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Abstract The training of neural networks involves
numerous operations on the weight matrix. If neural
networks are implemented in hardware, all weights
will be updated in parallel. However, neural networks
based on CMOS technology face many challenges in
the updating phase of weights. For example, deriva-
tion of the activation function and error back prop-
agation make it difficult to be realized at the circuit
level, even though the back propagation algorithm is
rather efficient and popular in neural networks. In this
paper, a novel synaptic unit based on double identical
memristors is designed, on the basis of which a new
neural network circuit architecture is proposed. The
whole network is trained by a hardware-friendlyweight
simultaneous perturbation (WSP) algorithm. The hard-
ware implementation of neural networks based onWSP
algorithm only involves the feedforward circuit and
does not require the bidirectional circuit. Furthermore,
two forward calculations are merely needed to update
all weightmatrices for each pattern,which significantly
simplifies the weight update circuit and allows sim-
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pler and easier implementation of the neural network
in hardware. The practicability, utility and simplicity of
this scheme are demonstrated by the supervised learn-
ing tasks.
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1 Introduction

With the rapid development of artificial intelligence,
neural networks are attracting more and more atten-
tions and play a significantly important role in the field
of image recognition, speech recognition [1] and auto-
matic control, etc. Up to now, most of neural networks
have been realized by software, which lacks the inher-
ent parallelism of neural networks. However, circuit
operations are inherently parallel and capable of pro-
viding high speed computation. Therefore, it is neces-
sary to research hardware implementations of neural
networks.

Regarding hardware implementations of neural net-
works, many studies have already been conducted [2–
8], most of which implemented neural networks via
CMOS technology. However, the implementation of
nonvolatile weight storage is a major bottleneck for
them. On the other hand, when the area and consump-
tion taken into account, it is a hard task to efficiently
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realize the circuit-based neural networks using CMOS
technology.

Recently, a novel device, the memristor [9–13], pro-
vides a fire-new approach for hardware implementa-
tions of neural networks. The memristor, a nonvolatile
programmable resistor, was first physically realized by
HP Labs in 2008 [14]. Current through the memristor
or voltage across the memristor enables to tune mem-
ristor resistance. When its excitation is turned off, the
device keeps its most recent resistance until the excita-
tion is turned on again. Memristor is widely applied
to chaotic circuits [15,16], memory and neural net-
works. In memristor-based neural networks, memris-
tor’s nonvolatility is significantly similar to the biolog-
ical synapse, which spurs it to be a promising candidate
for weight storage. And the fact that memristor belongs
to nanodevices enables it easier to be integrated in the
analog circuit. Because of these, memristor was widely
used in hardware implementations of neural networks.

Many memristor-based neural networks were previ-
ously trained by the so-called spike-timing-dependent
plasticity (STDP) [17–21], which was intended for
explaining the biological phenomenon about tuning
synaptic junction strength of the neurons. Besides,
Sheri et al. realized neuromorphic character recogni-
tion system with two PCMO memristors as a synapse
[22].Nishitani et al.modified an existing three-terminal
ferroelectric memristor (3T-FeMEM) model, and the
STDP was exploited to perform supervised learning
[19]. However, the convergence of STDP-based learn-
ing is not guaranteed for general inputs [23].

Other memristor-based learning systems recently
attract people’s attentions. For example, memristor-
based single-layer neural networks (SNNs) trained
by the perceptron algorithm were designed to com-
plete some linear separable tasks [24,25]. Yet, it is
the single-layer structure and binary outputs that limit
its wide-ranging applications. Therefore, constructing
memristor-based multilayer neural networks (MNNs)
[26–29] that are rather more practical and efficient than
SSNs is requisite. In 2012, Adhikari et al. put forward a
modified chip-in-the-loop learning rule forMNNswith
memristor bridge synapses that consisted of three tran-
sistors and four identical memristors and realized zero,
negative and positive synaptic weights [30]. Unlike the
conventional chip-in-the-loop learning, a complexmul-
tilayer network learning was conducted by decompos-
ing it into multiple simple single-layer network learn-
ing, and the gradient descent algorithmwasused to train

all single-layer networks [30]. Their design makes the
training process simplified and indeed reduces the com-
munication overhead and the circuit complexity. How-
ever, their initial training and the weight update calcu-
lation were performed in software. In 2015, Soudry et
al. designed an artificial synapse constituting of a single
memristor and two transistors, and BP algorithm was
used to train the whole network [31]. Indeed, it is fairly
novel for their design that the errors are encoded as cor-
respondingweight update timeand the errors and inputs
are introduced into weight updating process by means
of the state variables of memristors. However, BP algo-
rithm needs to propagate the error backward from the
output layer to the hidden layers, and the update weight
is obtained by calculating the derivative of the activa-
tion function. These complex calculations are not easy
to implement at the circuit level.

