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Abstract
In the existing affective associative memory neural network circuits, the change of emotions in the affective associative

learning and forgetting processes is abrupt and the intensity of emotions is invariable. In fact, the transition from one

emotion to another is a gradual process. In this paper, to realize the progressive changes of emotional intensity in the

affective associative memory neural network, the gradual learning, gradual forgetting and gradual transferring processes of

emotions are proposed and the memristor-based circuit of the affective associative memory neural network is designed. In

the designed circuit, the firing frequency of output neurons is closely correlated with the intensity of emotions. The higher

the firing frequency of output neurons, the stronger the emotional intensity. Based on the associative memory rule, the

dynamical change of the synaptic weights leads to the gradual variation of the frequencies of output neurons. Thus, the

function of variable emotional intensity can be realized and the gradual processes can be achieved. The PSPICE simulation

results are given to verify that the proposed circuit could realize the affective learning, forgetting and transferring functions

with gradual processes.
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1 Introduction

Artificial neural networks (ANNs) have always been a hot

topic in the field of artificial intelligence. They abstract the

neurons of the human brain from the perspective of

information processing and form different networks

according to the different connection methods. In recent

years, utilizing artificial neural networks to imitate bio-

logical behaviors and their means of information process-

ing has attracted the attention of scholars. For example,

there is a lot research realized learning, memory and cal-

culation based on the rules of biological associative

memory, non-associative learning, and affective computing

[1–11]. Currently, the calculation and processing of artifi-

cial neural networks are mainly carried out by software,

which consumes a lot of time for operating serially. The

parallel processing mode of hardware is compatible with

the distributed processing method of biological neural

network, which greatly improves operating speed [12]. The

hardware implementation of neural networks is mainly

based on transistor devices traditionally, which is limited

by the size and functions of transistors. As a result, the

synapse density of artificial neural networks implemented

by transistors is much lower than that of biological neural

networks. Since the memristor was predicted by Chua [13]

and first produced by Strukov et al. [14], it has attracted

widespread attention. Because of its nanometer-scale size

and resistive characteristics, memristor has become a

suitable candidate for building large-scale artificial neural
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networks with bionic synapses. Recently, memristive

neural networks have been widely studied in theory and

application. The theoretical research mainly focuses on

dynamics, such as stability [15–20], synchronization

[21–23], aiming to discover new functions and new phe-

nomena of the memristive neural networks. Meanwhile,

memristive neural networks have made breakthroughs in

many application fields such as image processing [24–26],

pattern recognition [27–30], intelligent control [31, 32] to

mimic the biological nervous systems for information

processing and calculation.

The Pavlov’s associative memory theory refers to mul-

tiple associations between one stimulus and another

unconditioned stimulus with reward or punishment, so that

individuals can learn to trigger a conditioned response

similar to the unconditioned response when presented with

that stimulus alone. That theory is the basis to realize

affective associative learning and forgetting [33–35].

However, the emotional system of humans is quite com-

plex, how to simulate the transfer process of human emo-

tions is meaningful [36–38]. In the field of classical

conditioning, ‘‘The Case of Peter’’ is an experiment that

shows the transfer process of affective associative memory

[35]. In that experiment, food is an unconditional stimulus

that will cause the pleasure feeling of Peter, while the

rabbit is a conditional stimulus that will cause the fear

feeling of Peter. However, when the conditional stimulus

(the rabbit) was given combined with the unconditional

stimulus (food) many times, the fear feeling became

weaker gradually while the pleasure feeling became

stronger gradually, which means one kind of emotional

associative memory transferred to another kind of emo-

tional associative memory gradually. That is the gradual

transferring process, which includes the process of gradual

learning and the process of gradual forgetting of emotions.

So far, a few studies have focused on the circuit design

of affective associative memory neural network. In [39],

the associative memory neural network was first proposed

to model human emotions in social relations, but the model

lacks the necessary circuits of neurons that conform to the

characteristics of biological neurons. Wang et al. proposed

a full-function emotion model based on the associative

memory neural network to simulate the learning and for-

getting processes of emotions [40]. And in [41], authors

designed the rule of affective multi-associative learning,

which discussed the learning and forgetting of multiple

emotions. However, the intensity of emotions is invariable

and the processes of gradual learning and gradual forget-

ting are not considered in [39–41]. Actually, the change of

emotions in the affective associative learning and forget-

ting processes is not abrupt but gradual. In addition, the

gradual transferring process from one kind of emotional

associative memory to another is not contained in these

emotion models. Considering the coherent changes of

affective associative memory, it is necessary to implement

the gradual processes to better simulate the learning, for-

getting and transferring stages of emotions.

