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Abstract It is very important to generate hyper-
chaotic attractor with more complicated dynamics
for theoretical research and practical application. The
paper proposes a novel method to generate hyper-
chaotic multi-wing attractor. By replacing the resis-
tor in the circuit of modified Lü system with flux-
controlled memristor respectively, this newmemristive
system can exhibit a hyperchaotic multi-wing attrac-
tor, and the values of two positive Lyapunov exponents
are relatively large. The dynamical behaviors of the
proposed system are analyzed by phase portrait, Lya-
punov exponents, Poincaré maps, and bifurcation dia-
gram.Moreover, the influences of memristor’s strength
and position of replaced resistor are analyzed. To fur-
ther probe the inherent features of the new memristive
hyperchaotic system, the circuit implementation is car-
ried out. The proposed method can be easily extended
to the generalized Lorenz system family.
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1 Introduction

In recent years, the generation of chaotic attractor
which attracts extensive attention of researchers in dif-
ferent fields has become an important part in the inves-
tigation of chaos theory and application. Especially, the
generation ofmulti-wing chaotic attractor has becomea
key issue recently, and somemulti-wing chaotic attrac-
tors have been proposed [1–7]. The multi-wing chaotic
systems can be classified into two totally different
groups. The one group is the system with smooth non-
linear function, in which the number of wings is not
equal to that of the equilibria [1–4]. The other group
is the system with piecewise nonlinear function [5–7].
The number of wings in these systems [1–7] is more
than two. However, the systems in [1–7] have only one
positive Lyapunov exponent, and they belong to normal
chaos systems.

Since the first hyperchaotic attractor was introduced
by Rossler [9], hyperchaotic systems have been inten-
sively studied, and they can be widely applied in many
realms such as cryptosystem [10–15], neural network
[16,17], secure communication [18], and laser design
[19]. We take cryptosystem as example. Chaos as a
special kind of nonlinear system, due to its pseudo-
random motion trajectory, extreme sensitivity to ini-
tial conditions, unpredictability, and complexity, has
unique advantages in the image encryption technology
[11,12]. For hyperchaotic system, because of its better
unpredictability, more complex dynamic behavior, and
larger key space, the applications of chaotic sequence
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as a key for image and video encryption have a greater
advantage and research space [13–15].

Hyperchaotic multi-wing attractors with more com-
plex dynamic are recently proposed [20,21]. A multi-
wing attractor is constructed in an existing hyper-
chaotic system by coordinate transition and absolute
value transition [20]. The state feedback control is used
in an existing multi-wing system in order to obtain
hyperchaotic attractor [21]. The common methods to
obtain hyperchaotic multi-wing attractor are proposed
in [20,21].

Recently, the method of generating hyperchaotic
attractor is proposed since the fabrication of memristor
is successfully realized in 2008 [25]. By adding one
extra flux-controlled memristor into three-dimensional
(3D) chaotic system, the 4D hyperchaotic memristive
systems can be presented in [22,23]. However, the
researches in [22] focus on two-wing system, and in
[23], a cross-product item must be added in order to
generate real four-wing attractor. Moreover, the posi-
tion of extra memristor in memristive system is not
discussed.

Inspired by the [22] and [23], we propose a novel
method to generate hyperchaotic multi-wing attractor
in this paper. The method is only by replacing the resis-
tor in the circuit of the modified Lü system with a
flux-controlled memristor. Compared with the meth-
ods in [20–23], the method proposed in this paper is
relatively easy to realize, and it can be easily extended
to the generalized Lorenz system family. By introduc-
ing the memristor, the new memristive system has infi-
nitely many stable and unstable equilibrium points.
Moreover, we discuss whether the resistor in the cir-
cuit of modified Lü system can be replaced, and how
the characteristic of new memristive system changes
after replacing the resistor with memristor. The paper
is organized as follows. In Sect. 2, the brief introduction
of memristor is stated. The modified Lü system after
replacing resistor with memristor and its basic dynam-
ical properties are analyzed in Sect. 3. In Sect. 4, the
circuit implementation of the new memristive hyper-
chaotic multi-wing system is proposed. Some conclu-
sions are finally drawn in Sect. 5.