Focusing on the difficulties in efficiently imple-
menting learning rule like BP algorithm in hard-
ware, some hardware-friendly algorithms were pro-
posed and applied to the circuit implementation of
neural networks. For example, in 2015, the random
weight change (RWC) algorithm was used to train the
memristor-based neural network where the synaptic
weights were randomly updated by a small constant in
each iteration [32]. Their design simplifies the circuit
structure and does not involve complex circuit oper-
ations. However, in RWC’s weight updating process,
just the sign but not the value of the error variation is
considered, and the direction of weight change is ran-
dom every time, which results in more iterations being
needed.

In order to solve the problems in the memristor-
based neural network trained by RWC and BP algo-
rithm, in this paper, a new memristor-based neural net-
work circuit trained by weight simultaneous perturba-
tion (WSP) algorithm is proposed. WSP algorithm was
introduced in [33]. Perturbations whose signs are ran-
domly selected with equal probability are simultane-
ously added to all weights, and the difference between
the first error function without perturbations and the
second one with perturbations is used to control the
change of weights in WSP. Unlike RWC algorithm,
both the sign and value of the variation of the error
function are exploited to update all weights. Hence,
fewer iterations are needed compared with RWC algo-
rithm.Additionally, inWSP, complex calculations such
as derivation and error back propagation are not also
involved compared with BP algorithm. Though the
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algorithm is relatively efficient and simple, so far,
the memristor-based neural network circuit trained by
WSP algorithm is not available. The hardware architec-
ture of the neural network trained byWSP algorithm is
therefore proposed in this paper. In addition, in order
to solve the problem of storing and updating weights, a
novel synaptic unit based on double identical memris-
tors is designed, and taking full advantage of the char-
acteristics of WSP algorithm, this design only needs
two forward computations for each pattern to update
all weight matrices, which greatly simplifies the cir-
cuit structure. This paper indicates that it is possible
for neural networks to be actualized in a simpler, more
compact and reliable form at the circuit level.

The remainder of this paper is organized as follows.
In Sect. 2, the basic information aboutmemristor, RWC
algorithm andWSP algorithm is introduced. In Sect. 3,
the circuit implementations of SNNs and MNNs are
described in detail. In Sect. 4, the proposed circuit
architectures are numerically evaluated by supervised
tasks to demonstrate its practicability. Finally, Sect. 6
presents conclusions.

2 Preliminaries

In this section, the basic information about memristor,
RWC algorithm and WSP algorithm is described.

2.1 Memristor

In 1971, Chua et al. firstly proposed the missing fourth
fundamental circuit element, the memristor, which is
a nonlinear passive two-terminal electrical component
relating electric charge and magnetic flux linkage [11].
And the memristor’s electrical resistance can be tuned
according to its current or voltage. Its physical model
[34] is represented by the following formulas:

i(t) = G(s(t))v(t) (1)
ds(t)

dt
= v(t) (2)

whereG(s(t)) is thememductance. v(t) and i(t) repre-
sent voltage and current, respectively. s(t) denotes the
state variable.

Assume that G(s(t)) is n-order differentiable near
s∗. G(s(t)) is expanded to the Taylor series at s = s∗
as follows:

G(s) = G(s∗)

0! + G′(s∗)

1! (s − s∗) + G′′(s∗)

2! (s − s∗)2

+ · · · + G(n)(s∗)

n! (s − s∗)n + O
[
(s − s∗)

n]

(3)

where n is a positive integer. G(n)(s∗) represents nth
order derivative of the function G(s) at s = s∗, and
O[(s − s∗)n] represents higher-order infinitesimal of
(s − s∗)n .

Soudry et al. demonstrated that if the variations in the
value of s(t) are restricted to be small, G(s(t)) is able
to be approximated by first-order Taylor series around
certain point s∗ [31]. The memductance is hence given
by

G(s) = G(s∗)
0! + G ′(s∗)

1! (s − s∗) (4)

simplified form:

G(s(t)) = g∗ + ĝs(t) (5)

where ĝ = [dG(s)/ds]s=s∗ and g∗ = G(s∗) − ĝs∗.
Based on this memristor model, SSNs and MNNs

are efficiently implemented in hardware.