Therefore, concerned with the issues mentioned above,

this paper proposes the circuit design of affective asso-

ciative memory neural network with gradual processes,

which includes the gradual learning, gradual forgetting and

gradual transferring stages of emotions. In the designed

circuit, neurons with variable firing frequency and mem-

ristor-based synapses constitute the basic framework of the

neural network. The firing frequency of output neurons is

closely correlated with the intensity of emotions. More-

over, the dynamic adjustment of synaptic weights will lead

to the change of firing frequency of output neurons, which

will result in the changes of emotional intensity. Combined

with the associative memory rules, the emotional intensity

gradually increases or decreases in the learning, forgetting

and transferring stages. Thus, the gradual learning, gradual

forgetting and gradual transferring processes are realized.

In those stages, as the degree of associative memory

deepens (or weakens) gradually, the intensity of certain

emotions will gradually become stronger (or weaker),

which looks like a coherent change in emotions. That’s

why these stages are called ‘gradual’ processes.

The rest of this paper is arranged as follows. Section 2

describes the emotional gradual transfer phenomenon from an

experiment in the classical conditioning field. Section 3 pre-

sents the diagram of the affective associative memory neural

network model. In Sect. 4, the basic components that make

up the circuit of the affective associative memory neural

network are introduced. Then, the circuit design of the

emotional gradual transferring process is presented in Sect. 5.

Section 6 realizes and analyzes the whole circuit design of the

affective associative memory network with gradual learning,

gradual transferring and gradual forgetting processes.

2 A case of emotional gradual transferring
phenomenon

The rule of emotional gradual transferring is derived from

‘‘The Case of Peter’’ which is elaborated in Behaviorism

written by John B. Waston [35]. ‘‘The Case of Peter’’ is an

experiment to reconstruct affective associative learning to

eliminate fear responses. The process and rules of the

experiment are described as follows.

Peter is a 3-year-old child. In the beginning, he was

afraid of rabbits. Peter showed fear by crying when a rabbit

was in his sight, which is a previously-established condi-

tioned response before the experiment. Candy is another

unconditional stimulus. Peter showed pleasure when

researchers offered him candy, which is an unconditioned
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response. It should be noted that candy is not an uncon-

ditional stimulus of fear feeling and the rabbit is not a

conditioned stimulus of pleasure feeling. Specifically, Peter

showed no fear when researchers offered him candy and

showed no pleasure when the rabbit occurred to his sight.

Afterwards, despite researchers offering Peter candy, he

still showed fear when the rabbit was in his sight at first.

After several such simultaneous pairings of the two stimuli

(candy and rabbit), the fear response of Peter gradually

became weak and Peter showed tolerance. As the simul-

taneous pairings process repeated, the degree of tolerance

of Peter was getting higher. Finally, the fear response of

Peter disappeared and he could even play with the rabbit

agreeably, which means the process of re-establishing

affective associative learning was completed and the fear

emotion transferred to pleasure emotion. When the rabbit

came to Peter’s sight again, the pleasure feeling of Peter

replaced the fear feeling, which means Peter conquered

fear. The experimental framework of ‘‘The Case of Peter’’

is shown in Fig. 1.

In the process of the re-establishing affective associative

learning, the pleasure feeling was strengthened gradually

while the fear feeling was weakened gradually by repeating

the pairings of the two stimuli (candy and rabbit). In fact,

the aforesaid re-establish affective association learning can

be explained as the process of learning one emotion and

forgetting another emotion. In this learning and forgetting

process, the transition from one emotional state to another

should not be abrupt but gradual. The emotional intensity

will change in the gradual transferring process, this is the

gradual transfer phenomenon of emotions.

3 The diagram of the affective associative
memory neural network model

Based on ‘‘The Case of Peter’’ experiment, the diagram of

associative memory neural network for modeling emotions

is shown in Fig. 2.

As shown in Fig. 2a, ‘‘C’’ and ‘‘R’’ represent the

‘‘candy’’ signal and the ‘‘rabbit’’ signal, respectively. N1

denotes the input neuron that receives the ‘‘candy’’ signal.

