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ABSTRACT

Multiscroll hidden attractors have attracted extensive research interest in recent years. However, the previously reported multiscroll hidden
attractors belong to only one category of hidden attractors, namely, the hidden attractors without equilibrium points. Up to now, multiscroll
hidden attractors with stable equilibrium points have not been reported. This paper proposes amultiscroll chaotic systemwith two equilibrium
points. The number of scrolls can be increased by adding breakpoints of a nonlinear function. Moreover, the two equilibrium points are stable
node-foci equilibrium points. According to the classi�cation of hidden attractors, the multiscroll attractors generated by a novel system are
the hidden attractors with stable equilibrium points. The dynamical characteristics of the novel system are studied using the spectrum of
Lyapunov exponents, a bifurcation diagram, and a Poincaré map. Furthermore, the novel system is implemented by electronic circuits. The
hardware experiment results are consistent with the numerical simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116732

Since the�rst hidden attractorwas found inChua’s circuit, hidden
attractors have received great interest. The chaotic attractors gen-
erated by systems with no equilibrium point, in�nite equilibrium
points, and only stable equilibrium points are hidden attractors.
The Shilnikov criteria cannot be used to verify the existence of
the hidden attractors. Recently, constructing hidden attractors
with multiscroll, which have more complicated dynamical prop-
erties, is a hot topic. However, the previously reported multiscroll
hidden attractors belong to only one category of hidden attrac-
tors, namely, hidden attractorswithout equilibriumpoints. In this
paper, we construct a novel chaotic system with multiscroll hid-
den attractors, which has two equilibrium points. The number of
scrolls can be increased by adding breakpoints of the piecewise
linear function. Moreover, the two equilibrium points are stable
node-foci equilibrium points. According to the classi�cation of
hidden attractors, themultiscroll attractors generatedby thenovel
system are the hidden attractors with only stable equilibrium
points.

I. INTRODUCTION

In the past few decades, the study of chaotic systems has been
greatly developed both in applications and in theories. Chaotic

systems have been applied to secure the communication,1 image
encryption,2,3neural networks,4 and so on. Therefore, it is of great sig-
ni�cance to study chaotic systems. The equilibrium points of chaotic
systems play an important role in the chaotic theory. It was thought
that chaotic attractors are closely related to the equilibrium points
of chaotic systems. According to the Shilnikov criteria,5 the emer-
gence of chaos requires at least one unstable equilibrium point, and
an attractor can be derived from an unstable equilibrium point. Con-
structing chaotic systemswith complex dynamical characteristics has
always been the focus of this research. Multiscroll chaotic systems
provoked extensive researches for their more complex dynamical
characteristics than single-scroll ones. The �rstmultiscroll oscillator6

was derived from the original Chua’s circuit by introducing a non-
linear resistor with multiple breakpoints. Then, various nonlinear
functions such as stair function,7 saw-tooth function,8 piecewise lin-
ear function,9 and so on were used to construct multiscroll chaotic
systems. The basic idea of constructing a multiscroll chaotic system
is to use a nonlinear function with multiple breakpoints to increase
the number of unstable equilibrium points, so as to generate scrolls
from the extra equilibrium points.

However, the discovery of hidden attractors posed a challenge to
apply the conventional Shilnikov criteria to verify chaos. An attrac-
tor is called a hidden attractor if its attraction basin does not intersect
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with small neighborhoods of any equilibrium point; otherwise, it is
called a self-excited attractor.10 According to the de�nition of hid-
den attractors, hidden chaotic attractors are not generated from the
equilibrium points of a chaotic system. Therefore, the Shilnikov
criteria cannot be used to verify hidden attractors. From a compu-
tational perspective, hidden attractors can be classi�ed into three
categories: hidden attractors with stable equilibrium points, hid-
den attractors without equilibrium points, and hidden attractors
with in�nite equilibrium points. The �rst chaotic hidden attractor
with stable equilibrium points was found in a generalized Chua
system.11 Hereafter, di�erent chaotic systems12–14 and hyperchaotic
systems15–17 with stable equilibrium points were reported. A chaotic
system without equilibrium points was presented by Wei in 2011.18