2.2 Random weight change

In the randomweight change (RWC) algorithm, synap-
tic weights are randomly tuned by a small constant, and
the learning rule is given as
⎧
⎪⎨

⎪⎩

ωi j (n + 1) = ωi j (n) + �ωi j (n + 1)

�ωi j (n + 1) = �ωi j if E(n + 1) < E(n)

�ωi j (n + 1) = δ ∗ Rand(n) if E(n + 1) ≥ E(n)

(6)

where E(·) represents the squared error. δ is a small
constant and Rand(n) represents the random function
which has merely two values, namely ± 1. Weights of
the network are changed randomly from the initial state
with a small increment of + δ or − δ. If E(·) decreases
by the weight change, the same weight change is iter-
ated until the error increases. If E(·) increases, weights
are updated randomly again [32]. The RWC algorithm
is similar to the Brownian weight movement [35], both
of which belong to the stochastic learning algorithm
[36]. In RWC, only the sign of the variation of the error
function is considered, but its value is not fully uti-
lized. Since the absolute value of the weight change
is constant in RWC, this value is generally small in
each weight update in order to ensure convergence.
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Moreover, the direction of weight change is random
every time. Hence, the general trend of the trajectory
of the weight change is to change along the direction
of energy decline, as shown in [32, Fig. 1]. Therefore,
more iterations are needed in RWC.

TheWSP algorithm is different from the RWC algo-
rithm. In WSP, the sign and value of the variation of
the error function are used to tune the weights, which
makes the data fully utilized, as described in Sect. 2.3.
It also does not require complicated operations such as
derivative and error back propagation.

2.3 Weight simultaneous perturbation

For convenience, the following nomenclatures are used
in this paper.
ωi j (i = 1, 2, . . . ,m, j = 1, 2, . . . , n): A weight.
�ωi j (i = 1, 2, . . . ,m, j = 1, 2, . . . , n): Variation of
ωi j .
hi j (i = 1, 2, . . . ,m, j = 1, 2, . . . , n): A sign. hi j =
± 1. The sign of hi j is randomly selected with equal
probability.
W: A m × n weight matrix consisting of ωi j .
�W: Am×nweight updatematrix consisting of�ωi j .
H: A m × n sign matrix consisting of hi j .
x: A vector representing a pattern.
d: A vector representing a target output.
o: A vector representing an actual output of the network
without perturbations for the input x.
oper: A vector representing an actual output of the net-
work with simultaneous perturbations for the input x.

Hence, the relationship between x and o is given by

o = f (Wx) (7)

where f (·) represents the activation function. The error
function is defined as

E = 1

2
‖d − o‖2 (8)

In BP algorithm, the weight update learning rule is
⎧
⎪⎨

⎪⎩

�ωi j = −η
∂E

∂ωi j

ωi j (n + 1) = ωi j (n) + �ωi j

(9)

Regarding the WSP algorithm, its execution details
are as follows. Firstly, the normal error function, with-
out simultaneous perturbations, is calculated. Then,
perturbations whose signs are randomly selected are
simultaneously applied to all weights, and the error

function calculation process is again executed. Finally,
the weight update matrices are calculated according to
the difference between the first and second error func-
tions. In 1993, Alspector et al. [33] demonstrated that
inWSP algorithm, the amount of change in weight was
able to be approximated by the following formulas for
a perturbation small enough
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�ωi j = −η
∂E

∂ωi j

≈ −η
E(ωi j + ωperhi j ) − E(ωi j )

ωper
hi j

ωi j (n + 1) = ωi j (n) + �ωi j

(10)

The learning rule is expressed in matrix form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�W = −η
E(W + ωperH) − E(W)

ωper
H

= −η
�E

ωper
H

W(n + 1) = W(n) + �W

(11)

where ωper, a positive (usually small) constant, is the
value of simultaneous perturbation injected into the
weight. η is the learning rate, a positive coefficient.

According to Eq. (11), the WSP algorithm requires
only two feedforward operations of the neural network.
And compared with BP algorithm, derivative of the
activation function and error back propagation which
are difficult to be implemented in hardware are not
involved. In addition to simple sign circuits to control
the direction of weight perturbation and weight adjust-
ment, it either does not require other multiplication and
transposition operations.

3 Circuit architecture design

In this section, implementing simple SNNs and general
MNNs architectures based on memristor arrays with
the WSP algorithm is described. MNNs are generally
constructed by cascading multiple SNNs. Therefore,
attentions are mainly paid to the design of SNNs.

