i (t), s(k)
i (t − τt )

)
dω

i = wk−1 + 1, . . . , wk (3)

where s(k)
i (t) = (s(k)

i1 (t), s(k)
i2 (t), . . . , s(k)

in (t))T ∈ Rn is the

state vector of the i th leader. H (k) = (h(k)
i j ) ∈ RMk×M is

the coupling configuration matrix representing the topological
structure of the kth leaders’ subnetwork, and the definitions
of the matrices H (k) and H are the same as that of the
matrices B(k) and B . The same intensity function δ(·, ·, ·)
means that all nodes considered are in the same environment.

In order to realize the cluster synchronization of complex
networks (2) and (3), some assumptions must be noted as
follows.

Assumption A1: There exist a constant matrix K and
a positive-definite matrix � = diag{γ1, γ2, . . . , γn}, such
that f satisfies the following inequality:
(x − y)T ( f (x) − f (y)) ≤ (x − y)T K�(x − y) ∀x, y ∈ Rn .

Assumption A2: For the vector-valued function f (x, x̄),
there exist two positive constants α1 and β1, such that

(x1 − y1)
T [ f (x1, x̄1) − f (y1, ȳ1)]

≤ α1(x1 − y1)
T (x1 − y1)

+β1(x̄1 − ȳ1)
T (x̄1 − ȳ1) ∀x1, y1, x̄1, ȳ1 ∈ Rn .

Assumption A3: There exist two nonnegative constants
p1 and q1, and δ is locally Lipschitz continuous, such that

trace{[δ(t, x1, y1) − δ(t, x2, y2)]T [δ(t, x1, y1) − δ(t, x2, y2)]}
≤ p1(x1 − x2)

T (x1 − x2) + q1(y1 − y2)
T (y1 − y2)

∀x1, x2, y1, y2 ∈ Rn, t ∈ [0,+∞].
Assumption A4 [32]: A nonlinear function g(·) : R → R is

said to belong to the acceptable nonlinear coupling function
class, denoted by g(·) ∈ NCF(ϑ, ε), if there exist two nonneg-
ative scalars ϑ and ε, such that g(x)−ϑx satisfies the Lipschitz
condition |g(x1) − g(x2) − ϑ(x1 − x2)| ≤ ε|x1 − x2|
for all x1, x2 ∈ R.

Remark 1: Since the function g(·) ∈ NCF(ϑ, ε) is the
restriction of the oscillatory amplitude of g(x) around the
linear function ϑx , a nonlinear function can be made to
approach a linear function by taking a large ϑ and small ε. The
nonlinear function g(x) can, therefore, be decomposed into

the linear part ϑx and the oscillatory part r(x) = g(x) − ϑx .
Obviously, g(x) satisfies ϑ −ε ≤ (g(x1)− g(x2))/(x1 − x2) ≤
ϑ + ε for all x1, x2 ∈ R.

Assumption A5: τ (t) is a bounded and continuously differ-
entiable function, satisfying 0 < τ(t) < τ0 and 0 ≤ τ̇ (t) ≤
ε < 1. Clearly, this assumption is justified when τ (t) is a
constant.

Remark 2: The constraint for the function f in
Assumption A1 or A2 is very gentle and it is much
weaker than the Lipschitz condition.

In order to derive our main results, the following basic
definition and some useful lemmas are needed.

Definition 1: A complex network with N nodes is said
to realize cluster synchronization with the exponential rate
of convergence, if the node-set {1, 2, . . . , N} is split into
m nonempty subsets C1, C2, . . . , Cm , and then for arbitrary
nodes i and j , if and only if there are some constants Mk > 0
and μ > 0, such that for any initial conditions, inequalities
E{‖x (k)

i (t) − x (k)
j (t)‖2} ≤ Mkexp(−μt) hold for t ≥ 0,

where i, j ∈ {1, 2, . . . , N} and i �= j, k ∈ {1, 2, . . . , m},
and then, we say that these error states converge to 0 at an
exponential rate.

Remark 3: The general complete synchronization is having
all the nodes synchronized to an isolated node in the complex
networks, while the cluster synchronization, as a special form
of the complete synchronization, means that the nodes can
synchronize to an isolated node in each subnetwork, but there
is no synchronization among the nodes belonging to different
subnetworks.

Lemma 1 (Schur Complement [33]): The following linear
matrix inequality:

(
s11 s12

sT
12 s22

)

< 0

where s11 = sT
11 and s22 = sT

22 are equivalent to one of the
following conditions.

1) s11 < 0, s22 − sT
12s−1

11 s12 < 0.

2) s22 < 0, s11 − s12s−1
22 sT

12 < 0.
Lemma 2: Let 1n = (1, 1, . . . , 1)T , In = diag

{1, 1, . . . , 1} ∈ Rn , and Q = (qi j ) = In − (1/N)1n · 1T
n . For

all zero-row-sum matrices M ∈ Rm×n and θ > 0, we have

xT My = xT M Qy ≤ 1

2

(
1

θ
x T M MT x + θ yT Qy

)

.

Lemma 3 [34]: If Q ∈ Rn×n is a symmetric matrix
and satisfies the condition qii = −∑n

j=1, j �=i qi j , i, j =
1, 2, . . . , n, then uT Qv = ∑n

i=1
∑n

j=1 ui qi j v j = −∑
j>i qi j

(ui − u j )(vi − v j ), for all vectors u = (u1, u2, . . . , un)
T and

v = (v1, v2, . . . , vn)T .

III. MAIN RESULTS FOR CLUSTER SYNCHRONIZATION ON

MULTIPLE NONLINEARLY COUPLED DYNAMICAL

SUBNETWORKS OF COMPLEX NETWORKS

In this section, we will establish some cluster synchroniza-
tion criteria and propose a pinning control scheme on how
to select pinned nodes with lower cost to reach the cluster
synchronization on multiple nonlinearly coupled dynamical
subnetworks of complex networks.
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A. Cluster Synchronization Criteria on Multiple Nonlinearly
Coupled Dynamical Subnetworks of Complex Networks
With Nonidentical Nodes

In this improved multiple-leader–multiple-follower network
model, there are many leaders in each leaders’ subnetwork,
from which the pinned nodes in the matching followers’
subnetwork can receive the information, and the average state
of these leaders is regarded as the reference state. In
this paper, we aim to analytically prove that all the
nodes in each pair of matching subnetworks can be syn-
chronized to their reference state. Let s̄k(t) = (1/Mk)∑wk

j=wk−1+1 s(k)
j (t) be the average state of all the leaders

in the kth leaders’ subnetwork. As the fact that H (k) =
(h(k)

i j ) ∈ RMk×M is a zero-row-sum and zero-column-

sum matrix, then we have
∑wk

j=wk−1+1

∑M
i=1 h(k)

j i �g(si (t)) =
∑M

i=1
∑wk

j=wk−1+1 h(k)
j i �g(si (t)) = 0. Therefore, the dynamics

of s̄k(t) can be described by

ds̄k(t) = Aks̄k(t)dt + 1

Mk

wk∑

j=wk−1+1

fk
(
t, s(k)

j (t), s(k)
jτt

)
dt

+ 1

Mk

wk∑

j=wk−1+1

δ
(
t, s(k)

j (t), s(k)
jτt

)
dω

k = 1, 2, . . . , m. (4)