2 The memristor

Thememristorwhichwas originally envisioned byPro-
fessor Chua is a nonlinear element [24]. Encouraged by

the physical implementation of memristive devices at
nanoscale [25], the potential applications of memris-
tor have been exploited in many fields, such as cellular
neural network [26], nonlinear systems [27–29], non-
volatile random access memory (NRAM) [30,31].

The definition of a memristor is based on the rela-
tionship between charge q and flux ϕ. The relationship
between the current across a charge-controlled mem-
ristor and the voltage is given by the differential form
shown in (1).

vm = M(q)i, q̇ = i. (1)

whereM(q) is the charge-controlledmemristance [24].
The relationship between the voltage across a flux-

controlled memristor and the current is given by the
differential form shown in (2).

im = W (ϕ)v, ϕ̇ = v. (2)

where W (ϕ) is a memductance function. A cubic
nonlinearity is frequently chosen for the q function
[22,23,32–34].

W (ϕ) = dq(ϕ)

dϕ
= d(aϕ + bϕ3)

dϕ
= a + 3bϕ2. (3)

where a and b are two positive constants.

3 The proposed memristive hyperchaotic
multi-wing system

Lü proposed a system with two-wing attractor in 2002
[8].We consider the modified Lü systemwith 2(N +1)
wings proposed in [6]. It can be described as follows:
⎧
⎨

⎩

ẋ = α(y − x)
ẏ = βy − xz/P
ż = f (x) − γ z

(4)

f (x) = F0x
2 −

N∑

i=1

Fi [10.5sgn(x − Ei )

−0.5sgn(x + Ei )]
F0 = k

P
Fi = 2AP

ki
Ei = 0.5(i + 1)AP

k
. (5)

where N is a positive integer; A, P, k, and ki are con-
stants; the values ofα, β, and γ are positive; the specific
parameters are configured as α = 36, β = 20, γ =
3, A = 30, P = 0.05, k = 5; and f (x) is the multi-
segment quadratic functionwith duality symmetry. The
equilibrium points of the system (4) are (0, 0, 0) and
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(±u,±u, Pβ), where u satisfies: f (u) = Pβγ . The
system belongs to normal chaos.

In this paper, the resistor in the implement circuit of
system (4) is replaced with a flux-controlled memris-
tor. Five cases are taken into consideration by replac-
ing R1, R2, R3, R4, and R5 with the memristor, respec-
tively. The proposed system has many interesting com-
plex dynamical behaviors such as periodic orbits, torus,
chaos, and hyperchaos.

3.1 Case1: replacing R1

Firstly, the resistor R1 is replaced with flux-controlled
memristor, and the circuit implementation is shown in
Fig. 1. From Fig. 1 and (2), we obtain that
⎧
⎪⎪⎨

⎪⎪⎩

Cx v̇x = vy/R2 − W (ϕ)vx
Cy v̇y = vy/R3 − vxvz/R4

Cz v̇z = f (x)/R6 − vz/R5

ϕ̇ = vx

. (6)

where vx , vy , and vz indicate the voltage of x, y, and z.
Let τ = t · RC be the physical time, where t is the

dimensionless time, R is a reference resistor, and C is

Fig. 1 Circuit diagram for the original modified Lü system (4)
after replacing R1

a reference capacitor. When Cx = Cy = Cz = C, α =
R/R2, β = R/R3, γ = R/R5, and P = R4/R, the
dimensionless equations can be expressed as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = αy − ρW (ϕ)x
ẏ = βy − xz/P
ż = f (x) − γ z
ϕ̇ = x

. (7)

where ρ is a positive parameter indicating the strength
of the memristor.

