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A Time-Delayed Hyperchaotic
System Composed of Multiscroll
Attractors With Multiple Positive
Lyapunov Exponents
The paper proposes a time-delayed hyperchaotic system composed of multiscroll
attractors with multiple positive Lyapunov exponents (LEs), which are described by a
three-order nonlinear retarded type delay differential equation (DDE). The dynamical
characteristics of the time-delayed system are far more complicated than those of the
original system without time delay. The three-order time-delayed system not only gener-
ates hyperchaotic attractors with multiscroll but also has multiple positive LEs. We
observe that the number of positive LEs increases with increasing time delay. Through
numerical simulations, the time-delayed system exhibits a larger number of scrolls than
the original system without time delay. Moreover, different numbers of scrolls with vari-
able delay and coexistence of multiple attractors with a variable number of scrolls are
also observed in the time-delayed system. Finally, we setup electronic circuit of the pro-
posed system, and make Pspice simulations to it. The Pspice simulation results agree
well with the numerical results. [DOI: 10.1115/1.4036831]
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1 Introduction

For the last few decades, the study on delay dynamical systems
has been considered one of the most important fields of research
owing to its ubiquity in various fields including biology, physics,
mathematics, engineering, etc. [1]. DDEs have been successfully
used to model natural systems which contain one or more time
delays, such as blood production in patients with leukemia
(Macky–Glass (MG) model), physiological model, population
dynamics, control system, and neural networks [2].

Beyond the mathematical modeling of the naturally occurring
phenomena, time-delayed systems have been extensively studied
in the literature for some important reasons, such as: (i) in the net-
works of coupled neurons, time delay has been shown to affect
the enhancement or suppression of synchronized oscillations,
amplitude death, and phase-coherent dynamic behaviors, etc. [3].
In particular, in the network of nonlinear oscillators, signal trans-
mission time delays are known to be responsible for many inter-
esting dynamic behaviors including phase-flip transitions leading
to synchrony or out of synchrony [3]. (ii) Time delay makes a sys-
tem infinite dimensional and enforces it to produce chaos with
higher dimensionality, which cannot be obtained from a low-
dimensional system [4]. Especially, the infinite dimensionality of
the time-delayed system offers an opportunity to enhance the rich-
ness of hyperchaos, having multiple positive LEs. Therefore,
time-delayed systems with multiple positive LEs have been identi-
fied as great candidates to improve the security in the communica-
tion schemes [5]. Apart from secure communication, chaotic and
hyperchaotic systems also play important roles in cryptography
[6] and chaos-based noise generators [7], etc.

For the above-mentioned reasons, researchers have carried out
extensive studies of time-delayed systems, which can generate
one or more positive LEs. Since Mackey and Glass proposed the
first chaotic delay differential equation which is a model of blood
production in patients with leukemia in 1977, various delay

chaotic systems have been reported [1,2,8–10]. By using feedback
controller or threshold controller, some chaotic oscillations with
time delay have been proposed, which exhibit chaotic attractors
with mono-scroll or double-scroll [8,9]. Tama�sevičius and
Pyragiene introduced a N-shaped nonlinear function in delay
dynamical system instead of commonly used Mackey–Glass type
function to exhibit hyperchaotic attractors with two-scroll [10].
Biswas and Banerjee reported the design, analysis, and experi-
mental implementation of two first-order time-delayed dynamical
systems which have different nonlinear functions, and in these
systems both chaotic and hyperchaotic attractors with monoscroll
and double-scroll can be observed [1,2].

However, in the above literatures, time-delayed chaotic or
hyperchaotic systems only generate monoscroll or double-scroll
attractors, and they do not generate multiscroll attractors. Gener-
ally speaking, dynamical systems with multiscroll attractors can
present more complex dynamics than general chaotic system with
monoscroll or double-scroll. Although many methods have been
proposed to generate multiscroll attractors [11–17], such as meth-
ods of piecewise linear function, saturated function, trigonometric
function, absolute value function, polynomial function, hyperbolic
function, modulation function, sign function, and nonlinear hys-
teresis function. Nevertheless, these methods can only construct
chaotic or hyperchaotic systems with multiscroll attractors, having
one or two positive LEs.