3.1 Artificial synapse

As regards the circuit architecture of the artificial
synapse in the memristor crossbars, three possible
approaches are exhibited in Fig. 1. In Fig. 1a, a single
memristor at the cross point of the circuit is regarded
as a synapse for weight storage where the adjustable
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Fig. 1 Three circuit architectures of memristor-based artificial
synapse

Fig. 2 A synaptic unit based on double identical memristors

range of eachweight is relatively small. Accordingly, in
order to expand this range, the architectures in Fig. 1b,
c are extensively employed in memristor crossbars. In
Fig. 1b, each input signal and its opposite polarity sig-
nal are fed to a column of memristors, and in Fig. 1c
each input signal is applied to a pair ofmemristors [27].
By adding simple auxiliary circuits, twomemristors are
considered as a synapse. In this paper, the architecture
in Fig. 1b is selected.

The architecture constituting of two MOSFET (p-
type and n-type) and an ideal singlememristor was pro-
posed by Soudry [31, Fig. 3(a)]. Taking full advantage
of their architecture, a novel artificial synapse based on
double identical memristors is designed, as shown in
Fig. 2.

The current of the n-type transistor in the linear
region is

in = kn

[
(vgs − vth)vds − 1

2
v2ds

]
(12)

where vgs and vds are the gate–source voltage and the
drain–source voltage, respectively. vth is the threshold
voltage. kn is the conductance parameter of the n-type
transistor. When vgs < vth, the current of the n-type
transistor is equal to zero, namely in = 0. Similarly,
for the p-type transistor working in the linear region,
its current is

i p = −kp

[
(vgs − vth)vds − 1

2
v2ds

]
(13)

where kp is the conductance parameter of the p-type
transistor. When vgs > −vth, the current of the p-type
transistor is equal to zero, namely i p = 0. Assume that
kn = kp = k and the absolute value of the threshold
voltage, namely |vth|, is the same for two transistors.

The synaptic unit is fed with three voltage input sig-
nals in which u and ū = − u are, respectively, con-
nected to the terminals of the n-type and p-type tran-
sistors and an enable signal e whose value is 0, VDD,
or −VDD (with VDD > vth) is connected to the gate of
both transistors.

We assume that

− vth < u < vth (14)

According to [31,37], in order to ensure that the input
voltage is mainly applied to the memristor, assume that

k(vDD − 2vth) >> G(s(t)) (15)

Consequently, there are three possible situations:

1. When e = 0, four transistors are off. In otherwords,
the output current of the synaptic unit is equal to
zero, namely I = 0. In this case, the state variables
are not changed.

2. When e = VDD, Tr2 and Tr3 both work in the linear
region, while Tr1 and Tr4 are off. The currents I1
and I2 through both memristors, respectively, are
{
I1 = (g∗ + ĝs1)u
I2 = −(g∗ + ĝs2)u

(16)

The output current I of the synaptic unit is

I = I1 + I2 = (s1 − s2)ĝu = �sĝu (17)

3. When e = −VDD, Tr1 and Tr4 both work in the
linear region,while Tr2 and Tr3 are off. The currents
I1 and I2 through bothmemristors, respectively, are
{
I1 = −(g∗ + ĝs1)u
I2 = (g∗ + ĝs2)u

(18)

The output current I of the synaptic unit is

I = I1 + I2 = (s2 − s1)ĝu = �sĝu (19)
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where for notational simplicity,�s contains the sign of
the change in two state variables.

According to the relationship between input signal
and output signal fromEqs. (17) and (19),we can define
the synaptic weight as

ω = �sĝ (20)

The above analysis indicates that the design of the
synaptic unit is feasible.

3.2 SNN circuit architecture

Based on the proposed synaptic unit in Fig. 2, a
3 × 3 SNN circuit architecture is designed in Fig. 3,
where each synaptic unit is indexed by (i, j), with
i ∈ {1, . . . , 3} and j ∈ {1, . . . , 3}. Each synaptic unit
receives two inputs u j , ū j and an enable signal ei j , and
produces an output current Ii j . Each column of synap-
tic units in the arrays shares two inputs u j and ū j .
The current summing operation,

∑
j Ii j , is conducted

at the terminal of each row. The row output interfaces
convert the total current to the dimensionless output
signal ri .

Fig. 3 A 3×3 SNN circuit architecture. ωi j represents a synap-
tic unit which receives two voltage input signals u j , ū j and an
enable signal ei j , and produces an output current Ii j , wherein
the terminal ei j controls not only the sign of input signal but also
the duration and direction of weight adjustment signal. And the
brown box represents the row output interface for data conver-
sion. (i ∈ {1, . . . , 3}, j ∈ {1, . . . , 3}). (Color figure online)

3.3 Circuit operation

During running period of WSP algorithm, the circuit’s
operations in each trial are composed of simple five
phases. First, in the computing phase, the current sum-
mation operation and calculation of the error function
are realized. Second, in the perturbing phase, perturba-
tions with random signs are added to all weights simul-
taneously. Third, a new computing phase is needed in
order to get the new error function. Fourth, in the restor-
ing phase, restoring signals are applied to memristors
to eliminate effect of the perturbation in the perturb-
ing phase on the state variables. Fifth, in the updating
phase, all weight matrices are adjusted according to
Eq. (11). The signals and their effect on the state vari-
able are shown in Fig. 4.