N2 denotes the neuron that receives the ‘‘rabbit’’ signal. N3

and N4 are output neurons which generate the emotional

signal ‘‘pleasure’’ and ‘‘fear’’ respectively. The synapses

that constructed by memristors connect the input neurons

and output neurons. w01, w02, w13, w14, w23 and w24 denote

the synaptic weights. The output signals of N3 and N4 are

OutðN3Þ ¼ f ðf ðC � w01 � h1Þ � w13

þ f ðR � w02 � h2Þ � w23 � h3Þ
ð1Þ

OutðN4Þ ¼ f ðf ðC � w01 � h1Þ � w14

þ f ðR � w02 � h2Þ � w24 � h4Þ
ð2Þ

where h1–h4 represent the threshold terms of neurons N1–

Fig. 1 The diagram of ‘‘The

Case of Peter’’ experiment
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N4. OutðN3Þ and OutðN4Þ represent the emotional intensity

of pleasure and fear emotions respectively. f ð�Þ is the

activation function defined as

f ðxÞ ¼
gðwÞ x� 0

0 x\0

�
ðgðwÞ 6¼ 0; gðwÞ_wÞ ð3Þ

It should be noticed that g(w) is a nonlinear function positively

related to weights, and g(w) will increase (decrease) as the

corresponding synaptic weights increase (decrease). In this

paper, the synaptic weights w01 and w02 are set equal to 1, and

the threshold terms h1 and h2 are set equal to 0. Because the

candy signal will always cause the pleasure emotion and not

cause the fear emotion, the weight w13 is set approximately

equal to 1 while w14 is set approximately equal to 0. At the

beginning, the rabbit signal causes the fear emotion of Peter, so

the synaptic weight w24 is set approximately equal to 1, while

w23 is set approximately equal to 0.When the input signalCand

R appear simultaneously, the synaptic weightw24 will decrease

while w23 will increase. As a result, the output OutðN4Þ
decreases while OutðN3Þ increases, which means that the

associative memory between ‘‘rabbit’’ and ‘‘fear’’ gradually

transfers to the associative memory between ‘‘rabbit’’and

‘‘pleasure’’. This is the gradual transferring process of emo-

tions. In the learningprocess, an increase in synapticweightw23

will result in the increases ofOutðN3Þ. In the forgetting process,
an decrease in synaptic weight w24 will result in the decreases

of OutðN4Þ.
Figure 2b shows the single neuron computing framework.

X represents the input signal of the neuron Nj. The output

signal OutðNjÞ ¼ f ðX � w� hjÞ. When X occurs and

X � w[ hj, the neuron Nj will be activated to firing. After-

wards, the increases (decreases) in the synaptic weight w will

result in the excitement of neuron Nj to increase (decrease).

Then, the firing frequency of Nj will increase (decrease). If w

does not change, g(w) and OutðNjÞ will maintain as a con-

stant, and the firing frequency will not change. Thus, the

increases (decreases) of OutðNjÞ will be manifested by the

increases (decreases) in firing frequency of the neuron Nj.

Moreover, the firing frequency of output neurons is correlated

with the intensity of emotions. Specifically, the higher the

firing frequency of output neurons, the stronger the emotional

intensity. The dynamical change of the synaptic weights leads

to the gradual variation of the frequency of output neurons,

then the intensity of emotions gradual changes in the learning,

forgetting and transferring stages. Therefore, the affective

associative memory neural network with emotional gradual

processes could be achieved.

4 Circuit components in affective
associative memory neural network

4.1 Memristor model

In memristive neural network, memristors are key compo-

nents to simulate synaptic functions. At present, various

memristor models with different materials have appeared one

after another. Meanwhile, the corresponding mathematical

models of the memristors have also been proposed. For

example, HP Labs [14] first proposed the TiO2 memristor

model but it does not contain the characteristics of voltage

threshold or current threshold. The paper [42] proposed a

flexible TEAM memristor mathematical model, which

includes the characteristics of current threshold and state

variable dependence. But voltage control models of the

memristors are often needed in practical applications. In [43],

the authors proposed an extended VTEAM voltage control

model based on the TEAM model. Nevertheless, due to the

fixed change rate of the state variables, this model is difficult

to describe the principles of synaptic strength change. The

memristor model with voltage thresholds used in this paper is

proposed in [44], which is named memristor synapse model

and based on the experimental data of the AIST memristor

[29]. The mathematical model is expressed as follows.

dwðtÞ
dt

¼
lv

Ron

D

ioff
iðtÞ � i0

f ðwðtÞÞ vðtÞ[ ;VTþ [ ; 0

0 VT� � vðtÞ�VTþ

lv
Ron

D

it
ion

f ðwðtÞÞ vðtÞ\;VT�\; 0

8>>><
>>>:

ð4Þ

(a)

(b)

Fig. 2 The affective associative memory neural network model based

on ‘‘The Case of Peter’’ experiment. a The whole neural network

computing framework. b Single neuron computing framework
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f ðwðtÞÞ ¼ 1� 2wðtÞ
D

� 1

� �2p

ð5Þ

where w(t) and D denote the width of doped region and

thickness of memristive device respectively, i0, ioff and ion
are currents fixed with constant values, v(t) is the voltage

applied across the memristor, VTþ and VT� are threshold

voltages. Ron is a low memristance, which represents the

memristor is completely doped. Roff represents a high

memristance when the memristor is completely undoped.

f(w(t)) is a window function with an adjustable parameter

p.