In this paper, we propose a time-delayed hyperchaotic system
composed of multiscroll attractors. The time-delayed system can
not only generate multiscroll attractors but also has multiple posi-
tive LEs. This is the main advantage of the proposed system over
the previous ones. We carry out stability analysis to identify the
parameter zone for which the system shows a stable equilibrium
response. Then, the proposed time-delayed system is simulated
numerically. The system dynamics is characterized with LEs
spectrum and bifurcation diagram. With the variation of time
delay and other system parameters, the system shows a lot of
dynamical behaviors, such as Hopf bifurcation, a period doubling
route to chaos, and hyperchaos with multiple positive LEs.
Through the phase diagram, we can observe hyperchaotic attrac-
tors with multiscroll and coexistence of multiple attractors with a
variable number of scrolls, etc. Finally, the time-delayed system
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has been realized by electronic circuit, and Pspice simulations are
made. We plot the phase diagram of the system, and the circuit
simulation results agree well with the numerical results.

The paper is organized in the following way: Section 2 pro-
poses the time-delayed system and reports its stability analysis.
Section 3 reports the numerical simulations including Lyapunov
exponents, bifurcation diagram, and phase diagram. Section 4
reports the electronic circuit realization and Pspice simulations of
the system. Section 5 concludes the outcome of the whole work.

2 The Proposed System and Its Stability Analysis

Let us consider the following three-order system proposed by
Sprott [18,19]:

_x ¼ y
_y ¼ z
_z ¼ �ay� azþ af ðxÞ

8<
: (1)

which is often called the jerk system. The dynamical characteris-
tics of the system (1) are dependent on the selection of f(x).

In Ref. [20], the form of a periodic function is described by

f ðxÞ ¼ sinð2pbxÞ (2)

and multiscroll attractors can be generated in the system (1) when
we select Eq. (2) as f(x). The jerk system with multiscroll attrac-
tors can be written as follows:

_x ¼ y
_y ¼ z
_z ¼ �ay� azþ a sinð2pbxÞ

8<
: (3)

where a, b � Rþ.
If we introduce time delay into the system (3), the proposed

three-order time-delayed system can be obtained as follows:

_x ¼ yðt� sÞ
_y ¼ z
_z ¼ �ay� azþ a sinð2pbxÞ

8<
: (4)

where s � Rþ is the intrinsic time delay in the time-delayed
system (4).

2.1 Stability of Fixed Point. The equilibrium points of the
time-delayed system (4) can be obtained by solving the following
equations:

yðt� sÞ ¼ 0

z ¼ 0

�ay� azþ a sinð2pbxÞ ¼ 0

8<
: (5)

where y (t� s)¼ y. We can easily observe that the time-delayed
system (4) has infinitely many equilibria O¼ {(x, y, z) | x¼ n/2b,
y¼ z¼ 0}, where n¼ 0, 1, 2, 3, 4,…. By linearizing the time-
delayed system (4) at point O, we can obtain the Jacobian matrix

Jo ¼
0 e�ks 0

0 0 1

62pab �a �a

0
@

1
A (6)

According to Eq. (6), the characteristic equation is given by

k3 þ ak2 þ akþ re�ks ¼ 0 (7)

where r¼62pab.

2.1.1 Stability for s¼ 0. At s¼ 0, the characteristic equation
(7) reduces to

k3 þ ak2 þ akþ r ¼ 0 (8)

Asymptotic stability will occur when all the roots of the character-
istic equation have negative real parts. By the Routh–Hurwitz cri-
terion, all roots of Eq. (8) have negative real parts if and only if

a > 0; r > 0; a2 � r > 0 (9)

Equation (9) is the first condition for choosing the system parame-
ters to achieve asymptotic stability of the time-delayed system (4)
for s¼ 0.