Let e(sk)
i (t) = s(k)

i (t) − s̄k(t) be the error state between the
i th leader and the average state of the leaders in the
kth leaders’ subnetwork, where i = wk−1 + 1, . . . , wk ;
k = 1, 2, . . . , m. Subtracting (3) from (4) yields the following
error dynamical network:
de(sk)

i (t)

=
⎡

⎣Ake(sk)
i (t) + fk

(
t, s(k)

i (t), s(k)
iτt

) + c
M∑

j=1

h(k)
i j �g(s j (t))

− 1

Mk

wk∑

j=wk−1+1

fk
(
t, s(k)

j (t), s(k)
jτt

)
⎤

⎦ dt

+
⎡

⎣δ
(
t, s(k)

i (t), s(k)
iτt

) − 1

Mk

wk∑

j=wk−1+1

δ
(
t, s(k)

j (t), s(k)
jτt

)
⎤

⎦ dω

i = wk−1 + 1, wk−1 + 2, . . . , wk . (5)

Next, two theorems are established to derive the cluster
synchronization criteria for the nonlinearly coupled leaders’
subnetwork (3) and followers’ subnetwork (2), respectively.

Theorem 1: Assume that Assumptions A1–A5 hold, for
given scalars μ, θ, ς, and k1, the leaders in the global leaders’
network are all exponentially synchronized to their corre-
sponding reference states if there exists a positive-definite
and symmetric matrix R1 ∈ Rn×n , such that the following
conditions hold:

�1 = c

[

ϑλ2(H ) + 1

2θ
λmax(H H T ) + ε2θ

(

1 − 1

M

)]

In

+
(
α + 2 p + μ

2

)
In + k1exp(μτ0)R1 < 0

�3 = (β + 2q)In − k1(1 − ς)R1 < 0 (6)

where {α, β} = max{αi , βi |i = 1, 2, . . . , M}, {p, q} =
max{pi , qi |i = 1, 2, . . . , M}, and λ2(H ) represents the

second largest eigenvalue of the matrix H and satisfies the
condition that λ2(H ) = maxxT 1M =0,x �=0M

x T H x/x T x [35].
Proof: Consider the Lyapunov functional candidate for

the error system (5)

V1(t, e(s)(t)) = 1

2

m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)e(sk)

i (t)exp(μt)

+ k1

m∑

k=1

wk∑

i=wk−1+1

∫ t

t−τt

e(sk)T
i (v)R1e(sk)

i (v)

×exp(μ(v + τt ))dv (7)

where k1 > 0. Taking the stochastic differential dV1(t, e(s)(t))
along the trajectories of (5), which can be given as

dV1(t, e(s)(t)) = LV1(t, e(s)(t))dt

+
m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)X (k)

i exp(μt)dω

(8)

where X (k)
i = δ(t, s(k)

i , s(k)
iτt

) − (1/Mk)
∑wk

j=wk−1+1

δ(t, s(k)
j , s(k)

jτt
). For convenience, let LV1(t, e(s)(t)) =

LV ′
1(t, e(s)(t))exp(μt), and the weak infinitesimal operator

L [36] is given by

LV ′
1(t, e(s)(t))

=
m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)Ake(sk)

i (t)

+
m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)

[
fk
(
t, s(k)

i , s(k)
iτt

) − fk(t, s̄k, s̄kτt )
]

+
m∑

k=1

wk∑

i=wk−1+1

ce(sk)T
i (t)

M∑

j=1

h(k)
i j �g(s j )

−
m∑

k=1

1

Mk

wk∑

i, j=wk−1+1

e(sk)T
i (t)

×[
fk
(
t, s(k)

j , s(k)
jτt

) − fk(t, s̄k , s̄kτt )
]

+1

2

m∑

k=1

wk∑

i=wk−1+1

trace
(
X (k)T

i X (k)
i

)

+μ

2

m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)e(sk)

i (t)

+k1

m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)R1e(sk)

i (t)exp(μτt )

−k1

m∑

k=1

wk∑

i=wk−1+1

(1 − τ̇t )e
(sk)T
iτt

R1e(sk)
iτt

≤
m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)Ake(sk)

i (t) + V2 + V3 + V4

+μ

2

m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)e(sk)

i (t)

+ k1

M∑

i=1

[
e(s)T

i (t)R1e(s)
i (t)exp(μτt ) − (1−τ̇t)e

(s)T
iτt

R1e(s)
iτt

]
.

(9)
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According to Assumption A2, we can obtain

V2 =
m∑

k=1

wk∑

i=wk−1+1

e(sk)T
i (t)

[
fk
(
t, s(k)

i , s(k)
iτt

) − fk
(
t, s̄k, s̄kτt

)]

≤
M∑

i=1

αi e
(s)T
i (t)e(s)

i (t) +
M∑

i=1

βi e
(s)T
iτt

e(s)
iτt

. (10)

Let

e(s)k(t) =

⎛

⎜
⎜
⎜
⎜
⎝

e(s)
1k (t)

e(s)
2k (t)

...

e(s)
Mk(t)

⎞

⎟
⎟
⎟
⎟
⎠

, x̄ k(t) =

⎛

⎜
⎜
⎜
⎝

xμ1k(t)
xμ2k(t)

...
xμM k(t)

⎞

⎟
⎟
⎟
⎠

g̃(xk(t)) =

⎛

⎜
⎜
⎜
⎝

g(x1k(t))
g(x2k(t))

...
g(xMk(t))

⎞

⎟
⎟
⎟
⎠

, g̃(x̄ k(t)) =

⎛

⎜
⎜
⎜
⎝

g(xμ1k(t))
g(xμ2k(t))

...
g(xμM k(t))

⎞

⎟
⎟
⎟
⎠

r̃(xk(t)) =

⎛

⎜
⎜
⎜
⎝

r(x1k(t))
r(x2k(t))

...
r(xMk(t))

⎞

⎟
⎟
⎟
⎠

, r̃(s̄k(t)) =

⎛

⎜
⎜
⎜
⎝

r(sμ1k(t))
r(sμ2k(t))

...
r(sμM k(t))

⎞

⎟
⎟
⎟
⎠

.