The parameter settings of the memristor in this paper are

shown in Table 1. The voltage thresholds VTþ and VT� are

set to 4.1V and �4:1V , respectively. Only when the input

voltage of memristor is greater than VTþ or less than VT�,
the memristance will change. Figure 3 shows the change of

the memristor under the effect of the input voltage. When

positive voltage pulses greater than VTþ are applied to the

positive terminal of the memristor, the memristance first

decreases at fast speed, and then approaches the minimum

at gentle speed. Similarly, the memristance will increase

when negative voltage pulses less than VT� are applied to

the negative terminal of the memristor.

4.2 Neuron model

Neurons are the most basic structure and function unit of

biological nervous system, which equip the ability to

transmit bioelectric signals. The leaky integrate-and-fire

neuron is an effective model with discharge process similar

to biological neurons [45]. In Fig. 4, the leaky integrate-

and-fire neuron model is presented and the differential

monostable trigger is added. The frequency of output

pulses of this neuron model will be adjusted by the

amplitude of the input current. Moreover, the width of

output pulses can be adjusted by setting the parameters of

the differential monostable trigger. The firing principles of

this neuron are presented as follows.

The input terminal IN acts as a signal receiver to receive

the input signal or the output signal from the pre-neuron.

The neuron is at an inactive state when there are no input

signals. C1 and C2 are membrane capacitors, which will

integrate the input current. As the input current flows in,

the voltage Vc will increase. When the voltage Vc reaches

the threshold Vth of the inverter composed by the transis-

tors Tn2 and Tn3, the neuron will be activated and output a

high level pulse. At that time, the input signal is blocked

and the neuron experiences the refractory period while the

transistor Tn6 is turned on and Tn1 is turned off. Meanwhile,

capacitors C1, C2 are discharging through the transistors

Tn6 and Tn7 and the voltage Vc gradually decreases. When

Vc drops below the threshold of the inverter, there is no

output pulse and the transistor Tn6 is turned off and Tn1 is

turned on, the neuron is restored to the inactive state and

will ready to meet the next input signal. The PSPICE

simulation result of the neuron model is shown in Fig. 5.
Table 1 Parameter settings of

memristor
Parameters Setting

RonðXÞ 10

RoffðXÞ 1000

VT�ðVÞ �4:1

VTþðVÞ 4.1

D(nm) 3

lvðm2s�1X�1Þ 3� 10�8

ionðAÞ 0.025

ioff ðAÞ 0.02

i0ðAÞ 1� 10�5

Fig. 3 PSPICE simulation results of memristor

Fig. 4 Circuit of the neuron model
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In the PSPICE simulation, the PMOS transistors Tn1, Tn2
and Tn4 are based on the M2SJ136 model, and the threshold

voltage is about �2:0V . The NMOS transistors Tn3, Tn5,

Tn6 and Tn7 are based on the M2SK530 model, where the

corresponding threshold voltage is about 2.1V. The mem-

brane capacitors C1 and C2 are set to 10uF, and their

capacitance can be adjusted appropriately to control the

firing frequency of neurons. Besides, we set R1 ¼ 2ðkXÞ,
R2 ¼ 2ðkXÞ and C3 ¼ 0:2ðuFÞ in this simulation. By

adjusting the resistance R2 and the capacitance C3 of the

differential monostable trigger, it is flexible to change the

output pulses’ width of the neuron.

4.3 Synapse module

Synapses are key bonds which connect pre-neurons and

post-neurons. By adjusting the synaptic weights, the asso-

ciation between the pre-neurons and the post-neurons is

strengthened or weakened. Memristor plays a key role in

realizing the synaptic function in this paper, which

dynamically strengthens or weakens the synaptic strength

between neurons by adjusting the memristance. For the

convenience of description, the synapse module is

explained in two parts, the first part is the Control Signal

Module and the second part is the Weight Adjustment

Module. The circuit design of the entire synapse is shown

in Fig. 6. In this paper, the operational amplifiers in the

synapse module are all based on the TL082 type for sim-

ulation, where the power supplies are set as þ15 V and

�15 V. The value of R1 � R6 are set 1 kX to assist the

amplifiers to complete the sum operation and inversion

operation. R7 is initialized to 500X, it is a threshold resistor
to set the thresholds of the synaptic weight and its detailed

settings are described in the next section.