2.1.2 Stability for s 6¼ 0. Hopf bifurcation will appear if at
least one of the eigenvalues crosses the imaginary axis from the
left and enters the right half-plane. Thus, if the real part of eigen-
value varies from the left to right, we can say that the real part
which is less than zero is a stable state, the real part which is
greater than zero is a bifurcated state, and the real part which is
equal to zero is the limiting case. At the emergence of Hopf bifur-
cation, we make the real part be equal to zero.

Clearly, ix (x> 0) is a root of Eq. (7) if and only if

�ix3 � ax2 þ iaxþ r cos xs� i sin xsð Þ ¼ 0 (10)

Separating the real and imaginary parts, we have

ax2 ¼ r cos xs
�x3 þ ax ¼ r sin xs

�
(11)

Adding up the squares of both equations, we obtain

x6 þ a2 � 2að Þx4 þ a2x2 � r2 ¼ 0 (12)

Let z¼x2 and denote p¼ a2� 2a, q¼ a2, and v¼�r2. Then,
Eq. (12) becomes

z3 þ pz2 þ qzþ v ¼ 0 (13)

Denote

h zð Þ ¼ z3 þ pz2 þ qzþ v (14)

Then

h0 zð Þ ¼ 3z2 þ 2pzþ q (15)

Clearly, h (0)¼ v< 0, and limz!1 h zð Þ ¼ 1. Hence, there exists
a z0 2 0;1ð Þ so that h (z0)¼ 0. Thus, Eq. (13) has at least one
positive root. Without the loss of generality, we suppose that Eq.
(13) has three positive roots, denoted by z1, z2, and z3, respec-
tively. Then, Eq. (12) has three positive roots, say

x1 ¼
ffiffiffiffi
z1

p
; x2 ¼

ffiffiffiffi
z2

p
; x3 ¼

ffiffiffiffi
z3

p

Let

s jð Þ
k ¼

1

xk
arcsin �x3

k�axk

r

� �
þ2 j�1ð Þp

� �
;k¼1;2;3;j¼1;2;…

(16)

Then, 6ixk is a pair of purely imaginary roots of Eq. (7) with
s¼ sk

(j); k¼ 1, 2, 3; j¼ 1, 2,…. Clearly

lim
j!1

s jð Þ
k ¼ 1; k ¼ 1; 2; 3

According to the Hopf analysis in Ref. [21], it has some neces-
sary definitions, such as s0 and k(s), and there we use the same
definitions
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s0 ¼ s j0ð Þ
k0
¼ min

1�k�3;j�1
s jð Þ

k

n o
;x0 ¼ xk0

(17)

Let

k sð Þ ¼ a sð Þ þ ix sð Þ (18)

the root of Eq. (7) satisfying

a s0ð Þ ¼ 0; x s0ð Þ ¼ x0

Differentiating both sides of Eq. (7) with respect to s gives

dk sð Þ
ds
¼ rke�ks

3k2 þ 2akþ a� rse�ks

It follows from Eq. (7) that:

dRek s0ð Þ
ds

¼ w2
0

D
3x4

0 þ 2 a2 � 2að Þx2
0 þ a2

h i

where

D ¼ 3x2
0 � aþ rs0 cos x0s0

� 	2 þ 2ax0 þ rs0 sin x0s0ð Þ2

Let x0, s0, and k(s) be defined by Eqs. (17) and (18), respec-
tively, and z0¼x0

2. Suppose that a> 0, r> 0, a2� r> 0. Accord-
ing to the Theorem 2.4 in Ref. [21], then

(i) Because v< 0, all roots of Eq. (7) have negative real parts
when s � [0, s0).

(ii) Because v< 0, when s¼ s0 and h0(z0) 6¼ 0, 6ix0 is a pair of
simple purely imaginary roots of Eq. (7) and all other roots
have negative real parts. Moreover, when s � (s0, s1),
dRek s0ð Þ=ds > 0, and Eq. (7) has at least one root with a
positive real part, where s1 is the first value of s> s0 such
that Eq. (7) has purely imaginary root.