(1) First computing phase A vector x from the
dataset is encoded by multiplying a positive constant
a, which allows to convert a dimensionless number x j
to corresponding voltage u j , namely u = ax. In order
not to change the state of the memristor at last, when
the input signal is greater than zero, namely x j > 0,
the enable signal is designed as follows:

ei j (t) =
{
VDD, if 0 ≤ t < 0.5T1
−VDD, if 0.5T1 ≤ t < T1

(21)

When the input signal is less than zero, namely x j < 0,
the enable signal is designed as follows:

ei j (t) =
{−VDD, if 0 ≤ t < 0.5T1
VDD, if 0.5T1 ≤ t < T1

(22)

According to Eq. (2), the total changes of the state vari-
ables for both memristors are, respectively, given by
⎧
⎨

⎩

�si j1 = ∫ 0.5T1
0 (ax j )dt + ∫ T1

0.5T1
(−ax j )dt = 0

�si j2 = ∫ 0.5T1
0 (−ax j )dt + ∫ T1

0.5T1
(ax j )dt = 0

(23)

From Eq. (23), the net changes of the state variables
both are zero, which indicates that the resistance of
both memristors is not finally changed. When t ∈
[0, 0.5T1) , the transistors Tr2 and Tr3 both work in
the linear region, while Tr1 and Tr4 correspondingly
are in the cutoff region. The currents I1 and I2 in Fig. 2
are calculated according to Eq. (16):
{
Ii j1 = a(g∗ + ĝsi j1)x j
Ii j2 = −a(g∗ + ĝsi j2)x j

(24)

And the output current I of each synaptic unit from
Eq. (17) is

Ii j = Ii j1 + Ii j2 = aĝ(si j1 − si j2)x = aĝsi j x j (25)
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Therefore, the total current in each row terminal Φi is

Φi =
∑

j

Ii j = aĝ
∑

j

si j x j (26)

The target output vectord from the dataset commonly is
dimensionless. The constant c, consequently, is signif-
icantly essential to convert the current unit to a dimen-
sionless number in the row output interface, namely

oi = cΦi = acĝ
∑

j

si j x j (27)

According to Eq. (20), we obtain

ωi j = acĝsi j (28)

On the basis of the Ohm’s law, the arithmetic opera-
tionWx is realized in this circuit. Finally, according to
the target output d and the actual output o, the first error
function also called cost function in machine learning
is calculated and stored in a buffer circuit. The error
function is given by

Efir = 1

2
‖d − o‖2 (29)

(2) Perturbing phaseDuring perturbing phase, a pair
of voltage signals uper and ūper with unchanging ampli-
tude and duration are applied to the terminals u and ū in
order to alter the state of memristors and introduce the
simultaneous perturbation. To generate random pertur-
bation, let e = hi j VDD control the sign of each pertur-
bation, as described in Section III-A and the duration
of ūper is the same as that of e.

ei j = hi j VDD if T1 ≤ t < T2 (30)

From Eq. (28), when t ∈ [T1, T2), the perturbation
constant ωper is given by

sper = ωper

acĝ
(31)

From the definitional perspective of the state variable,
the total change in the internal state for the synaptic
unit is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uper = axper
if T1 ≤ t < T2

�sper = �s1 − �s2
= ∫ T2

T1

[
uper − (−uper)

]
dt

= 2axper(T2 − T1)

(32)

where the absolute values of �s1 and �s2 are equal
because two memristors of the synaptic unit are iden-
tical. According to Eqs. (31) and (32), the duration of
the perturbing signal with a constant amplitude is

Tper = T2 − T1 =
∣∣∣∣

ωper

2a2cĝxper

∣∣∣∣ (33)

Fig. 4 Operation protocol of a single synaptic unit (note that for
the curve of S in the figure, we intentionally enlarge the variation
of S in the perturbing phase and the restoring phase, and expand
the duration of the perturbing phase and the restoring phase in
order to better observe its change)

where Tper is a positive constant. In other words, the
duration of the perturbing phase is changeless through-
out the training process, which also explains why the
magnitude and duration of the voltage signals uper and
ūper are fixed.