The memristive system (7) keeps the symmetry of
original 3D system (4), and it is invariant under the
transformation (x, y, z, ϕ) ↔ (−x,−y, z,−ϕ) with
z-axis symmetry.

The equilibria of system (7) can be derived by solv-
ing the following equations:
⎧
⎪⎪⎨

⎪⎪⎩

αy − ρW (ϕ)x = 0
βy − xz/P = 0
f (x) − γ z = 0
x = 0

. (8)

We can easily observe that the system (7) has infi-
nitely many equilibria O = {(x, y, z, ϕ)|x = y = z =
0, ϕ = c}, where c is any real constant. By lineariz-
ing system (7) at point O , we can obtain the Jacobian
matrix.

Jo =

⎛

⎜
⎜
⎝

−ρW (c) α 0 0
0 β 0 0
0 0 −γ 0
1 0 0 0

⎞

⎟
⎟
⎠ . (9)

The dissipativity of system (7) is described as

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
+ ∂ϕ̇

∂ϕ
= −ρW (c) + β − γ.

(10)

When ρ, β, and γ satisfy −ρW (c) + β − γ < 0,
the system is dissipative. This means that asymptotic
motion settles onto an attractor and each volume con-
taining the system trajectory shrinks to zero at an expo-
nential rate as t → ∞. Moreover,

dV

dt
= e−ρW (c)+β−γ = er . (11)

It implies that the volume of the attractor decreases by
a factor of er . And the memristor should satisfy:

ρW (c) > β − γ. (12)

According to (9), the characteristic equation is given
by

λ(λ + ρW (c))(λ − β)(λ + γ ) = 0. (13)
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Fig. 2 First three LEs of
system (7) by adjusting ρ: a
6 < ρ < 10, b 6 < ρ < 6.5
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It is very easy to solve its eigenvalues

λ1 = 0, λ2 = −ρW (c), λ3 = β, λ4 = −γ. (14)

The values of ρ, a, b, β, and γ are all positive, so
λ2 and λ4 are always negative, and λ3 is always posi-
tive. Therefore, there are one positive eigenvalue, one
zero eigenvalue, and two negative eigenvalues, and the
system (7) has unstable saddle point.

In the following, the system (7) is further investi-
gated by means of Lyapunov exponent analysis, bifur-
cation analysis, Poincaré map, and phase portrait. The
parameters of the system (7) are similar to the orig-
inal system, which are configured as α = 36, β =
20, γ = 3, P = 0.05, N = 4, the parameters of f (x)
are configured as F0 = 100, F1 = 10, F2 = 12, F3 =
16.67, F4 = 18.18, E1 = 0.3, E2 = 0.45, E3 = 0.6,
and E4 = 0.75. The memductance function of mem-
ristor is given by (3), where a = 4, and b = 0.01.

When ρ is chosen from 6 to 10 and the initial condi-
tion is set to (1 010), the numerical results are described
in Fig. 2 (The last one is not displayed because it
is always a big negative number). The LEs describe
the rate of exponential divergence from perturbed ini-
tial conditions. The method of Lyapunov characteristic
exponents serves as a useful tool to quantify chaos,
and specially, two positive maximum LEs are usually
interpreted as an indication that the system is hyper-
chaotic. To accurately calculate the LE of system (7)
with f (x), the continuous differentiable function tanh
(K0(x ± Ei )) should be adopted to approximate the
sign function sgn (x ± Ei ) [21,35]. We choose the
parameter K0 = 1000, which is so large that the cal-
culated exponent is independent of its value to high
precision. And we take the Dormand–Prince method

(RK45) as the ODE solver and use the famous Wolf
method.

From Fig. 2, the dynamical behaviors of system (7)
can be clearly observed, and the system can evolve
into torus, chaotic attractor, and hyperchaotic attrac-
tor.