According to the Theorem 11.1 in Ref. [22] and the analysis of
the preceding context, we conclude that

(i) Because v< 0, when s � [0, s0), equilibrium points of the
time-delayed system (4) are locally asymptotically stable.

(ii) Because v< 0, when s¼ s0 and h0(z0) 6¼ 0, system (4) exists
Hopf bifurcation at its equilibrium points.

3 Numerical Simulations

3.1 Lyapunov Exponents. We calculate LEs of the time-
delayed system (4) with a method similar to the one described by
Farmer [23], which is essentially the method described by Benet-
tin et al. [24]. However, there is a crucial change to adapt the
Shampine–Thompson approach [25] which is based on the
Bogacki–Shampine Runge–Kutta method, namely, for purposes
of obtaining the norms of tangent vectors and applying the
Gram–Schmidt orthonormalization, a function scalar product is
used.

The spectrum of LEs in the s parameter space are calculated by
setting a¼ 1.2, b¼ 8 of the time-delayed system (4), which is
shown in Fig. 1(a). It is obvious from Fig. 1(a) that the time-
delayed system (4) has four positive LEs for s � [5.6, 8], while it
has three positive LEs for s � [3.55, 5.55]. It has two positive
LEs for s � [1.5, 3.5], and the system (4) has one positive LEs for
s � [0.05, 1.5].

To compare the dynamical complexity of the time-delayed sys-
tem (4) and the nontime-delayed system (3), we calculate LEs of
the two systems with variable b which are shown in Figs. 1(b) and
1(c). It is obvious from Figs. 1(b) and 1(c) that the time-delayed
system (4) has four positive LEs with variable b when a¼ 1.2 and

s¼ 8, while the nontime-delayed system (3) has only one positive
LEs with variable b when parameter a is the same.

By setting the system parameters as a¼ 1.2, b¼ 8 and s¼ 1.5,
hyperchaotic attractors of the time-delayed system (4) are plotted
in Figs. 2(a) and 2(b). Figure 2(b) denotes the local amplification
of (a). It is obvious from Figs. 1(a) and 2(b) that the time-delayed
system (4) has hyperchaotic attractors with multiscroll when sys-
tem parameters are chosen properly.

3.2 Bifurcation Diagrams. Bifurcation diagrams of the time-
delayed system (4) with s as the control parameter are shown in
Figs. 3(a) and 3(b), which are obtained by plotting the local max-
ima of y. Figure 3(b) denotes the local amplification of (a).
According to the analysis of bifurcation and periodic orbit in
Refs. [2] and [26], the system (4) can be analyzed further more.
When the system parameters are set to a¼ 1.2, b¼ 0.15, and ini-
tial conditions (x(0), y(0), z(0))¼ (1, 0, 0) in this section, we have
s0¼ 0.255 from Eqs. (16) and (17). Thus, we expect that at
s0¼ sH¼ 0.255, the fixed point loses its stability through Hopf
bifurcation, which is in accordance with the bifurcation diagram
of Fig. 3(a). From Figs. 3(a) and 3(b), the system (4) shows a
period doubling route to chaos beginning with s¼ 2.1. At
s¼ 2.77, period-1 orbit becomes unstable and period-2 orbit
appears. Further period doubling occurs at s¼ 2.88. Through a
period doubling sequence, the system enters into the chaotic
regime at s¼ 2.95. With future increase of s, at s¼ 7.1, the sys-
tem shows the emergence of hyperchaos.

We compute the first six Lyapunov exponents in the s parame-
ter space, which is shown in Fig. 3(c). It agrees well with the
bifurcation diagrams. A phase plane representation in the x–y
plane for different s is shown in Figs. 3(d)–3(f), which shows the
following characteristics: period-1 (s¼ 2.7), period-2 (s¼ 2.8),
and period-4 (s¼ 2.9).