(3) Second computing phaseDuring each computing
phase, the operations of the entire network are the same
as the first computing phase. In this phase, the enable
signal is ( for x j > 0)

ei j (t) =
{
VDD, if T2 ≤ t < T2+T3

2
−VDD, if T2+T3

2 ≤ t < T3
(34)

And the input signals are the same as in the first com-
puting phase. Hence, the total changes in the internal
state variables for the synaptic unit are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�si j1 = ∫ T2+T3
2

T2
(ax j )dt + ∫ T3

T2+T3
2

(−ax j )dt

= 0

�si j2 = ∫ T2+T3
2

T2
(−ax j )dt + ∫ T3

T2+T3
2

(ax j )dt

= 0

(35)

And the error function is given by

Esec = 1

2

∥∥d − oper
∥∥2 (36)

(4) Restoring phase During the perturbing phase,
simultaneous perturbations are added to change the
state of memristors. Restoring signals are, hence,
needed to restore memristors to the stage where simul-
taneous perturbations are not added, which is signifi-
cantly critical for accurate update of all weights. Yet,
there are some differences compared with the per-
turbing phase. The enable signal and input signal are,
respectively,
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⎧
⎨

⎩

uper = axper
if T3 ≤ t < T4

ei j = −hi j VDD

(37)

And the duration of e and u must meet the following
requirement:

Tper = T4 − T3 (38)

(5) Updating phase During updating phase, the
updating voltage signals with a constant amplitude,
namely uupd and ūupd, are, respectively, connected to
the terminals u and ū. And the difference between two
error functions is given by

�E = E(W + ωperH) − E(W) = Esec − Efir (39)

According to the learning rule described by Eq. (11),
the variation of each weight is

�ωi j = −η
�E

ωper
hi j (40)

From Eq. (28), we obtain

�si j = −η
�E

acĝωper
hi j (41)

The direction of weight adjustment is controlled by the
enable signal e.
⎧
⎨

⎩

ei j = VDD if �ωi j > 0
ei j = 0 if �ωi j = 0
ei j = −VDD if �ωi j < 0

(42)

From Eq. (2), the variation of the state variable for the
synaptic unit is, hence, (for �ωi j > 0)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uupd = axupd
if T4 ≤ t < T5

�si j = ∫ T5
T4

[
uupd − (−uupd)

]
dt

= ∫ T5
T4

2axupddt
= 2a(T5 − T4)xupd

(43)

According to Eq. (41) and Eq. (43), the duration of the
updating signal with a constant amplitude axupd is

Tupd = T5 − T4 =
∣∣∣
∣η

�E

2a2cĝωperxupd

∣∣∣
∣ (44)

Therefore, the sign and duration of the input and update
signals can be easily controlled by the enable signal e.
Finally, for example, assume that the signs of�ω11 and
�ω12 are plus and others are minus in Fig. 3. So, its
weight update circuit is designed as Fig. 5.

Through the above analysis, there are three notewor-
thy points:

Fig. 5 Circuit structure of weight updating when �ω11 and
�ω12 both are positive and others are negative. The duration
of the enable signal is Tupd

1. In the whole training process, the duration and
amplitude of the perturbation signal, namely Tper
and axper, are constants, and the random sign of
the perturbation signal is controlled by the termi-
nal e.

2. The duration of computing and restoring phase for
each pattern is also constant throughout the training
process.

3. In the kth weight update process, the duration and
amplitude of the updating signal, namely Tupd and
axupd , are constants for all synaptic units, and the
sign of the updating signal is controlled by the ter-
minal e. (k, a positive integer, is the index of weight
update.)

3.4 MNN circuit architecture

In part 2 and part 3, attentions are primarily paid to the
SNNs circuit architecture and its operations with the
WSP algorithm training. And derivative of the acti-
vation function and error back propagation are not
involved for the multilayer neural network in WSP,
which greatly simplifies the circuit structure. There-
fore, in this part, the MNNs circuit architecture cas-
cading multiple SNNs, mainly a two-layer neural net-
work, is discussed. Regarding the circuit architecture
of MNNs, its schematic is described in Fig. 6.
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Fig. 6 Architecture of a general MNN trained by WSP algo-
rithm. f (·) represents the activation function. The green box
represents a layer in a multilayer network. (Color figure online)

For a two-layer neural network, its mathematical
model is expressed as

o = W2 f (W1x) (45)

where f (·) denotes the activation function. W1 and
W2 are the input-hidden and the hidden-output weight
matrix, respectively. And from Eq. (11), the weight
update rule for a two-layer network is given by
⎧
⎪⎪⎨

⎪⎪⎩

�W1 = −η
�E

ωper
H1

�W2 = −η
�E

ωper
H2

(46)

where H1 and H2 are, respectively, the random sign
matrices ofW1 andW2. The learning rule for a general
MNNs is derived based on Eq. (11)

�Wp = −η
�E

ωper
Hp (47)

where the subscript p, a positive integer, is the index
of network layer without taking the input layer into
account.