In 2013, Jafari et al. developed 17 quadratic �ows with no equi-
libria by a systematic search.19 To explore whether chaotic systems
without equilibrium points are really hidden, Pham et al., in 2014,
investigated the hidden chaotic systems with no equilibrium point
by starting the trajectory in the neighborhood of complex �xed-
points.20 They came to the conclusion that the chaotic systems with
no equilibrium point are really hidden. In recent years, many hidden
attractor systemswithout equilibrium points but with rich dynamical
characteristics21–23 were reported. In 2013, Jafari and Sprott intro-
duced the concept that chaotic systems with line equilibrium points
(in�nite equilibrium points) can be classi�ed as hidden attractor
chaotic systems.24 It also motivated researchers to investigate hidden
attractor chaotic systems with in�nite equilibrium points and rich
dynamical characteristics.25–27

Recently, much attention has been paid to multiscroll hidden
attractor chaotic systems that do not satisfy the Shilnikov criteria.
In 2016, Jafari et al. reported a multiscroll chaotic system without
equilibrium points by introducing a sine function into the Sprott
A system.28 In the same year, Hu et al. constructed a multiscroll
chaotic system without equilibrium points based on an improved
Sprott A system by introducing a nonlinear function composed of
a sine function, a sign function, and a state variable.29 The next
year, Hu et al. used a memristor and a sine function to implement a
5-dimensional multiscroll chaotic system without equilibrium
points.30 Based on a multiple piecewise linear function, Escalante-
González et al. proposed a multiscroll chaotic system without equi-
librium points.31 And they explored the mechanism of how the no
equilibrium chaotic system generates multiscroll chaotic attractors.

Obviously, the multiscroll hidden attractor systems reported
above mainly focused on systems without equilibrium points. It is
also of great signi�cance to study multiscroll chaotic systems with
stable equilibrium points and in�nite equilibrium points. Up to now,
multiscroll chaotic attractors with stable equilibrium points have not
been reported. In this paper, a multiscroll hidden attractor chaotic
system is constructed by introducing a nonlinear function with mul-
tiple breakpoints. A notable feature of the novel system is that there
are two equilibriumpoints of the system; the number of scrolls can be
increased by adding breakpoints of the nonlinear function.Moreover,
the two equilibrium points of the novel system are stable node-
foci equilibrium points, that is to say, the novel multiscroll chaotic
attractors are hidden attractors with stable equilibrium points.

The rest of this paper is organized as follows. The mathemat-
ical model of the novel system is presented in Sec. II. In Sec. III,
the dynamical behaviors of the novel system are studied numerically.

TABLE I. Parameters of f (z) and corresponding scroll numbers.

Parameters of f (z) Scroll numbers

Case 1 E1= 0.3, N= 1,m0= −1, andm1= 1 2× 2 scrolls
Case 2 E1= 0.3, N= 3,m0=m2=−1, and

m1=m3= 1
2× 4 scrolls

Case 3 E1= 0.3, N= 5,m0=m2=m4 =−1, and
m1=m3=m5= 1

2× 6 scrolls

Case 4 E1= 0.3, N= 7,m0=m2=m4=m6= −1,
andm1=m3=m5=m7= 1

2× 8 scrolls

A corresponding circuit for the implementation of the novel system
is designed in Sec. IV. Finally, Sec. V concludes the paper.

II. THE SYSTEM MODEL

In this section, we propose a multiscroll chaotic system. The
state equation is



















ẋ = y − ax

ẏ = −2x + nxw2 − bxy + 10yf (z),

ż = 1 − y2

ẇ = −x − w

(1)

where a, b, and n are constant coe�cients of the system state
equation; f (z) is a piecewise linear function and its formulation is

f (z) = mNz + 0.5

N
∑

n=1

(mn−1 − mn)(|z + En| − |z − En|), (2)

En =

(

1 + 2

n−1
∑

i=1

|m0|

|mi|

)

E1, (3)

where En (n= 1, 2, 3, . . . ,N) is the breakpoint of the function f(z) and
mn (n= 1, 2, 3, . . . ,N) is the slope rate. Let us take a= 0.1, b= 0.4, and
n= 0.02. The parameters of the piecewise linear function f (z) and
the corresponding number of scrolls are shown in Table I. Figure 1
displays the phase portraits in the y-z plane of di�erent number of
scrolls. According to the numerical simulation, we can decide that the
system can generate multiscroll attractors whenN is an odd number.
However, when N is an even number, there is no chaotic motion.