The Control Signal Module is designed to receive con-

trol signals, which is presented in Fig. 6a. Amplifier OP1 is

a summing operational amplifier while OP2 is an inverting

operational amplifier. The Pre-neuron signal is the output

signal from the pre-neuron. When the pre-neuron is at

active state, the switch S1 will be turned on and the high-

level voltage Vp will be applied to the Weight Adjustment

Module. The learning signal is used to establish associative

memory in the learning stage. Specifically, when the

learning signal and the input signal of pre-neuron are

generated at a certain time synchronously, the switches S1
and S2 will be turned on and the sum of voltages Vp and Vc

will be applied to strengthen the synaptic strength. When

the inhabiting signal is generated in the gradual transferring

stage, the switches S1 and S2 will also be turned on but the

sum of voltages Vp and Vc will be applied to weaken the

connection strength between the pre-neurons and post-

neurons. The forgetting stage can be explained as a reverse

process of the learning stage. In the forgetting stage, there

are neither learning signal nor inhibiting signal. Only the

switch S3 will be turned on and the voltage Vf will be

applied to weaken the synaptic strength.

In Fig. 6b, the Weight Adjustment Module is presented.

The transistors T1, T2, T3 and T4 are controlled by the

learning signal, which aim to determine the direction of

input current flowing through the memristor Rmem.

Specifically, when the learning signal is at high level, the

transistors T2 and T3 will be turned on while T1 and T4 will

be turned off. The input current flows from the input ter-

minal through T3, Rmem and T2 to post-neuron. When the

learning signal is at low level, the transistors T1 and T4 will

be turned on while T2 and T3 be turned off and the current

will flow from T1, through Rmem and T4 to the post-neuron

terminal. The role of the diode D1 is to prevent the reverse

current flowing from the post-neuron terminal.

4.4 Repeatable monostable trigger

Most rules of associative memory neural networks demand

that the signals are generated synchronously to establish

Fig. 5 The simulation of the

neuron model. VC is the voltage

on the membrane capacitors C1

and C2 in Fig. 4. VOUT

represents the voltage pulse

output by the neuron in the

‘OUT’ terminal in Fig. 4
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associative memory. However, it is difficult to control the

spikes output by neurons to be synchronous due to the

different initial parameters and initial state of the leaky

integrate-and-fire neuron, which means time delay will

occur. This may require strictly setting the parameters of

the pre-neuron and the post-neuron to be consistent. Nev-

ertheless, if the input signals do not appear at the same

time, the output spikes of the neurons will be also asyn-

chronous. For example, as shown in Fig. 7, the voltage Vin1

is the input signal of Neuron 1 while Vin2 is the input signal

of Neuron 2, the parameters of Neuron 1 and Neuron 2 are

set to be exactly same. It is worth noting that the fre-

quencies and amplitudes of Vin1 and Vin2 are identical, but

Vin2 is applied earlier than Vin1. As a result, the output

spikes of Neuron 1 and Neuron 2 are not synchronized.

Considering the issues of time delay and asynchronism

between the output spikes of neurons, the repeat-

able monostable trigger is used to establish associative

memory. The repeatable monostable trigger used in this

paper is proposed in the paper [7], which is simplified from

the integrated repeatable monostable trigger MC14528.

The circuit schematic is shown in Fig. 8.

In the initial state, the voltage Vu3 ¼ 1, Vu8 ¼ 0 and the

circuit is at steady state. The transistor M1 is turned off while

the capacitor C1 is charged by the voltage Vdd . If there are no

positive voltage signals entering, the circuit will keep at a

steady state. When a positive pulse enters the IN terminal of

the trigger, Vu3 and Vu8 will turn to 0 and 1 respectively, then

the transistor M1 will be turned on and the capacitor C1 will

discharge via the transistor M1. As a result, the voltage Vc

will decrease gradually. When Vc drops below the threshold

voltage Vth10 of the NOT gate U10, the circuit enters a tran-

sient steady state, but this state cannot be always maintained

and the voltage Vc continues to decrease. When Vc drops

below the threshold voltage Vth9 of the U9, Vu9 ¼ 0 and

Vu3 ¼ 1. Meanwhile, the transistorM1 is turned off again and

C1 begins to recharge. Finally, the circuit will return to the

steady state when the voltage Vc exceeds the threshold of U10

again. The function of U11 and U12 is to shape the signal

output by U10 terminal, which makes the final output wave-

form of the trigger closer to the rectangle wave. According to

the above analysis, the capacitor C1 will recharge and the

voltage Vc will rise after the circuit experiences the transient

steady state. Especially, while Vc is rising from Vth9 to Vth10

and another positive signal triggers the circuit,Vu3 ¼ 0,

Vu8 ¼ 1. Then, the transistor M1 will turn on and the

capacitor C1 will discharge again, which means the circuit

returns to the transient steady state. The trigger will not return

to the steady state until the capacitor C1 keeps charging to the

condition Vc[Vth10 and there are no trigger signals applied

to the IN terminal in certain time interval.