As for the circuit operations ofMNNs, it is basically
the same as that of SNNs. Similarly, it is only two feed-
forward operations that are needed to synchronously
update all weight matrices for the MNN when WSP
algorithm used to train the neural network according to
Eq. (47).

4 Circuit simulation

In this section, the neural network circuit is modeled
in SimElectronics attached to the Simscape toolbox
in MATLAB to evaluate the circuit performance. The
memristor model [31] proposed by Soudry is exploited

Table 1 Circuit parameters

Parameter Value

uper 40mV

a 0.1V

VDD 5V

T1 20µs

c 1.0 × 108 A

g∗ 1µ S

ĝ 180µSV−1 s−1

in this paper. In SimElectronics, basic electrical com-
ponent models including the MOSFET are provided.
In addition, other circuit operations required for real-
izing the WSP algorithm such as random sign genera-
tion with equal probability and calculation of the error
function are implemented usingMATLABcode. As for
the weight updating, a voltage signal with a constant
magnitude, namely axupd in Fig. 4, is needed, and its
polarity is controlled by the enable signal e. Hence,
the weight update value is converted to corresponding
pulse of specific duration from Eq. (44). Other param-
eters in this paper are shown in Table 1.

4.1 Basic operations of synaptic unit

Toverify basic operations of the proposed synaptic unit,
a numerical simulation is carried out. A relatively sim-
ple 2 × 2 synaptic unit circuit whose input signals x1
and x2 are separately set to 0.1 and 0.8 is simulated in
ten operation cycles, namely t ∈ [0, 10T5]. The simul-
taneous perturbation ωper is 0.004, and its sign is ran-
domly chosenwith equal probability. Themagnitude of
updating signal, namely axupd, is 60mV. With regard
to weight adjustments of four synapse units, assume
that
⎧
⎪⎪⎨

⎪⎪⎩

�ω11 = 0.008 × sign(5T5 − t)
�ω12 = 0.008 × sign(5T5 − t)
�ω21 = 0.008 × sign(t − 5T5)
�ω22 = 0.008 × sign(t − 5T5)

(48)

It is because the synaptic unit is a dual identical mem-
ristors structure that the absolute value of the corre-
sponding weight change for each memristor is 0.004.

Based on the above hypothetical data, the circuit
simulation results are shown in Fig. 7, together with
the input voltages of synaptic units and its correspond-
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Fig. 7 A 2× 2 synaptic unit circuit simulation during ten oper-
ation cycles. Top and middle: voltage (solid blue) and weight
(solid red) change for each synaptic unit. Bottom: corresponding

output result (Output1,Output2). vi j is the input signal connected
to the terminal u of the synaptic unit (i ∈ [1, 2] , j ∈ [1, 2]).
(Color figure online)

ing weights. The feasibility of basic operations of the
circuit is finally verified.

4.2 Three input odd parity function

A three input odd parity function task is conducted
using a two-layer network with five neurons in the
hidden layer and only one neuron in the output layer.
Table 2 shows the truth table of the three odd parity
function. In this task, the activation function is set as
the sigmoid function. The learning rate η is 0.2, and
the significantly important parameter ωper, the amount
of weight simultaneous perturbation, is set to 0.002. If
ωper is too large, the whole system may not converge
from Eq. (11). On the contrary, if it is too small, the

number of iterations will become very large. The mag-
nitude of perturbation voltage, namely axper, is 40mV.
The curve between network training errors and itera-
tions is shown in Fig. 8. Eight different test samples,
all possible inputs of three input odd parity function,
are finally used to test the performance of the network.
The target output and actual output are shown in Fig. 9
where the mean squared errors (MSE) are 0.0016. As
shown in Fig. 8, the iterations trained with WSP algo-
rithm are about 1000. For the same task, the iterations
trained with RWC algorithm are approximately 10,000
and the iterations of BP are about 1000 in [38, Fig. 12],
which indicates that the performance of the proposed
memristor-based neural network with WSP training is
successful.
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Table 2 Truth table of three input parity function

x1 x2 x3 Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

(a)

(b)