III. DYNAMICS BEHAVIORS

In this section, we take Case 2 in Table I as an example to
study the dynamical behaviors of the novel system. The dynamical
characteristics of the novel system are analyzed using equilibrium
points and stability, a cross section of the attraction basin, the spec-
trum of Lyapunov exponents, a bifurcation diagram, and Poincaré
maps.
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FIG. 1. Phase portraits in the y-z plane of (a) 2× 2 scrolls, (b) 2× 4 scrolls, (c) 2× 6 scrolls, and (d) 2× 8 scrolls.

A. Equilibrium points and stability analysis

The equilibrium points of system (1) can be obtained by solving
the following equation:



















y − ax = 0

−2x + nxw2 − bxy + 10yf (z) = 0

1 − y2 = 0

−x − w = 0

. (4)

From the �rst, third, and last equations of the above equation,
we can easily derive (x, y, w)= (1/a, 1, −1/a) and (x, y, w)= (−1/a,
−1, 1/a). To get the values of state variable z, we need to solve the
following equations, which are derived by substituting the values of
x, y, and w into Eq. (4):























f (z) =
1

10

(

2

a
− n

(

1

a

)3

+
b

a

)

, when (x, y,w) =

(

1

a
, 1,−

1

a

)

,

f (z) =
1

10

(

2

a
− n

(

1

a

)3

−
b

a

)

, when (x, y,w) =

(

−
1

a
,−1,

1

a

)

.

(5)

Considering the parameters, a= 0.1, b= 0.4, and n= 0.02, we
can get f (z)= 0.4, when(x, y, w)= (10, 1, −10), and f (z)= −0.4,
when (x, y, w)= (−10, 1, 10). Considering the Case 2 in Table I,
the piecewise linear function f (z) has parameters E1= 0.3, N= 2,
m0=m2= −1, andm1 =m3= 1. Figure 2 shows the diagramof func-
tion f (z). It can be calculated that when z= −E3, z= −E1, and z=E2,
f (z) equals to 0.3. When z=−E2, z=E1, and z=E3, f (z) equals to
−0.3. From Fig. 2, we can determine that f (z)= 0.4 can be satis-
�ed only when z>E3, and f (z)= −0.4 can be satis�ed only when
z< −E3. The expressions of f (z) in these two parts are as follows:

{

f (z) = z − 1.8, when z > E3,

f (z) = z + 1.8, when z < −E3.
(6)

We can get that when z1= 2.2, f (z) equals to 0.4 and when
z2=−2.2, f (z) equals to −0.4. Thus, the two equilibrium points are
S1(10, 1, 2.2, −10) and S2(−10, −1, −2.2, 10).

The Jacobian matrix of system (1) at equilibrium can be
expressed as

J(S) =







−a 1 0 0
−2 + nw2 − by −bx + 10f (z) 10y 2nxw

0 −2y 0 0
−1 0 0 −1







∣

∣

∣

∣

∣

∣

∣

S

. (7)

Substituting S1 (10, 1, 2.2, −10) and S2(−10, −1, −2.2, 10) in
the above equation, we have

J(S1) =







−0.1 1 0 0
−0.4 0 10 −4
0 −2 0 0

−1 0 0 −1






(8)

FIG. 2. Graph of the piecewise linear function f (z) with E1 = 0.3, N= 3,
m0 =m2 = −1, and m1 =m3 = 1.
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FIG. 3. Attraction basin of 2× 4 scroll attractors (a) cross section passing through S1 and S2, (b) zooming in around S1, and (c) zooming in around S2.

and

J(S2) =







−0.1 1 0 0
0.4 0 −10 −4
0 2 0 0

−1 0 0 −1






. (9)

The characteristic roots of system (1) at equilibrium point S1
are λ1=−0.126, λ2= −0.7823, and λ3,4=−0.0956± 4.4965i, and
the characteristic roots at equilibrium point S2 are λ1=−0.1334,
λ2= −0.7718, and λ3,4= −0.0974± 4.4058i. In this case, both equi-
librium points S1 and S2 are stable node-foci equilibrium points,
which means the motions starting from the neighborhood of S1 and
S2 will converge to them, respectively.However, the novel systemgen-
erates chaotic attractors with 2× 4 scrolls. This implies that the 2× 4
scroll attractors are hidden attractors.