Note that g(·) ∈ NCF(ϑ, ε), we have

V3 =
m∑

k=1

wk∑

i=wk−1+1

ce(sk)T
i (t)

M∑

j=1

h(k)
i j �g(s j )

= c
M∑

k=1

e(s)T
k (t)

M∑

j=1

h(μk)
kj �[g(s j ) − g(s̄μ j )]

= c
n∑

k=1

γke(s)kT (t)H [g̃(sk) − g̃(s̄k)]

= cϑ
n∑

k=1

γke(s)kT (t)H e(s)k(t)

+ c
n∑

k=1

γke(s)kT (t)H [r̃(sk) − r̃(s̄k)]. (11)

By using Lemmas 2 and 3, one can obtain

c
n∑

k=1

γke(s)kT (t)H [r̃(sk) − r̃(s̄k)]

≤ c

2

n∑

k=1

γk

θ
e(s)kT (t)H H T e(s)k(t)

+ c

2

n∑

k=1

γkθ [r̃(sk) − r̃(s̄k)]T
Q[r̃(sk) − r̃(s̄k)]

≤ c

2

n∑

k=1

γk

θ
e(s)kT (t)H H T e(s)k(t)

− c
n∑

k=1

γkθ
∑

j>i

qi j {[r̃(sik)−r̃(s̄μi k)]2+ [r̃(s jk)−r̃(s̄μ j k)]2}

≤ c

2

n∑

k=1

γk

θ
e(s)kT (t)H H T e(s)k(t)

− cε2
n∑

k=1

γkθ
∑

j>i

qi j
[
e(s)

ik (t)2 + e(s)
j k (t)2]

= c

2

n∑

k=1

γk

θ
e(s)kT (t)H H T e(s)k(t)

+ cε2
n∑

k=1

γkθ

(

1 − 1

M

)

e(s)kT (t)e(s)k(t)

= c
n∑

k=1

γke(s)kT (t)

[
1

2θ
H H T + ε2θ

(

1 − 1

M

)

IM

]

e(s)k(t).

(12)

Therefore, (11) can be written as

V3 ≤ c
n∑

k=1

γke(s)kT (t)

[

ϑ H + 1

2θ
H H T

+ ε2θ

(

1 − 1

M

)

IM

]

e(s)k(t). (13)

In view of Assumption A3, we can easily get

V4 = 1

2

m∑

k=1

wk∑

i=wk−1+1

trace
(
X (k)T

i X (k)
i

)

≤
m∑

k=1

1

2Mk

wk∑

i, j=wk−1+1

pi
(
s(k)

i − s(k)
j

)T (
s(k)

i − s(k)
j

)

+
m∑

k=1

1

2Mk

wk∑

i, j=wk−1+1

qi
(
s(k)

iτt
− s(k)

jτt

)T (
s(k)

iτt
− s(k)

jτt

)

≤
m∑

k=1

1

Mk

wk∑

i, j=wk−1+1

p
[
e(sk)T

i (t)e(sk)
i (t) + e(sk)T

j (t)e(sk)
j (t)

]

+
m∑

k=1

1

Mk

wk∑

i, j=wk−1+1

q
(
e(sk)T

iτt
e(sk)

iτt
+ e(sk)T

jτt
e(sk)

jτt

)

=
M∑

i=1

[
2 pe(s)T

i (t)e(s)
i (t) + 2qe(s)T

iτt
e(s)

iτt

]
(14)

where {p, q} = max{pi , qi |i = 1, 2, . . . , M}.
Substituting inequalities (10), (13), and (14) into (9), and

considering Assumption A5, one can easily obtain that

LV ′
1(t, e(s)(t))

≤
M∑

i=1

e(s)T
i (t)Aμi e

(s)
i (t) +

M∑

i=1

βi e
(s)T
iτt

e(s)
iτt

+
M∑

i=1

αi e
(s)T
i (t)e(s)

i (t) + μ

2

n∑

k=1

e(s)kT (t)e(s)k(t)

+ c
n∑

k=1

γke(s)kT (t)

[

ϑ H + 1

2θ
H H T + ε2θ

(

1 − 1

M

)

IM

]

×e(s)k(t)

+
n∑

k=1

[
2 pe(s)kT (t)e(s)k(t) + 2qe(s)kT

τt
e(s)k
τt

]

+ k1

M∑

i=1

[
e(s)T

i (t)R1e(s)
i (t)exp(μτ0) − (1 − ς)e(s)T

iτt
R1e(s)

iτt

]
.

(15)
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For convenience, we may as well let e(s)(t) = (e(s)1T (t)
e(s)2T (t) . . . e(s)nT (t))T , then inequality (15) can be given as

LV ′
1(t, e(s)(t))

≤
M∑

i=1

e(s)T
i (t)Aμi e

(s)
i (t) +

n∑

k=1

βe(s)kT
τt

e(s)k
τt

+
n∑

k=1

αe(s)kT (t)e(s)k(t) +
(

2 p + μ

2

)
e(s)T (t)e(s)(t)

+ e(s)T (t)

{

c� ⊗
[

ϑ H + 1

2θ
H H T + ε2θ

(

1 − 1

M

)

IM

]}

×e(s)(t) + 2qe(s)T
τt

e(s)
τt

+ e(s)T (t)

×[k1exp(μτ0)R1⊗ IM ]e(s)(t)− e(s)T
τt

[k1(1−ς)R1⊗ IM ]e(s)
τt

≤ e(s)T (t)

{

c� ⊗
[

ϑ H + 1

2θ
H H T + ε2θ

(

1 − 1

M

)

IM

]

+
(
α + 2 p + μ

2

)
In ⊗ IM

+k1exp(μτ0)R1 ⊗ IM

}

e(s)(t)

+ e(s)T
τt

{(β + 2q)In ⊗ IM − k1(1 − ς)R1 ⊗ IM }e(s)
τt

≤ e(s)T (t)

{

c

[

ϑλ2(H ) + 1

2θ
λmax(H H T ) + ε2θ

(

1 − 1

M

)]

In

+
(
α+2 p + μ

2

)
In + k1exp(μτ0)R1

}

⊗ IM e(s)(t)

+ e(s)T
τt

{(β + 2q)In − k1(1 − ς)R1} ⊗ IM e(s)
τt

(16)

where Aμi < 0, and {α, β} = max{αi , βi |i = 1, 2, . . . , M}.
Let ξ(t) = (e(s)T (t) e(s)T

τt )T and

� =
(

�1 �2

�T
2 �3

)

(17)

where �1 = {c[ϑλ2(H ) + (1/2θ)λmax(H H T ) + ε2θ
(1 − (1/M))]In + (α + 2 p + (μ/2))In + k1exp(μτ0)R1} ⊗
IM < 0, �3 = {(β + 2q)In − k1(1 − ς)R1} ⊗ IM < 0, and
�2 = �T

2 = 0. According to the Lyapunov stability theory,
it is easy to get that the error system (5) is asymptotically
stable.