3.3 More Scrolls in the Time-Delayed System (4) Than the
Ones in the Nontime-Delayed System (3). Both the nontime-
delayed system (3) and the time-delayed system (4) can generate
multiscroll attractors when parameters a and b are chosen prop-
erly. For simplicity, to induce and keep a chaotic state with multi-
scroll attractors in systems (3) and (4), parameters are selected as
a¼ 0.3 and b¼ 0.25. The numerical results in Fig. 4 show that the
nontime-delayed system (3) and the time-delayed system (4) gen-
erate different numbers of scrolls when the simulation time is the
same, and more scrolls can be observed in the time-delayed sys-
tem (4) than the ones in the nontime-delayed system (3) when the
simulation time is 3000.

3.4 Different Numbers of Scrolls With Variable s. The
multiscroll attractors of the time-delayed system (4) using differ-
ent choices of s are plotted in Fig. 5, and the system parameters
are selected as a¼ 0.3, b¼ 0.25. It is obvious from Fig. 5 that the
system (4) has 13 scrolls when s¼ 0.1, while it has more than 20
scrolls when s¼ 0.5. The numbers of scrolls in the system (4) are
different when s varies in the interval [0.1, 0.5].

3.5 Coexistence of Multiple Attractors With a Variable
Number of Scrolls. Coexistence of multiple attractors are two or
more attractors in a system with the same parameter but different
initial conditions [27]. Coexistence of multiple attractors means
that dynamical characteristics of nonlinear systems are sensitive
to the changes of initial conditions. It is well known that such a
phenomenon may induce many special effects such as symmetry-
breaking bifurcation, symmetry-restoring crisis, coexisting bifur-
cations, and hysteresis [28]. The multiscroll attractors of the
time-delayed system (4) using the different choices of initial con-
ditions are plotted in Fig. 6, and the system parameters are
selected as a¼ 0.3, b¼ 0.25. Coexistence of multiple attractors
with a variable number of scrolls can be observed in the time-
delayed system (4). It is obvious from Fig. 6 that the time-delayed
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Fig. 1 LEs of the nontime-delayed system (3) and time-delayed system (4) when initial conditions (x(0), y(0),
z(0)) 5 (1, 1, 1): (a) LEs of the system (4), (b) LEs of the system (4), and (c) LEs of the system (3)

Fig. 2 Hyperchaotic attractors with multiscroll of the time-delayed system (4) when t 5 3000
and initial conditions (x(0), y(0), z(0)) 5 (1, 1, 1): (a) hyperchaotic attractors and (b) local ampli-
fication of (a)

Fig. 3 Bifurcation diagram, LEs and x–y phase plane of the time-delayed system (4): (a)
bifurcation diagram, (b) local amplification of (a), (c) LEs diagram, (d) x–y phase plane for
s 5 2.7 (period-1), (e) x–y phase plane for s 5 2.8 (period-2), and (f) x–y phase plane for s 5 2.9
(period-4)
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system (4) has 11-scroll attractors within x varying in the interval
[�8, 36] for initial conditions (x(0), y(0), z(0))¼ (0, 0, 1), while it
has 13-scroll attractors within x varying in the interval [�36, 16]
for initial conditions (x(0), y(0), z(0))¼ (0, 1, 0).

4 Electronic Circuit Realization and Its Simulations

The proposed time-delayed system (4) is realized by the elec-
tronic circuit which is shown in Fig. 7, and we make Pspice simu-
lations to it. According to Kirchhoff circuit laws, the circuit
equation of the system (4) can be written as follows:

R15C4ð Þdx=dt ¼ R16

R1

ys

R19C5ð Þdy=dt ¼ R20

R21

z

R24C6ð Þdz=dt ¼ R25 �
y

R26

� z

R27

þ sin Gxð Þ
R28

� �

8>>>>>><
>>>>>>:

(19)

to Eq. (19), the integrator, adder, and phase inverter can be real-
ized by the use of operational amplifiers. A sine signal generator
which is obtained from the Pspice component library can realize
the nonlinear function [29]. Different choices of R25 and gain (G)
of Eq. (19) can realize the changes of parameter a and b of the
time-delayed system (4), respectively. Equation (19) can be equiv-
alent to the time-delayed system (4) with parameter a¼ 0.3 and
b¼ 0.25 when the resistance values are selected as R16¼
R20¼R25¼R1¼R21¼ 10 kX, R26¼R27¼R28¼ 33 kX, R29¼ 8
kX, and G¼ 1.57. The integration time constant of the integrator
is R24C6, and different values of R24 or C6 can change the fre-
quency range. We select R15¼R19¼R24¼ 50 kX and C4¼
C5¼C6¼ 20 lF in the Pspice simulations of the circuit equation
(19).

The time delay is realized by an active first-order all pass filter
(APF) which is shown in Fig. 8 [1]. The APF is designed with the
following parameters: R30¼R31¼ 2.2 kX, R¼ 10 kX, and C¼ 10
nF. Because that each APF contributes a delay of Td�
RC¼ 0.1 ms, the dimensionless parameter s¼RC/R0C0¼ 1. If
one wants to produce a delay s¼ i, i blocks are needed. We get
variable time delays by varying R.

4.1 Hyperchaotic Attractors With Multiscroll. We change
the system parameters of the time-delayed system (4) to a¼ 1.2
and b¼ 8 by setting R25¼ 40 kX and G¼ 50. The s¼ 1.5 is
obtained by using two stages of APF with R¼ 10 kX and R¼ 5
kX, respectively. According to these changes of electronic circuit
parameters, Pspice simulations are made to the time-delayed sys-
tem (4). It is obvious from Figs. 1 and 9 that hyperchaotic attrac-
tors with multiscroll can be obtained when system parameters are
chosen properly.

4.2 More Scrolls in the Time-Delayed System (4) Than the
Ones in the Nontime-Delayed System (3). To confirm the time-
delayed system (4) which can generate more scrolls than the
nontime-delayed system (3) when the system parameters are
selected as a¼ 0.3, b¼ 0.25, we set R25¼ 10 kX and G¼ 1.57.
The s¼ 0.1 of the time-delayed system (4) is obtained by using

Fig. 4 Multiscroll attractors of the nontime-delayed system (3) and the time-delayed system
(4) when initial conditions (x(0), y(0), z(0)) 5 (1, 1, 1): (a) system (3) and (b) system (4) with
s 5 0.1

Fig. 5 Different numbers of scrolls of the time-delayed system (4) when initial conditions
(x(0), y(0), z(0)) 5 (0, 1, 0) and t 5 3000: (a) s 5 0.1 and (b) s 5 0.5

Fig. 6 Coexistence of multiple attractors of the time-delayed
system (4) when s 5 0.1 and t 5 3000: x varying in the interval
[28, 36] for initial conditions (x(0), y(0), z(0)) 5 (0, 0, 1) and the
interval [236, 16] for initial conditions (x(0), y(0), z(0)) 5 (0, 1, 0)
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one APF with R¼ 1 kX. The electric circuit realization of the
nontime-delayed system (3) can be obtained by removing delay of
Fig. 7. According to these electronic circuit parameters, Pspice
simulations are made to systems (3) and (4). It is obvious from
Fig. 10 that more scrolls can be observed in the time-delayed sys-
tem (4) than the ones in the nontime-delayed system (3) when the
simulation time is 3000.

4.3 Different Numbers of Scrolls With Variable s. We fix
the system parameters of the time-delayed system (4) to a¼ 0.3
and b¼ 0.25 by setting R25¼ 10 kX and G¼ 1.57, and we vary
the intrinsic time delay s. The s¼ 0.1 is obtained by using only
one APF with R¼ 1 kX, and s¼ 0.5 is obtained by setting R¼ 5
kX. According to the changes of R, Pspice simulations are made

to the time-delayed system (4). It is obvious from Fig. 11 that the
time-delayed system (4) has 13 scrolls when s¼ 0.1, while it has
more than 20 scrolls when s¼ 0.5. The numbers of scrolls of the
time-delayed system (4) are different when s varies in the interval
[0.1, 0.5].