The simulation of the repeatable monostable trigger is

shown in Fig. 9. The voltage Vn1 and Vn2 are output signals

of Neuron 1 and Neuron 2, as well as the input signals of

Trigger 1 and Trigger 2. Vout1 and Vout2 are the corre-

sponding output signals of Trigger 1 and Trigger 2,

respectively. When a high-level voltage signal enters the

trigger, the duration of this signal will be last for a period

(a)

(b)

Fig. 6 The circuit of the

synapse model. a The Control

Signal Module. b The Weight

Adjustment Module
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of time Dt. In this duration, if there are other input signals

that continue to trigger the trigger, the lasting time will be

extended to Dm as indicated in Fig. 9. Therefore, the trigger

will be able to judge the neuron whether at firing state

while there are continuous output spikes in the neuron.

When two or more neurons are at firing state and the firing

time intervals do not exceed the maximum lasting time Dt

of the trigger, although the frequencies of the spikes are

different and the spikes appear asynchronously, associative

memory can be established conveniently.

5 Circuit design of emotional gradual
transfer process

5.1 Circuit analysis

The circuit design of ‘‘The Case of Peter’’ for showing the

emotional gradual transfer process is presented in Fig. 10.

Neuron 1 represents a taste receiver, which is renamed

as the candy neuron in the circuit design for convenience. It

can receive the taste signal of tasting candy. Neuron 2

(a) (b)

Fig. 7 Simulation of the signals ‘‘asynchronous’’ problem between

neurons. a The connection diagram of Neuron 1 and Neuron 2. b The

input and output signals of Neuron 1 and Neuron 2. Vin1 and Vin2 are

the input voltages of Neuron 1 and Neuron 2 respectively. Vout1 and

Vout2 are the output of Neuron 1 and Neuron 2 respectively. The

parameters of Neuron 1 and Neuron 2 are set to be the same as the

parameters in Fig. 4. If the input voltage Vin1 is applied earlier or later

than Vin2, the output pulses of Neuron 1 and Neuron 2 will be

asynchronous

Fig. 8 The circuit schematic of

the

repeatable monostable trigger
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represents a visual receiver and can receive the visual

signal of seeing the rabbit, which is named as the rabbit

neuron similarly. When Neuron 1 and Neuron 2 receive the

taste signal from the candy and the visual signal from the

rabbit, and these signals make the voltages of the mem-

brane capacitors exceed the threshold voltages of the two

neurons, the two neurons will be activated and at the

excited state. Neuron 3 and Neuron 4 are both emotional

expression neurons and can be named as the fear neuron

and the pleasure neuron, respectively. The connected

synapse between the candy neuron and the fear neuron is

Synapse 1. And Synapse 2 connects the candy neuron and

the pleasure neuron. As ‘‘The Case of Peter’’ described as

above, Peter felt pleasure once he received candy because

the candy is an unconditioned stimulus, which means the

synaptic strength between the candy neuron and the plea-

sure neuron is strong. Meanwhile, the synaptic strength

between the candy neuron and the fear neuron is weak.

Therefore, the weights of Synapse 1 and Synapse 2 are set

to a high value and a low value, respectively, and they will

not change during the experiment. Synapse 3 connects the

rabbit neuron and the fear neuron while Synapse 4 connects

the rabbit neuron and the pleasure neuron. Since the rabbit

is a conditioned stimulus, the synaptic strength of Synapse

3 and Synapse 4 will change during the experiment. The

weights of Synapse 3 and Synapse 4 are set to a high value

and a low value before the experiment, respectively, which

represents the connection strength between the Neuron 2

and Neuron 3 is strong while the synaptic strength between

the Neuron 2 and Neuron 4 is weak at the beginning. In this

paper, the synaptic weight is defined as following:

W ¼ Roff � Rm

Roff � Ron

ð6Þ

where Rm is the memristance, Roff and Ron are the maxi-

mum resistance and minimum resistance of memristor

respectively.