Taking the mathematical expectation on both sides of (8)
and considering (16), we have

d E{V1(t, e(s)(t))}
dt

≤ E{ξT (t)�ξ(t)}exp(μt). (18)

Note from (17) that � < 0, one can further deduce that

d E{V1(t, e(s)(t))}
dt

≤ −λmin(−�)E
{∥
∥e(s)(t)

∥
∥2}exp(μt).

(19)

It follows from (18) that E{V1(t, e(s)(t))} ≤ E{V1(0, e(s)
0 )}

(t ≥ 0), which implies:
E{‖e(s)(t)‖2} ≤ 2E{V1(t, e(s)(t))}exp(−μt)

≤ 2E
{
V1(0, e(s)

0 )
}
exp(−μt). (20)

Obviously, it can be found a positive scalar M0, such that

2V1(0, e(s)
0 ) ≤ M0. That is to say, we have E{‖e(s)(t)‖2} ≤

M0exp(−μt). Thus, the leaders in the global leaders’ network
are all synchronized to their corresponding reference states

with the exponential rate of convergence, and this completes
the proof.

Through Theorem 1, it is easy to observe that e(sk)
i (t)

exponentially approach to zero, and thus, the dynamics
of the reference states (4) can be equal to the following
form:

ds̄k(t) = [Aks̄k(t) + fk(t, s̄k(t), s̄k(t − τt ))]dt
+ δ(t, s̄k(t), s̄k(t − τt ))dω + O(exp(−μt))dt

k = 1, . . . , m (21)

where O(exp(−μt)) is a high-order infinitesimal of the term

exp(−μt). Let e(k)
i (t) = x (k)

i (t)− s̄k(t) be the error states from
the nodes in the kth followers’ subnetwork to the average state
of their leaders, where i = rk−1 + 1, . . . , rk; k = 1, 2, . . . , m.
Subtracting (2) from (21), one can get the following error
dynamical system between the nodes in the kth followers’
subnetwork and their reference state:

de(k)
i (t) = {

Ake(k)
i (t) + fk

(
t, x (k)

i , x (k)
iτt

) − fk
(
t, s̄k , s̄kτt

)

+ c
N∑

j=1

b(k)
i j �[g(x j (t)) − g(s̄k(t))]

+ u(k)
i (t) + O(exp(−μt))

}
dt

+{
δ
(
t, x (k)

i , x (k)
iτt

) − δ
(
t, s̄k, s̄kτt

)}
dω

i = rk−1 + 1, . . . , lk

de(k)
i (t) = {

Ake(k)
i (t) + fk

(
t, x (k)

i , x (k)
iτt

) − fk(t, s̄k, s̄kτt )

+ c
N∑

j=1

b(k)
i j �[g(x j (t)) − g(s̄k(t))]

+ O(exp(−μt))
}
dt

+{
δ
(
t, x (k)

i , x (k)
iτt

) − δ(t, s̄k, s̄kτt )
}
dω

i = lk + 1, . . . , rk . (22)

Theorem 2: Let Assumptions A1–A5 hold, the adaptive
pinning controller u(k)

i (t) and the corresponding adaptive
update law of feedback gains are given by

u(k)
i (t) = −c

wk∑

j=wk−1+1

d(k)
i j (t)�

[
g(x (k)

i (t)) − g(s j (t))
]

ḋ(k)
i j (t) = c(ϑ − ε)ki j

(
x (k)

i − s j
)T

�
(
x (k)

i − s j
)
exp(μt)

i = rk−1 + 1, . . . , lk ; j = wk−1 + 1, . . . , wk (23)

where k = 1, 2, . . . , m. Then, the nodes in the controlled
network (2) are exponentially synchronized to their corre-
sponding reference state if there exist a positive-definite matrix
R2 ∈ Rn×n and a diagonal matrix X̄ ∈ RN×N , such that the
following conditions hold:

Z1 = c

[

ϑ B + 1

2θ
B BT

]

+
[

cε2θ

(

1 − 1

N

)

+ α̃ + p̃

2
+ μ

2

+ k2exp(μτ0)λmax(R2)

]

IN − c(ϑ − ε)X̄ < 0

Z3 =
(

q̃

2
+ β̃

)

In − k2(1 − ς)R2 < 0 (24)



ZHOU et al.: CLUSTER SYNCHRONIZATION ON MULTIPLE NONLINEARLY COUPLED DYNAMICAL SUBNETWORKS 577

where μ, θ, and k2 are the given positive constants,
{α̃, β̃, p̃, q̃} = max{αi , βi , pi , qi |i = 1, 2, . . . , N },
X̄
= diag{D∗(1)

1 , . . . , D∗(1)
l1

, 0, . . . , 0
︸ ︷︷ ︸

N1

, D∗(2)
r1+1, . . . , D∗(2)

l2
, 0, . . . , 0

︸ ︷︷ ︸
N2

,

. . . , D∗(m)
rm−1+1, . . . , D∗(m)

lm
, 0, . . . , 0

︸ ︷︷ ︸
Nm

}

and D∗(k)
i is the estimation of D(k)

i .
Proof: From the detailed analysis of Theorem 1, we can

get that all the leaders in each leaders’ subnetwork (3) have
exponentially synchronized to their corresponding reference
state, where k = 1, 2, . . . , m. Then, we consider the Lyapunov
functional candidate for the error system (22)

V2(t, e(t)) = 1

2

m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)e(k)

i (t)exp(μt)

+
m∑

k=1

lk∑

i=rk−1+1

wk∑

j=wk−1+1

(
d(k)

i j − d∗(k)
i j

)2

2ki j

+ k2

m∑

k=1

rk∑

i=rk−1+1

∫ t

t−τt

e(k)T
i (v)R2e(k)

i (v)

×exp(μ(v + τt ))dv. (25)
The stochastic differential dV2(t, e(t)) along the trajectories
of (22) gives

dV2(t, e(t)) = LV2(t, e(t))dt

+
m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)Y (k)

i exp(μt)dω (26)

where Y (k)
i = δ(t, xk

i (t), xk
iτt

) − δ(t, s̄k(t), s̄kτt ).
For convenience, we may as well let LV2(t, e(t)) =

LV ′
2(t, e(t))exp(μt), where

LV ′
2(t, e(t))

=
m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)Ake(k)

i (t)

+
m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)

[
fk
(
t, x (k)

i , x (k)
iτt

) − fk(t, s̄k , s̄kτt )
]

+
m∑

k=1

rk∑

i=rk−1+1

ce(k)T
i (t)

N∑

j=1

b(k)
i j �[g(x j ) − g(s̄k)]

−
m∑

k=1

lk∑

i=rk−1+1

ce(k)T
i (t)

wk∑

j=wk−1+1

d(k)
i j �

[
g
(
x (k)

i

) − g(s j )
]

+1

2

m∑

k=1

rk∑

i=rk−1+1

trace
(
Y (k)T

i Y (k)
i

)