B. Attraction basin of the 2×4 scroll attractors

According to the de�nition of hidden attractors, if the attraction
basin of chaotic attractors does not intersect with the open neigh-
borhood of equilibrium points, the chaotic attractors can be called
hidden attractors. To check whether the attraction basin intersects
with small neighborhood of equilibrium points S1 and S2, a cross

section plane {x, y= 0.1x, w= −x, z} is selected to pass through the
two stable equilibrium points. Figure 3(a) shows the attraction basin
passing through the two stable equilibrium points S1 and S2 repre-
sented by red dots. Figures 3(b) and 3(c) display the enlarged regions
around the equilibrium points S1 and S2, respectively. The attraction
basin of chaotic attractors is indicated by yellow region; the cyan
regions represent that the motion starting from these initial state
regions will converge to the stable equilibrium points. It can be seen
from Figs. 3(b) and 3(c) that the attraction basins of chaotic attrac-
tors do not intersect with the two stable equilibrium points. Thus, we
can identify the attractors as hidden attractors.

Figure 4(a) displays the 3Dviewof the 2× 4 scroll hidden attrac-
tors. Figure 4(b) shows the time domain wave of state variable z in
1× 106 s. As can be seen from Fig. 4(b), the chaotic motion lasts for a
long time, which means the hidden attractors do not have transitory
behaviors.

C. Equilibrium points and stability of other cases

The equilibrium points of other cases in Table I can be obtained
by the same analysis method. The two equilibrium points of Case 1
are S1 (10, 1, 1, −10) and S2 (−10, −1, −1, 10). The two equilibrium
points of Case 3 are S1 (10, 1, 3.4, −10) and S2 (−10, −1, −3.4, 10).

FIG. 4. (a) 3D view (x-y-z) of 2× 4
scroll attractors; and (b) time domain
wave of state variable z in 1× 106 s.
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FIG. 5. Attraction basin of 2× 2 scroll attractors (a) cross section passing through S1 and S2, (b) zooming in around S1, and (c) zooming in around S2.

FIG. 6. Attraction basin of 2× 6 scroll attractors (a) cross section passing through S1 and S2, (b) zooming in around S1, and (c) zooming in around S2.

FIG. 7. Attraction basin of 2× 8 scroll attractors (a) cross section passing through S1 and S2, (b) zooming in around S1, and (c) zooming in around S2.
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FIG. 8. (a) Spectrum of Lyapunov exponents changing a from 0 to 1.5; and (b) the corresponding bifurcation diagram of state variable z.

And the two equilibrium points of Case 4 are S1 (10, 1, 4.6,−10) and
S2 (−10,−1,−4.6, 10). FromEq. (7), we can see that the value of state
variable z has no e�ect on the eigenvalues of the Jacobian matrix.
The eigenvalues of all cases are λ1= −0.126, λ2=−0.7823, and
λ3,4=−0.0956± 4.4965i at equilibrium point S1, and λ1=−0.1334,
λ2= −0.7718, and λ3,4=−0.0974± 4.4058i at equilibrium point S2.
That is to say, all the cases in Table I are hidden attractors.

To further con�rm these hidden attractors, we display the
attraction basin of Case 1 in Fig. 5, the attraction basin of Case 3 in
Fig. 6, and the attraction basin of Case 4 in Fig. 7. As can be seen in
Figs. 5–7, the attraction basins of chaotic attractors, which are indi-
cated by yellow region, do not intersect with any equilibrium points.
Thus, we can determine these Cases as hidden attractors from the
�gures.