(a)

(b)

Fig. 9 The simulation of the

repeatable monostable trigger. a
Connected circuit diagram

between neurons and triggers. b
The simulation results. Vn1 and

Vn2 are the output signals of

Neuron 1 and Neuron 2

respectively. Meanwhile, Vn1

and Vn2 are used as the input

signals of Trigger 1 and Trigger

2. Vout1 and Vout2 are the output

signals of Trigger 1 and Trigger

2, respectively
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In Fig. 10, the Trigger is the repeatable monostable trig-

ger mentioned in Sect. 3. The control module is utilized to

judge the stage of the circuit. The resistors R1, R2, R8 and

R14 aim to adjust the weight thresholds of Synapse 1,

Synapse 2, Synapse 3 and Synapse 4, respectively. When

the input voltage of the n-IN terminal is less than the

threshold Vth of these neurons, there will be no spikes

output from their OUT terminal, in other words, these

neurons will be at an inactive state. Therefore, in order to

trigger the neuron, the input voltage must exceed the

threshold Vth. For example, if there is rabbit signal alone, in

order to trigger the pleasure neuron, the following condi-

tion must be satisfied ignoring the effects of parasitic

capacitance, resistance, and inductance of transistors:

V5 þ V6

RM4 þ R14

� R14 [Vth þ Vd4 ð7Þ

where Vd4 is the forward voltage drop of the diode D4. RM4

is the memristance of the memristor M4. From the formulas

(6) and (7), the condition is rewritten as:

W4 [
ðR14 þ RoffÞðVth þ Vd1Þ � ðV5 þ V6ÞR14

ðVth þ Vd4ÞðRoff � RonÞ
ð8Þ

Therefore, the weight threshold Wth4 of Synapse 4 is

derived as:

Wth4 ¼
ðR14 þ RoffÞðVth þ Vd1Þ � ðV5 þ V6ÞR14

ðVth þ Vd4ÞðRoff � RonÞ
ð9Þ

According to the formula (9), the synaptic weight can be

adjusted by the resistor R14. The other three thresholds of

synaptic weight Wth1, Wth2 and Wth3 can be calculated in

the same way. Thereby, when the synaptic weight W4

exceeds the threshold Wth4, Neuron 2 can trigger Neuron 4

alone.

Because the experiment does not involve the natural

forgetting process, the forgetting state is not shown in the

circuit, which will be presented in the next section.

5.2 Simulation results of the circuit

The simulation result completed by PSPICE is presented in

Fig. 11. VðN1Þ, VðN2Þ, VðN3Þ and VðN4Þ are the output

spikes from Neuron 1, Neuron 2, Neuron 3 and Neuron 4,

respectively.

In Test 1, there is only the candy signal that triggers the

candy neuron. When the high-level pulses are output from

the candy neuron, the switches S1 and S2 will turn on and

the voltages V1 and V2 are applied to the Synapse 1 and

Synapse 2, respectively. Because the memristance of M1 is

set very high and then the synaptic weight is lower than the

threshold Wth1 of Synapse 1, the fear neuron cannot be

Fig. 10 The circuit design of the gradual transferring stage based on ‘‘The Case of Peter’’ experiment
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triggered, which means the fear feeling is not produced. On

the contrary, the memristance of M2 is set very low and

then the synaptic weight is higer than the threshold Wth2 of

Synapse 2, the pleasure neuron is triggered and the feeling

of pleasure is produced.

In Test 2, only the pre-neuron Neuron 2 is triggered by

the rabbit signal and the Neuron 1 is at an inactive state.

Thus, when the spikes are output from Neuron 2, the AND

gate U1 is closed, only the switches S4 and S5 will turn on

and the voltages V4 and V6 will be apply to the Synapse 3

and Synapse 4, respectively. Because of the strong strength

of Synapse 3 and the weak strength of Synapse 4 at first,

the fear neuron is triggered by Neuron 2 alone but the

pleasure neuron not. Meanwhile, the learning signals of

Synapse 3 and Synapse 4 are at a low level, V4 and V6 are

lower than the threshold voltages of the memristors M3 and

M4. Therefore, the memristance of M3 and M4 will not

change while the synaptic weight of Synapse 3 and

Synapse 4 remains unchanged.

In the Gradual transferring stage, both the candy neuron

and the rabbit neuron are at excited state, which means

Peter received the candy signal and the rabbit signal almost

simultaneously. The repeatable monostable trigger is trig-

gered at this stage and then the gate U1 is opened. Mean-

while, The switches S1 � S6 are turned on, the voltages V1

and V2 are applied to Synapse 1 and Synapse 2, respec-

tively. The sum of V3 and V4 , which is higher than the

absolute value of the voltage threshold of memristor M3

(V3 þ V4 [ jVT�j) is applied to Synapse 3. Because there is
no unconditional stimulus related to fear feeling, the

learning signal is at low level and the transistors T2, T4 are

turned on while T1 and T3 are turned off. As a result, the

memristance of M3 increases, which means the synaptic

strength is weakened gradually. Meanwhile, the voltages

V5 and V6 (V5 þ V6 [ jVTþj) are applied to the Synapse 4

and the transistors T2, T4 are turned off while T1 and T3 are

turned on. As a result, the memristance of M4 decreases

and then the synaptic strength is strengthened gradually.

The change process of synaptic weight is shown in Fig. 12.