+μ

2

m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)e(k)

i (t)

+
m∑

k=1

lk∑

i=rk−1+1

wk∑

j=wk−1+1

c(ϑ − ε)
(
d(k)

i j − d∗(k)
i j

)
e(k)T

i �e(k)
i

+ k2

m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)R2e(k)

i (t)exp(μτt )

− k2

m∑

k=1

rk∑

i=rk−1+1

(1 − τ̇t )e
(k)T
iτt

R2e(k)
iτt

. (27)

In view of Assumption A2, one can obtain

LV ′
2(t, e(t)) ≤

m∑

k=1

rk∑

i=rk−1+1

e(k)T
i (t)Ake(k)

i (t)

+
N∑

i=1

αi e
T
i (t)ei (t) +

N∑

i=1

βi e
T
iτt

eiτt + V2 + V3

+ c
n∑

k=1

γkekT (t)

×
[

ϑ B + 1

2θ
B BT + ε2θ

(

1 − 1

N

)

IN

]

ek(t)

(28)

where ek(t) = (e1k(t) e2k(t) . . . eNk(t))T . Note that
g(·) ∈ NCF(ϑ, ε), we can get

V2 = −
m∑

k=1

lk∑

i=rk−1+1

ce(k)T
i (t)

wk∑

j=wk−1+1

d(k)
i j �

[
g
(
x (k)

i

) − g(s j )
]

= −
m∑

k=1

lk∑

i=rk−1+1

c
n∑

j=1

γ j e
(k)
i j (t)D(k)

i

[
g
(
x (k)

i j

) − g(s̄μi j )
]

≤ −c(ϑ − ε)

m∑

k=1

lk∑

i=rk−1+1

n∑

j=1

γ j D(k)
i e(k)

i j (t)e(k)
i j (t)

= −c(ϑ − ε)

n∑

k=1

γkekT (t)Dek(t) (29)

where D(k)
i = ∑wk

j=wk−1+1 d(k)
i j and

D = diag{D(1)
1 , . . . , D(1)

l1
, 0, . . . , 0

︸ ︷︷ ︸
N1

, D(2)
r1+1, . . . ,D(2)

l2
, 0, . . . , 0

︸ ︷︷ ︸
N2

,

. . . , D(m)
rm−1+1, . . . , D(m)

lm
, 0, . . . , 0

︸ ︷︷ ︸
Nm

}.

In view of Assumptions A3 and A5, we have

V3 =
m∑

k=1

lk∑

i=rk−1+1

wk∑

j=wk−1+1

c(ϑ − ε)
(
d(k)

i j − d∗(k)
i j

)
e(k)T

i �e(k)
i

+1

2

m∑

k=1

rk∑

i=rk−1+1

trace
(
Y (k)T

i Y (k)
i

) + μ

2

N∑

i=1

eT
i (t)ei (t)

+ k2

N∑

i=1

[
eT

i (t)R2ei (t)exp(μτt ) − (1 − τ̇t )e
T
iτt

R2eiτt

]

≤ c(ϑ − ε)

m∑

k=1

lk∑

i=rk−1+1

e(k)T
i (t)

(
D(k)

i − D∗(k)
i

)
�e(k)

i (t)

+
n∑

k=1

[
p̃

2
ekT (t)ek(t) + q̃

2
ekT
τt

ek
τt

]

+ μ

2

n∑

k=1

ekT (t)ek(t)

+ k2

N∑

i=1

[
eT

i (t)R2ei (t)exp(μτ0) − (1 − ς)eT
iτt

R2eiτt

]

(30)

where { p̃, q̃} = max{pi , qi |i = 1, 2, . . . , N }, and D∗(k)
i =

∑wk
j=wk−1+1 d∗(k)

i j . By substituting inequalities (29) and (30)
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into (28), one can obtain that

LV ′
2(t, e(t))

≤
N∑

i=1

eT
i (t)Aμi ei (t) +

n∑

k=1

α̃ekT (t)ek(t)

+
n∑

k=1

β̃ekT
τt

ek
τt

− c(ϑ − ε)

n∑

k=1

γkekT (t)Dek(t)

+ c
n∑

k=1

γkekT (t)

[

ϑ B + 1

2θ
B BT + ε2θ

(

1 − 1

N

)

IN

]

ek(t)

+ c(ϑ − ε)

n∑

k=1

γkekT (t)(D − X̄)ek(t)

+
n∑

k=1

[
p̃

2
ekT (t)ek(t) + q̃

2
ekT
τt

ek
τt

]

+ μ

2

n∑

k=1

ekT (t)ek(t)

+ k2

N∑

i=1

[
eT

i (t)R2ei (t)exp(μτ0) − (1 − ς)eT
iτt

R2eiτt

]

(31)

where {α̃, β̃} = max{αi , βi |i = 1, 2, . . . , N }, and

X̄ = diag{D∗(1)
1 , . . . , D∗(1)

l1
, 0, . . . , 0, D∗(2)

r1+1, . . . , D∗(2)
l2

, 0, . . . ,

0, . . . , D∗(m)
rm−1+1, . . . , D∗(m)

lm
, 0, . . . , 0}. As the fact that

Aμi < 0, and let e(t) = (e1T (t) e2T (t) . . . enT (t))T , then
inequality (31) can be given as

LV ′
2(t, e(t))

≤
n∑

k=1

α̃ekT (t)ek(t) +
n∑

k=1

β̃ekT
τt

ek
τt

+ c
n∑

k=1

γkekT (t)

[

ϑ B + 1

2θ
B BT + ε2θ

(

1 − 1

N

)

IN

]

× ek(t) − c(ϑ − ε)

n∑

k=1

γkekT (t)X̄ek(t)

+
n∑

k=1

[
p̃

2
ekT (t)ek(t) + q̃

2
ekT
τt

ek
τt

]

+ μ

2

n∑

k=1

ekT (t)ek(t)

+ k2

N∑

i=1

[
eT

i (t)R2ei (t)exp(μτ0) − (1 − ς)eT
iτt

R2eiτt

]

≤ eT (t)

{

c� ⊗
[

ϑ B + 1

2θ
B BT + ε2θ

(

1 − 1

N

)

IN

]

+
(

α̃+ p̃

2
+ μ

2

)

�⊗ IN + k2exp(μτ0)λmax(R2)�⊗ IN

− c(ϑ − ε)� ⊗ X̄

}

e(t)

+ eT
τt

{(
q̃

2
+ β̃

)

In ⊗ IN − k2(1 − ς)R2 ⊗ IN

}

eτt

= ζ T �′ζ (32)

where ζ(t) = (eT (t) eT
τt
)T , and �′ =

[ �
Z1 Z2

Z T
2 Z3

]
is symmet-

rical and negative definite, in which
�

Z1 = � ⊗ {c[ϑ B +
(1/2θ)B BT + ε2θ(1 − (1/N))IN ]+ (α̃ + ( p̃/2)+ (μ/2))IN +
k2exp(μτ0)λmax(R2)IN } − c(ϑ − ε)� ⊗ X̄ = � ⊗ Z1 < 0,

Z3 = ((q̃/2) + β̃)In ⊗ IN − k2(1 − ς)R2 ⊗ IN < 0, and
Z2 = Z T

2 = 0. The rest procedure of the proof is the same as
that in Theorem 1, and hence, we omit it here. This completes
the proof.