Fig. 8 Training error versus iterations curve. aThe training error
with algorithm. b The training error with circuit

4.3 Iris classification

Another more complex classification task, Iris clas-
sification, is conducted to test accuracy of the pro-
posed memristor-based architecture trained by WSP
algorithm. The Iris dataset [39] contains 150 patterns
which can be divided into three classes (Setosa, Ver-
sicolor, Virginica), and each pattern consists of four
features which are normalized in this task. The sim-
ulation is executed using the designed two-layer net-
work with four neurons in the hidden layer and three
neurons in the output layer. In this task, the activa-
tion function is set as the sigmoid function. The three

Fig. 9 The target output and the actual output of circuit simula-
tion for eight samples. The red and blue dots represent the actual
output and the target output, respectively. (Color figure online)

classes of the dataset are encoded with three bits, and
the details are shown in Table 3 in which Output-X1,
Output-X2 and Output-X3 represent outputs of three
neurons in the output layer, respectively. In terms of
network parameters, the learning rate η is 0.02, and the
significantly important parameter ωper is set to 0.001.
The training set size is 120. Finally, the training error
is shown in Fig. 10, and 30 test samples are selected
to test the network performance. In Fig. 11, the target
output and actual output are depicted. TheMSE of each
bit in Fig. 11a–c are 0.0004, 0.0012 and 0.0006, respec-
tively. The iterations trained with RWC algorithm are
approximately 20,000 in Fig. 10c, while that of WSP
are approximately 2,000 in Fig. 10b. The iterations of
BP are about 1200 in [31, Fig. 8(b)]. ComparedwithBP
algorithm, the iterations with WSP algorithm training
are more. But comparing [31, Fig.4(b)] with Fig. 6, the
circuit structure trained by WSP algorithm is simpler,
because it does not involve complicated circuit opera-
tions, such as derivative of the activation function and
error back propagation. These results indicate that the
proposed scheme is practical.

5 Discussion

The iterations of WSP, RWC and BP algorithms are
shown in Table 4 for three input odd parity function and
Iris classification. WSP algorithm is an approximation
to the gradient descent algorithm, so its convergence
speed is smaller than that of the BP algorithm based
on Eq. (10). RWC algorithm is based on the Brownian
random motion equation, so the convergence speed is
smaller thanWSPalgorithmbased onEq. (6).Although
converging faster than RWC and WSP, BP algorithm
involves complex operations such as the derivative of
activation function and error back propagation. And in
BP, the weight changes depend on gradient of the error
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Table 3 Coding list for
three classes

Category Encoded output

Output-X1 Output-X2 Output-X3

Setosa 1 0 0

Versicolor 0 1 0

Virginica 0 0 1
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Fig. 10 Training error versus iterations curve. a The training
error with algorithm. b The training error with circuit. c The
training error with WRC algorithm

function. When the error function has a great number
of local minima, the neural network easily converges
to local optimum. Many proposed solutions use a per-
turbation inserted in the network in order to get out
from local minima. The introduction of noise during

Fig. 11 The target output and the actual output of circuit sim-
ulation for 30 test samples. a–c, respectively, are results of the
output neurons Output-X1, Output-X2 and Output-X3. The red
and blue dots represent the actual output and the target output,
respectively. (Color figure online)

learning allows the solution to reach the global opti-
mum. Furthermore, it has been shown that trainingwith
noise may improve the generalization capability of the
network and reduce the negative effects of the weight
variations after learning [40]. The advantages of WSP
with respect to the BP are the ability to avoid local
minima of the error function and the low computational
complexity, which leads to a simplification in hardware
implementation.

6 Conclusion

A memristor-based hardware implementation of the
neural network with on-chip learning is proposed.
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Table 4 The iterations of RWC, BP and WSP algorithms

Algorithm Task

Three input odd parity function Iris classification

RWC 10,000 20,000

BP 900 [40] 1200 [40]

WSP 1000 2000

Moreover, WSP algorithm, a hardware-friendly algo-
rithm, is adopted to train the neural network, which
does not require error back propagation and calculation
of the derivative of activation function. Only two feed-
forward operations are needed to update all weights.
Therefore, the circuit architecture is simpler and more
compact compared with BP algorithm. By combin-
ing nonvolatile memristors and WSP algorithm, a sim-
ple, compact and reliable hardware implementations of
neural networks is put in real-life practice. Two super-
vised learning tasks, three input odd parity function
and Iris classification, are conducted to test the accu-
racy of the network, and the correctness of the proposed
architecture is similar to its software counterpart,which
opens an opportunity for large-scale online learning in
MNNs.
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