At the beginning, the strength ρ begins from 6. It can
be seen that system (7) has a toruswhenρ changes from
6 to 6.13. And a typical torus is shown in Fig. 3a, when
ρ = 6 the four LEs are 0.000, 0.00, −3.49, and −3.50,
respectively. When ρ is near to 6.14, the LEs are 0.153,
0.00, −0.941, and −7.016. There exists one positive
Lyapunov exponent, and the system is chaotic. From
Fig. 2b, the maximum Lyapunov exponent approxi-
mates to zero (The LEs are 0.00, 0.00, −0.697856,
and −7.262967 when ρ = 6.24, and the system (7)
has a torus.) when the parameter ρ changes from 6.24
to 6.25. Therefore, the system (7) is chaotic (ρ ∈
[6.14, 6.23] ∪ [6.26, 6.38]), a typical chaotic attractor
is shown in Fig. 3b when ρ = 6.2. When ρ ≈ 6.38,
the LEs are 1.083, 0.126, −0.04, and −10.821, and the
system (7) is hyperchaotic (ρ ∈ [6.38, 10]) except the
critical value 9.95. A typical hyperchaotic attractor is
shown in Fig. 3c when ρ = 9, and the Lyapunov expo-
nents are L1 = 4.18, L2 = 0.82, L3 = −0.008, L4 =
−24.002; therefore, system (7) is hyperchaotic. At the
same time, the Lyapunov dimension of the system (7)
is calculated by

DL = j + 1
∣
∣L j+1

∣
∣

j∑

i=1

Li

= 3 + 4.18 + 0.82 − 0.008

24.002
= 3.208 (15)
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Generating hyperchaotic multi-wing attractor 2657

Fig. 3 Simulated phase
portraits of system (7) with
different ρ: a ρ = 6,
b ρ = 6.2, c ρ = 9

Fig. 4 Poincaré sections of
system (7) with parameters
ρ = 6.2. a Projection on
y − z plane with x = 0; b
projection on x − z plane
with ϕ = 3; c projection on
x − y plane with z = 1

Fig. 5 Poincaré sections of
system (7) with parameters
ρ = 9. a Projection on
y − z plane with x = 0; b
projection on x − z plane
with ϕ = 0; c projection on
x − y plane with z = 1

From (15), it can be seen that the system (7) is really
a dissipative system, and the Lyapunov dimension of
this system is fractional. Therefore, system (7) is really
a new hyperchaotic system.

As an important analysis technique, the Poincaré
map can reflect bifurcation and folding properties of
chaos. Figures 4 and 5 show the Poincaré sections of
system (7) with different parameters.
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Fig. 6 Bifurcation diagram
of system (7) by adjusting
ρ: a 6 < ρ < 10,
b 6 < ρ < 6.5

Table 1 Dynamic analysis of systems after replacing R2, R3, R4, and R5 with the memristor, respectively

Case Replaced
resistor

Dimensionless equation Symmetry Eigenvalue

Case2 R2
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = −αx + ρW (ϕ)y
ẏ = βy − xz/P
ż = f (x) − γ z
ϕ̇ = −y

(x, y, z, ϕ) ↔ (−x,−y, z,−ϕ) λ1 = 0

λ2 = −α

λ3 = β

λ4 = −γ

Case3 R3
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = α(y − x)
ẏ = ρW (ϕ)y − xz/P
ż = f (x) − γ z
ϕ̇ = −y

(x, y, z, ϕ) ↔ (−x,−y, z,−ϕ) λ1 = 0

λ2 = −α

λ3 = ρW (c)

λ4 = −γ

Case4 R4
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = α(y − x)
ẏ = βy − ρW (ϕ)xz/P
ż = f (x) − γ z
ϕ̇ = xz

(x, y, z, ϕ) ↔ (−x,−y, z,−ϕ) λ1 = 0

λ2 = −α

λ3 = β

λ4 = −γ

Case5 R5
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = −αx + αy
ẏ = βy − xz/P
ż = f (x) − ρW (ϕ)z
ϕ̇ = z