D. Lyapunov exponent spectra and bifurcation

diagram

For further investigating the dynamics of system (1), the con-
trolled parameter a is changed from 0 to 1.5, while �xing the other
parameters b= 0.4, n= 0.02, E1= 0.3, N= 3, m0 =m2= −1, and
m1=m3= 1. The corresponding spectrum of Lyapunov exponents
is shown in Fig. 8(a), and the bifurcation diagram of state variable
z is shown in Fig. 8(b). According to the spectrum of Lyapunov
exponents, when a∈ [0, 1.28), the maximum Lyapunov exponent is
positive, indicating the system is chaotic in this parameter region,
and when a∈ [1.28, 1.5], the maximum Lyapunov exponent equals
to zero, indicating the system is periodic. The bifurcation of state
variable z matches the spectrum of Lyapunov exponents very well.

E. Poincaré map

Figure 9 shows the Poincaré map diagram of the 2× 4 scroll
attractors. The Poincaré map of system (1) in y-z, x-z, x-y, and x-w

planes are, respectively, shown in Figs. 9(a)–9(d). As can be seen
in Fig. 9, the Poincaré maps of the system on di�erent planes are
a number of dense points, which indicate that the system has the
characteristics of bifurcation and foldability of chaos.

IV. CIRCUIT IMPLEMENTATION

In this part, a circuit that can generate the 2× 4 scroll hidden
attractors is designed. And the hardware circuit is implemented by
using TL082 op-amps. All the multipliers are selected, AD633JN,
whose voltage gain is 0.1. The supply voltages of the circuit elements
are ±15V. The implementation circuit is shown in Fig. 10.

The voltage across the capacitors Vc1, Vc2, Vc3, and Vc4 repre-
sents the variable values x, y, z, and w. The di�erential function can
be changed as















































C1

dx

dt
=

1

R1

x −
1

R2

y

C2

dy

dt
=

1

R3

x +
1

R4

xy +
1

R5

yf (z) −
0.01

R6

xw2

C3

dz

dt
=

1

R7

V1 +
0.1

R8

y2

C4

dw

dt
=

1

R9

x +
1

R10

z

. (10)

The values of capacitors are �xed as C1=C2=C3=C4= 10 nF.
Based on the parameters of the 2× 4 scroll attractors, the values of
resistors are set asR1 = 1M�,R2=R3=R4=R7=R9=R10= 100 k�,
R5=R8= 10 k�, and R6= 2M�. The piecewise linear function f (z)
is implemented by saturation function circuits. And the saturated
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FIG. 9. Poincaré map in the (a) y-z plane, (b) x-z plane, (c) x-y plane, and (d) x-w plane.

output voltage of TL082 is V sat = ±13.5V. The math relationships of
circuit parameters and the corresponding parameters of function f (z)
can be expressed as follows:

E1 =
Ra

Rb

|Vsat|,

E2 =

(

1 +
Ra

Rb

)

V2 −
Ra

Rb

|Vsat|,

E3 =

(

1 +
Ra

Rb

)

V2 +
Ra

Rb

|Vsat|, (11)

m0 = m2 = −
Rb

RaRc

,

m1 = m3 =
Rb

RaRc

.

Set the value of resistor as Rb = 1350 k�. According to the
parameter settings of piecewise linear function f (z), the values of
other resistors and DC voltages, as shown in Fig. 10(b), can be cal-
culated as Ra = 30 k�, Rc= 45 k�, R11= 20 k�, V2= 1.1739V, and
V3= −1.1739V. Figure 11 shows the phase portraits generated by
the hardware experiment and software simulation of NI Multisim.
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FIG. 10. Circuit models for implementing 2× 4 scroll hidden attractors. (a) Fundamental circuit for a four-dimensional system. (b) Circuit for generating the piecewise linear
function f (z).
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FIG. 11. Phase portraits of 2× 4 scroll
hidden attractors (a) in the y-z plane
implementation by hardware; and (b) in
the y-z plane simulated by NI Multisim
software.

V. CONCLUSION

In this paper, we propose amultiscroll chaotic system. The novel
system has only two stable node-foci equilibrium points. The num-
ber of scrolls can be increased by adding breakpoints of the piecewise
linear function. The multiscroll hidden attractors are veri�ed by the
attraction basin. Performances of the hidden attractors are investi-
gated by phase portraits, the spectrum of Lyapunov exponents, the
bifurcation diagram, and the Poincaré map. The hardware experi-
ment of the proposed system is carried out. It is believed that the
proposed novel system will contribute to the development of the
theoretical study of a multiscroll hidden attractor.
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