From condition (24), we can easily get that the nodes in the
followers’ subnetwork (2) are all exponentially synchronized
to their reference state under the given adaptive feedback
pinning controller (23).

Remark 4: From conditions (6) and (24), we can see that
the larger the coupling strength is, the easier these condi-
tions are satisfied. Furthermore, our network model is the
generalized form of the models proposed in the previous
works [20]–[22], and it can be applied to not only the complex
networks with identical node but also the multiple subnetworks
of complex networks with nonidentical ones. In particular,
if M ≡ 1 and m ≡ 1, then the present framework is the
original complete synchronization of complex networks with
identical node; if Mk ≡ 1 and k = 1, 2, . . . , m, and there is no
connection between the leaders, then the present framework
becomes the traditional cluster synchronization of complex
networks with nonidentical nodes; specially, if there is only
one leaders’ network and all the nodes in each followers’
subnetwork are assumed to be identical, then the framework
is the same as that in [20].

Remark 5: As the fact that � ≥ In , condition (6) in
Theorem 1 can be simplified as follows:

�1 = c

[

ϑλ2(H ) + 1

2θ
λmax(H H T ) + ε2θ

(

1 − 1

M

)]

+ α + 2 p + μ

2
+ k1exp(μτ0)λmax(R1) < 0

�3 = β + 2q − k1(1 − ς)λmin(R1) < 0 (33)

and condition (24) in Theorem 2 can be simplified as

Z1 =
{

c

[

ϑλ2(B) + 1

2θ
λmax(B BT ) + ε2θ

(

1 − 1

N

)]

+ α̃

+ p̃

2
+ μ

2
+ k2exp(μτ0)λmax(R2)

}

IN − c(ϑ − ε)X̄ <0

Z3 =
[

q̃

2
+ β̃ − k2(1 − ς)λmin(R2)

]

In < 0. (34)

From inequalities (33) and (34), it is easy to get that the
topology structure of each subnetwork plays an important role
in realizing the cluster synchronization on multiple subnet-
works of complex networks. Inequalities (33) and (34) are
very similar, but there is a negative feedback item −c(ϑ −ε)X̄
in (34), such that condition (34) is easier to be satisfied
than (33). Only when these conditions in Theorems 1 and 2
are satisfied simultaneously, we can say that all the nodes have
exponentially synchronized to their corresponding reference
states.

Remark 6: Many similar pinning control results have been
given in the previous works, but most of them have focused
on the pinning synchronization of a single network or
two networks; while in this paper, the proposed pinning
scheme can be applied to not only a single network but also the
multiple subnetworks of complex networks with nonidentical
nodes. In particular, when the coupling function is linear,
we can get Corollary 1.
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Corollary 1: If the nonlinear coupling function g(x)
is assumed to be linear, e.g., g(x) = x , then we
can get the following conditions for the global leaders’
network:

�1 = cλ2(H ) + α + 2 p + μ

2
+ k1exp(μτ0)λmax(R1) < 0

�3 = β + 2q − k1(1 − ς)λmin(R1) < 0 (35)

and the ones for the global followers’ network

Z1 =
[

cλ2(B) + α̃ + p̃

2
+ μ

2

+ k2exp(μτ0)λmax(R2)

]

IN − cX̄ < 0

Z3 =
[

q̃

2
+ β̃ − k2(1 − ς)λmin(R2)

]

In < 0 (36)

where the adaptive pinning controller u(k)
i (t) and the corre-

sponding adaptive update law can be given by

u(k)
i (t) = −c

wk∑

j=wk−1+1

d(k)
i j (t)�

(
x (k)

i (t) − s j (t)
)

ḋ(k)
i j (t) = cki j

(
x (k)

i − s j
)T

�
(
x (k)

i − s j
)
exp(μt)

i = rk−1 + 1, . . . , lk ; j = wk−1 + 1, . . . , wk . (37)

Clearly, conditions (35) and (36) are very similar with
the conditions presented in [20]. The main difference is that
the conditions considered in [20] are very ideal, and only the
connections of the nodes within the same subnetwork are con-
sidered, and the synchronous mode of the nodes is complete
synchronization; while in this paper, we consider not only the
influence of stochastic factors but also the cooperation and
competition of the nodes between different subnetworks, and
the synchronous pattern is cluster synchronization. Moreover,
the feedback gains of the controllers presented in [20] are
much larger than the required values, which is unpractical in
the reality; while the adaptive update law in (37) can deal with
this problem very well.

B. Design of Pinning Control Scheme and the Selection
Scheme of Pinned Nodes for the Multiple Nonlinearly
Coupled Dynamical Subnetworks of Complex Networks

In Section III-A, some cluster synchronization criteria on
multiple nonlinearly coupled dynamical subnetworks of com-
plex networks have been given. Next, we will make a brief
analysis to condition (24) in Theorem 2 to determine the
minimum number of nodes that need to be controlled, and
give the detailed scheme on the selection of the pinned nodes.
As we know that the global followers’ network consists of
m followers’ subnetworks, in order to obtain the number of
pinned nodes for each subnetwork, we will analyze these sub-
networks one by one. The matrix B can be represented as B =
[B(1)T B(2)T . . . B(m)T ]T , where B(k) = (Bk1 Bk2 . . . Bkm),
Bkj ∈ RNk ×N j , and k, j = 1, 2, . . . , m. Note that the sum of
the energy transmission between two different subnetworks
is zero, the influence of the coupling between two different

subnetworks is far weaker than that within the same sub-
network. In view of this, according to the characteristic of
the matrix B and condition (24), for the kth subnetwork, we
can get

Z̃k = cϑ Bkk + Lk − c(ϑ − ε)X̄k =
(

Ãk − D̃k B̃k

B̃T
k C̃k

)

(38)

where Lk = γk INk , γk = (c/2θ)λmax(B(k)B(k)T ) + cε2θ
(1 − (1/Nk)) + α̃k + ( p̃k/2) + (μ/2) + k2exp(μτ0)λmax(R2),