4.4 Coexistence of Multiple Attractors With a Variable
Number of Scrolls. The circuit simulation results of the time-
delayed system (4) using the different choices of initial conditions
are plotted in Fig. 12. The system parameters of the system (4) are
fixed to a¼ 0.3 and b¼ 0.25 by setting R25¼ 10 kX and G¼ 1.57,
and s¼ 0.1 is realized by selecting one APF with R¼ 0.1 kX.
According to the changes of initial conditions (x(0), y(0), z(0)),
Pspice simulations are made to the time-delayed system (4). It is
obvious from Fig. 11 that the time-delayed system (4) has 13-
scroll attractors within x varying in the interval [�36, 16] for
initial conditions (x(0), y(0), z(0))¼ (0, 1, 0), while it has 11-scroll
attractors within x varying in the interval [�8, 36] for initial con-
ditions (x(0), y(0), z(0))¼ (0, 0, 1). Figure 12 confirms that the
coexistence of multiple attractors with a variable number of
scrolls can be observed in the time-delayed system (4).

5 Conclusion

In this paper, we have reported a time-delayed hyperchaotic
system composed of multiscroll attractors with multiple positive
LEs. Analytically, we predicted the values of time delay and sys-
tem parameters of the time-delayed system (4) for which Hopf
bifurcation would appear. The LEs spectrum of the time-delayed
system (4) with different parameters varying is drawn. The

Fig. 7 The electric circuit realization of the time-delayed system (4)

Fig. 8 Active first-order all pass filter: R30 5 R31 5 2.2 kX and
C 5 10 nF
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presence of multiple positive LEs ensures the occurrence of
hyperchaos in the time-delayed system (4). Apart from LEs,
detailed numerical simulations proved that the dynamical charac-
teristics of the time-delayed system (4) are far more complicated
than those of the original system (3). The proposed time-delayed
system (4) has been realized by electronic circuits, and its Pspice
simulations are made. The analytical, numerical, and the

experimental studies are in a good agreement, revealing the full
system dynamical characteristics.

The following interesting features of the proposed three-order
time-delayed system (4) are noticed, which may be important
from the perspective of practical applications: (i) with the suitable
choice of the system parameters, the time-delayed system (4)
shows abundant dynamical behaviors, such as hyperchaos with
multiple positive LEs, hyperchaotic attractors with multiscroll,
Hopf bifurcation, limit cycle, and coexistence of multiple attrac-
tors. Thus, the proposed time-delayed system (4) can be used as
an efficient chaotic or hyperchaotic generator for chaotic cryptog-
raphy, chaos-based noise generator, and electronic communica-
tion applications. (ii) Moreover, since the chaotic and
hyperchaotic oscillations of the time-delayed system (4) are well
studied, further research can be carried out about the control and
synchronization of the proposed system.
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Fig. 9 Circuit simulations of hyperchaotic attractors with multiscroll of the time-delayed sys-
tem (4) when initial conditions (x(0), y(0), z(0)) 5 (1, 1, 1): (a) hyperchaotic attractors and (b)
local amplification of (a)

Fig. 10 Circuit simulations of multiscroll attractors of the nontime-delayed system (3) and
the time-delayed system (4) when initial conditions (x(0), y(0), z(0)) 5 (1, 1, 1): (a) system (3)
and (b) system (4) with s 5 0.1

Fig. 11 Circuit simulations of different numbers of scrolls of the time-delayed system (4)
when initial conditions (x(0), y(0), z(0)) 5 (0, 1, 0) and t 5 3000: (a) s 5 0.1, and (b) s 5 0.5

Fig. 12 Circuit simulations of coexistence of multiple attrac-
tors of the time-delayed system (4) when s 5 0.1 and t 5 3000: x
varying in the interval [236, 16] for initial conditions (x(0), y(0),
z(0)) 5 (0, 1, 0) and the interval [28, 36] for initial conditions
(x(0), y(0), z(0)) 5 (0, 0, 1)
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