(x, y, z, ϕ) ↔ (−x,−y, z, ϕ) λ1 = 0

λ2 = −α

λ3 = β

λ4 = −ρW (c)

It canbe seen that the points ofPoincarémap inFig. 5
are denser than those in Fig. 4, which indicates that the
system (7) with parameter ρ = 9 has extremely richer
dynamics. From Figs. 4b and 5b, the Poincaré maps
prove the existence of the multi-wing attractor. It is
also obviously found that the system (7)with parameter
ρ = 9 exhibits better multi-wing feature.

In order to make further study for the proposed sys-
tem (7), its behavior with respect to the bifurcation
parameter ρ is discovered. The bifurcation diagram
shown in Fig. 6 is obtained by plotting the localmaxima
of the state variable x when changing the value of ρ in

the interval [6,10]. From Figs. 2 and 6, it can be seen
that the LEs and the bifurcation diagram match very
well. Both of them show that the memristive system
can demonstrate complex dynamic behaviors.

3.2 Other cases: replace R2, R3, R4, and R5,
respectively

Then, we replace the resistor R2, R3, R4, and R5 with
the memristor, respectively (R6 cannot be replaced
because the function f (x) is the key to generate the
multi-wing attractor). When α = 36, β = 20, γ =
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Fig. 7 LEs of memristive
systems in Table 1. a Case 2,
b Case 3, c Case 4, d Case 5
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3, P = 0.05, a = 4, b = 0.01 and f (x) defined by
(5), the dynamic analysis is shown in Table 1, and their
LEs are described in Fig. 7 (The last one is not dis-
played because it is always a big negative number).

From Table 1, we can easily observe that all systems
have only one equilibrium point O = {(x, y, z, ϕ)|x =
y = z = 0, ϕ = c}, where c is any real constant. At
the same time, λ3 is always positive, and it implies that
the equilibrium point O is unstable.

From Figs. 7 and 8, the dynamical behaviors of sys-
tems inTable 1 can be clearly observed, and the systems
have period orbits and torus, chaotic attractor, hyper-
chaotic attractor.

Case 2: InFig. 7a, the strengthρ is 0 at the beginning.
As ρ increases from 0, the chaotic attractor exists until
ρ ≈ 4.1, and the system transits to hyperchaos at ρ ≈
6. After ρ ≈ 12, the system is also chaotic.

Case 3: In Fig. 7b, the positive LE appears until the
parameter ρ ≈ 1.5, and the system transits to hyper-
chaos at ρ ≈ 1.6. Then, when ρ ≈ 2.1, the system
is begin to appear chaotic attractors except the critical

value ρ ≈ 3.1(The LEs are 0.00, 0.00,−0.638807, and
−25.641281, and the system has a torus. And a typical
torus is shown in Fig. 9). After ρ ≈ 3.7, the system is
also hyperchaotic.

Case 4: In Fig. 7c, as the strength ρ increasing, the
system is firstly chaotic and transits to hyperchaos at
ρ ≈ 0.18. Then, it returns to chaotic when ρ ≈ 0.33.

Case 5: In Fig. 7d, the strength ρ is 0 at the begin-
ning. When ρ changes from 0.1 to 0.022, the system is
chaotic, and it transits to hyperchaos at ρ ≈ 0.008.