X̄k = diag{D∗(k)
rk−1+1, . . . , D∗(k)

lk
, 0, . . . , 0}, Ãk and B̃k are

the matrices with appropriate dimensions, D̃k = c(ϑ − ε)

diag{D∗(k)
rk−1+1, . . . , D∗(k)

lk
}, and C̃k is obtained by moving the

first lk row–column pairs of matrix Z̃k .
Assume that the pinned nodes in the kth followers’ sub-

network are just the first lk nodes, if not, we can exchange
the position of the nodes, such that the nodes in need of
pinning are transformed into the first lk nodes. Thus, the
connections between all the pinned nodes are equivalent to
Ãk − D̃k , and the connections between the pinned nodes and
the unpinned nodes are equivalent to B̃k or B̃T

k , while the
connections between the unpinned nodes are equivalent to C̃k .
According to the constraint of the matrix B and the expression
of Z̃k , we can get that all of the elements in the matrix B̃k

are positive, and the diagonal elements of the matrix C̃k are
negative, while all the nondiagonal elements of which are
positive. In view of Lemma 1, we can easily get that Z̃k < 0
is equivalent to C̃k < 0 because of Ãk − D̃k − B̃kC̃−1

k B̃T
k < 0

by choosing D̃k > λmax( Ãk − B̃kC̃−1
k B̃T

k )Ilk . Note that
C̃k = (Z̃k)[lk ] = cϑ(Bkk)[lk ] + γk INk −lk , where (Z̃k)[lk ]
represents the minor matrix of Z̃k by removing its first lk

row–column pairs. Therefore, with choosing large enough D̃k ,
we have cϑ(Bkk)[lk ] + γk INk −lk < 0. Then, one can immedi-
ately get Corollary 2.

Corollary 2: If there exists a lk , such that λmax(Bkk)[lk ] <
−(γk/cϑ) for the kth followers’ subnetwork, then the nodes
in system (2) are globally exponentially synchronized to their
corresponding reference state under the given adaptive pinning
controllers, where k = 1, 2, . . . , m.

Next, we will give the selection scheme of the pinned nodes.
In view of Z1 < 0 and the fact that the main diagonal elements
of a negative definite and symmetrical matrix are negative,
we have (Z1)ii < 0, i = 1, 2, . . . , N , which can be
described as
{

(Z1)ii = cϑbii + γ − c(ϑ − ε)D∗(μi )
i < 0, i ∈ χ

(Z1)ii = cϑbii + γ < 0, i ∈ C − χ

(39)

where γ = (c/2θ)λmax(B BT )+cε2θ(1−(1/N))+α̃+( p̃/2)+
(μ/2)+k2exp(μτ0)λmax(R2), χ represents a node-set that con-
sists of all the pinned nodes in the global followers’ network,
and C = C1 ∪C2 ∪ . . .∪Cm , accordingly, C −χ is a node-set
that consists of all the unpinned nodes in the global followers’
network. In view of bii < 0 and the fact that Deg(i) = −bii ,
from the second formula in (39), we can get that Deg(i) >
(γ /cϑ), where i ∈ C − χ . That is to say, the nodes with
low degrees need to be controlled first. On the other hand,
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it is easy to know that (B̃T
k C̃k) is a γk-row-sum matrix.

Therefore, if there are more connections in the matrix B̃T
k ,

the matrix C̃k will tend to be negative, and C̃k < 0,
which means that the nodes with large degrees should be
controlled, since these nodes can affect many connected nodes.
As stated above, we can get that the nodes with very large
or low degrees are good candidates for applying pinning
controllers.

The specific pinning scheme on the selection of pinned
nodes can be stated as follows.

1) Rearrange the network nodes: the nodes are followed
by the other ones in descending order based on their
degrees in each followers’ subnetwork.

2) According to the condition λmax(Bkk)[lk ] < −(γk/cϑ),
we can get the least number of the pinned nodes for the
kth followers’ subnetwork. Moreover, due to the energy
transmission is conserved between any two different
subnetworks, at least two nodes in each followers’ sub-
network need to be controlled. That is to say, the number
of the pinned nodes for the kth followers’ subnetwork
is max{2, lk}.

3) The selection scheme for the pinned nodes is from both
the left and the right to the middle in order at the
same time, and the selection of priority for the nodes
on the relative position depends on the specific network
structure. If the degrees of the nodes are the same,
we select them in turn.

Remark 7: The selection of priority for the pinned nodes
on the relative position depends on the specific network
structure. There are many similar works on the selection of
pinned nodes and the calculation method for the number of
pinned nodes [16], [30], [37], [38]. But most of these works
have focused on the complex networks with identical node
and without considering the influence of stochastic factors,
or having all the nodes synchronized to an identical node,
or the pinning synchronization scheme is confined to only
one network or two networks, which is not very consistent
with the actual. Moreover, the least number of pinned nodes
obtained in theory is usually much larger than that required
in practice [39]. Therefore, we just give a rough calculation
scheme for the selection on the number of pinned nodes, while
specific problem should be concrete analysis.

IV. NUMERICAL SIMULATIONS

In this section, some examples are offered to illustrate
the effectiveness of the theoretical analysis presented in
Section III. Consider the general complex networks that
consist of three pairs of different subnetworks, in which
three different dynamical systems, such as CNN’s neuron
system [40], Hindmarsh-Rose neural system [41], and Lu
neural oscillator [42], are selected as the corresponding node
dynamics.

Case 1 (First Pair of Matching Subnetworks): The
first pair of matching subnetworks consists of four fol-
lowers and three leaders, in which CNN’s neuron sys-
tem [40] is taken as the corresponding node dynamics,
and only the first two nodes in the followers’ subnetwork
need to be controlled. The CNN’s neuron system can

described as

dx

dt
= −

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

︸ ︷︷ ︸
A1

⎛

⎝
x1
y1
z1

⎞

⎠

︸ ︷︷ ︸
x

+
⎛

⎝
p1g̃(x1) − sg̃(y1) − sg̃(z1)

−sg̃(x1) + p2g̃(y1) − r g̃(z1)
−sg̃(x1) + r g̃(y1) + p3g̃(z1)

⎞

⎠

︸ ︷︷ ︸
f1(x)

(40)

where x = (x1, y1, z1)
T ∈ R3, g̃(x) = (1/2)(|x + 1| −

|x − 1|), p1 = 1.25, p2 = 1.1, p3 = 1, s = 3.2, and r = 4.4.
Case 2 (Second Pair of Matching Subnetworks): The second

pair of matching subnetworks is composed of three followers
and two leaders with Hindmarsh-Rose neural system [41] as
the node dynamics, and only the first two nodes in the follow-
ers’ subnetwork are in need of applying controllers, where the
Hindmarsh-Rose neural system is described by

dx

dt
= −

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

︸ ︷︷ ︸
A2

⎛

⎝
x2
y2
z2

⎞

⎠

︸ ︷︷ ︸
x

+
⎛

⎝
y2 − x3

2 + 3x2
2 + x2 − z2 + 3.25

1 − 5x2
2

0.02x2 + 0.032 + 0.995z2

⎞

⎠

︸ ︷︷ ︸
f2(x)

. (41)

Case 3 (Third Pair of Matching Subnetworks): The third
pair of matching subnetworks, with Lu neural oscillator [42]
as the node dynamics, consists of four followers and three
leaders, and only the first two nodes in the followers’ subnet-
work need to be controlled. The Lu neural oscillator can be
described as

ẋ(t) = −Cx(t) + A f (x(t)) (42)

where C = (
1 0
0 1

)
, A = (

3 5
0.1 2

)
, and f (x(t)) = tanh(x(t)).