Based on the above analysis, the new systems can
obviously exhibit hyperchaotic property after replac-
ing resistor R1, R2, R3, R4, and R5 in multi-wing
chaotic circuit with memristor. Especially, the two
positive LEs shown in Figs. 2 and 7 are relatively
larger, and the ranges of parameter ρ for generating
hyperchaotic multi-wing attractor in first four cases
are much larger than that in the last case. From
Table 1, it is easy to observe that the symmetry of
the Case 5 has changed, and it is not with z-axis
symmetry.
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Fig. 8 Bifurcation diagram
of systems in Table 1.
a Case 2, b Case 3, c Case
4, d Case 5

Fig. 9 Simulated phase
portraits of system in Case 3
when ρ = 3.1

4 Circuit implementation of the memristive system

In order to further observe the hyperchaotic multi-wing
attractor, the memristive system (7) has been imple-
mented by electronic circuits. In the circuit design,
we use operational amplifiers TL082, and multipliers
AD633JN.Their supply voltages are taken as E = ±15

V, and their saturated voltages are Vsat ≈ ±13.5 V.
We take the Case1 replacing R1 with memristor as an
example.

By putting a timescale factor RC on the dimension-
less time and putting a multiplication factor 0.1/V on
each multiplication with AD633JN, we can
obtain:
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Generating hyperchaotic multi-wing attractor 2661

Fig. 10 Circuit diagrams
for realizing memristive
hyperchaotic multi-wing
attractors

⎧
⎪⎪⎨

⎪⎪⎩

C v̇x = αvy/R − iB/R
C v̇y = βvy/R − (vxvz · 0.1/V )/PR
C v̇z = f (x)/R − γ vz/R
C v̇ϕ = vx/R

. (16)

where vx , vy, vz, and vϕ are the voltages on capaci-
tor, and iB is the current input from the memristor. By
comparing (16) with (6), the values of the capacitors
and resistors of the circuit in Fig. 10 may be taken as
follows: Cx = Cy = Cz = C, R2 = R/α, R3 =
R/β, R4 = 0.1PR, R5 = R/γ, R6 = R7 = R8 = R.
Let us take R = 100 k
 and C = 100nF. When
α = 36, β = 20, γ = 3, and P = 0.05, we have
R2 = 2.78 k
, R3 = 5 k
, R4 = 0.5 k
, R5 =
33.3 k
, R6 = R7 = R8 = 100 k
.

A simple memristor with classical components pro-
posed in Ref. [23] is shown in the dashed box in Fig. 10.

It can be obtained that

iB = vx

Ra
+ v2ϕvx

Rb
· 0.1/V · 0.1/V. (17)

In the memristor, if we take Cw = C and Rw = R,
then it is not hard to see that

Ra = R

ρa
Rb = R

300ρb
. (18)

When a = 4, b = 0.01, and ρ = 6, we can
easily obtain Ra = 4.16 k
, Rb = 5.55 k
. When
a = 4, b = 0.01, and ρ = 6.2, we can easily get Ra =
4.03 k
, Rb = 5.376 k
. When a = 4, b = 0.01, and
ρ = 9, we can easily acquire Ra = 2.78 k
, Rb =
3.7 k
.

Figure 11 shows the oscilloscope traces from the
memristive circuit in Fig. 10.Except for a few transients
originating from different initial conditions, the results
are in agreement with Fig. 3.

5 Conclusion

In this paper, a novel hyperchaotic multi-wing system
has been introduced by replacing resistor inmulti-wing
chaotic circuit with flux-controlledmemristor. It is very
interesting that the new system is not only hyperchaos
but also multi-wing. In addition, this method of replac-
ing resistor with memristor can be extended to design
and implement other new continuous hyperchaotic sys-
tems. The hyperchaotic property is verified by theoret-
ical analysis, numerical simulation. And we carry out
the circuit implementation of new memristive system.
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Fig. 11 Experimental
observations of memristive
multi-wing system (7).
a ρ = 6, b ρ = 6.2. c ρ = 9

(a) 

(b)

(c)                           

xoy xoz xoφ

xoy xoz xoφ

xoy xoz xoφ

Since the new hyperchaotic multi-wing systems have
more complex dynamical behaviors than the normal
chaotic systems, it is believed that the proposed mem-
ristive systems will have broad applications in various
chaos-based information technologies such as secure
communication and encryption.
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