In the simulation process for the cluster synchronization of
three pairs of subnetworks with different dynamical behaviors,
we assume that H (k), B(k)

kk (k = 1, 2, 3) are all fully connected,
and the crossover matrices can be taken as

B(1)
12 =

⎛

⎜
⎜
⎝

1 −1 0
−1 1 0
0 0 0
0 0 0

⎞

⎟
⎟
⎠ , B(1)

13 =

⎛

⎜
⎜
⎝

−1 1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

B(2)
23 =

⎛

⎝
1 −1 0 0

−1 1 0 0
0 0 0 0

⎞

⎠ , B(2)T
21 = B(1)

12 , B(3)T
31 = B(1)

13

and B(3)T
32 = B(2)

23 . The other related parameters are selected as
p = q = 0.1, α = β = 1.5, μ = 1, τt = et/6(1 + et ), c = 4,
θ = 2, and δ(t, xi , xiτt ) = 0.05(xi − xiτt )(i = 1, 2, . . . , 11).
The corresponding nonlinear coupling functions are selected
as g1(x) = 10x + sin(2x), g2(x) = 10x + cos x , g3(x) =
4x + 0.5 sin x . The states of errors between the nodes in the
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Fig. 2. States of errors between the nodes x
(μi )
i (i = 1, . . . , 11) and their

corresponding reference state s̄(μi ) in the global followers’ network.

global followers’ network and their corresponding reference
states are shown in Fig. 2. From the illustration of Fig. 2, one
can get that all the error states converge to zero very quickly,
and the adaptive feedback gains between the pinned nodes
and their leaders all tend to some constants in a very short
time, just as shown in Fig. 3. That is to say, the realization
of the cluster synchronization on multiple nonlinearly coupled
dynamical subnetworks of complex networks has good immu-
nity to the influence of random factors and unknown feedback
gains. Moreover, the errors of the nodes between different
followers’ subnetworks are shown in Fig. 4. From Fig. 4,
we can see that the nodes belonging to different subnetworks
cannot realize the synchronization at all, while as the fact
that the nodes belonging to the same subnetwork have syn-
chronized, accordingly, there are three clusters of asymptotic
curves in the first two subfigures; as for the third subfigure,
because the nodes in the third pair of subnetworks are 2-D,
there is only a cluster of asymptotic curve that represents
errors of the nodes between the first and second followers’
subnetwork.

Remark 8: In this paper, the topology connections of the
nodes in each subnetwork are assumed to be fully connected
or tree-based, and according to the given pinning scheme on
the selection of pinned nodes, we can just select the first two
nodes as the nodes in need of applying controllers. Therefore,
the selection of the pinned nodes for the numerical simulation
is consistent with the given pinning scheme.

In addition, most of the previous works have just focused
on the pinning synchronization of complex networks, while
Lu et al. [20] realize the pinning synchronization on complex
networks of networks with multiple leaders and followers.
But the scheme proposed in [20] cannot be extended to
the complex networks with nonidentical nodes, and only the
connections of the nodes belonging to the same subnetwork
are considered, which do not often accord with the actual.
In fact, the nodes belonging to different subnetworks usually

Fig. 3. Time evolution of adaptive feedback gains between the pinned
nodes and their leaders, where the red lines represent that in the first pair of
subnetwork, the mauve lines represent that in the second pair of subnetwork,
and the blue lines represent that in the third pair of subnetwork.

Fig. 4. Errors of the nodes between different followers’ subnetworks.

have nonidentical node dynamics, and they may also need to
communicate with each other in a cooperative or even com-
petitive way. However, these problems can be well resolved
with the proposed scheme in this paper, and then, we will
make a simple comparison on them. For convenience, we just
consider the complex networks consisting of five leaders and
eight followers, in which the leaders’ network is tree-based
and the followers’ network is fully connected, and only the
first two nodes need to be controlled. From the illustrations
of Figs. 5 and 6, we can easily get that, compared with the
scheme proposed in [20], our scheme can realize the cluster
synchronization of all the nodes with less time and converge
to zero very quickly even under the influence of stochastic
disturbances and time-varying delays. More importantly, this
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Fig. 5. States of errors between the nodes xi (i = 1, . . . , 8) and their
corresponding average state s̄(μi ) in the global followers’ network with tree-
based connection by using our method.

Fig. 6. States of errors between the nodes xi (i = 1, . . . , 8) and their
corresponding average state s̄(μi ) in the global followers’ network with tree-
based connection by using the method proposed in [20].

improved network model is much more general and realistic,
and it will have much more practical application in the near
future.

V. CONCLUSION

In this paper, cluster synchronization problem on multiple
nonlinearly coupled dynamical subnetworks of complex net-
works with nonidentical nodes and stochastic disturbances is
investigated. Based on the general leader–follower’s model,
an improved network structure model that consists of multiple
pairs of matching subnetworks is proposed, where each pair of
matching subnetworks is composed of a leaders’ subnetwork
and a followers’ subnetwork. The dynamics of the nodes in
each pair of matching subnetworks are identical, while the
ones belonging to different pairs of unmatched subnetworks

are usually nonidentical, and some random factors are taken
into consideration as well. There are many leaders in each
leaders’ subnetwork, which provides more opportunities for
these leaders to transmit information, and the average state of
these leaders is selected as the reference state. Furthermore, the
leaders are only responsible for the information transmission,
such as the necessary priori knowledge or professional skills,
to their matching followers, but the completion of the task
needs all the followers to cooperate with each other. Then,
some cluster synchronization criteria are derived for both the
global leaders’ network and followers’ network, and a suitable
pinning control scheme that the nodes with very large or
low degrees are good candidates for applying pinning control
is given. Numerical simulations are proposed to validate the
feasibility and effectiveness of the theoretical results.

In addition, though the proposed network model in this
paper is simple, the theoretical results in this paper can provide
some new insights for the possible applications in various
emerging fields, such as artificial neural networks, intelligent
system, multiagent systems, machine learning, and so on.
However, there are still some valuable problems to be solved,
which will be focused on in our future work, such as how to
describe a cluster based on the topological characteristics, the
selection of classification rules, finite-time control, nonlinear
time-delayed coupling, and some application of the proposed
scheme on all kinds of research fields, such as brain science
and multiagent systems.
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