At first, the rabbit neuron can trigger the fear neuron alone.

As the weight of Synapse 3 decreases, the firing frequency

of the fear neuron continues to decrease. When the synaptic

weight of Synapse 3 drops down below the threshold Wth3,

the rabbit neuron loses the ability to trigger the fear neuron

alone and the fear neuron stops to fire, which means the

feeling of fear is gradually weakened and disappears at last.

At the same time, when the synaptic weight of Synapse 4

exceeds the threshold Wth4 as the weight of Synapse 4

increases, the rabbit neuron can trigger the pleasure neuron

alone and the firing frequency of the pleasure neuron

increases gradually. The excitement of pleasure neurons is

gradually strengthened, and the excitement of fear neurons

is gradually weakened or even suppressed. As a result, the

pleasure feeling is gradually strengthened. The Gradual

transferring stage is completed, the pleasure feeling

replaced the fear feeling and became the core emotion.

Fig. 11 The simulation results of ‘‘The Case of Peter’’ experiment for showing the gradual transferring stage
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The Test 3 stage is to judge whether the Gradual

transferring stage is completed. As Fig. 11 shows, when

only the rabbit neuron fires, the pleasure neuron, instead of

the fear neuron, is triggered. In other words, the fear

feeling disappears and the pleasure feeling is produced.

6 Affective associative memory neural
network with gradual processes

6.1 Circuit design

Emotions are important psychological and physical phe-

nomena. In daily life, people will show pleasure expression

about good news and upset expression about bad news,

which can be defined as the unconditioned responses in the

associative memory theory. The good (bad) news is the

unconditioned stimulus of pleasure (upset) emotion. If

there is a news notification signal which represents the

neutral stimulus, people will show no emotions at first.

When the news notification always follows good news,

people will show pleasure and the pleasure emotion will

gradually rise until becoming stable. After that, though

only the notification of news is coming without the content

of news, people will also show pleasure. Same as above,

when the notification is always followed by bad news,

people will also show upset without the content of news

after the notification coming. As a result, the news notifi-

cation gradually turns to be the conditioned stimulus. This

is the gradual learning stage in the process of affective

associative memory. Besides, if the notification is re-as-

sociated with the bad news (good news) after it has been

associated with the good news (bad news), the pleasure

(upset) emotion will decline gradually and the upset

(pleasure) emotion will rise gradually. This is the gradual

transferring stage. If there is no news notification for a long

time, the association between the news notification and

good or bad news will gradually be weakened until it

disappears, which is called the forgetting stage.

The circuit of the affective associative memory neural

network is shown in Fig. 13. The neural network has three

input neurons and two output neurons. Specifically, as

shown in Fig. 13, the neurons Ng, Nn and Nb are the input

neurons while Np and Nu are the output neurons. Besides,

the neurons Ng, Nn and Nb receive the signals of good

news, notification and bad news, respectively. When

received the corresponding signal, the neurons will be

activated and output spikes. The neurons Np and Nu are

emotion expression neurons. When the feeling of pleasure

(upset) is produced, the Np (Nu) neuron will be activated.

The Synapse 1–Synapse 6 connect the pre-neurons and

post-neurons. The appearance of good news will not cause

the upset emotion, so the synaptic strength of Synapse 1 is

weak and the synaptic weight WS1 is less than the threshold

Wth1 of Synapse 1. For the same reason, the synaptic

weight WS6 is less than the threshold Wth6. Similarly, the

good news will always cause the pleasure emotion while

the bad news will cause the upset emotion, thus the

synaptic weight WS2 and WS5 are set as a constant value

higher than the thresholds Wth2 and Wth5 of Synapse 2 and

Synapse 5, respectively. The weight of Synapse 3 and

Synapse 4 will be strengthened or weakened in the stage of

gradual learning, gradual transferring or gradual forgetting.

The change of weight DW can be calculated as follows.

Fig. 12 The change of the

synaptic weights W3 and W4. In

the gradual transferring stage,

the synaptic weight W3 is

deceasing while the synaptic

weight W4 is increasing
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DWt ¼ DWt
learn � DWt

tran � DWt
forg ð10Þ

where DWt
learn, DW

t
tran, DW

t
forg are the changed weight in

the gradual learning, gradual transferring and gradual for-

getting stage respectively. Specifically, for the Synapse 4,

the rules for calculating DWt
learn, DW

t
tran, DW

t
forg are listed

as the following equations.

DWt
learn ¼ Dxl � sgnðNbÞ sgnðNnÞ

DWt
tran ¼ Dxt � sgnðNgÞ sgnðNnÞ

DWt
forg ¼ Dxf � ½1� sgnðNnÞ�

8><
>: ð11Þ

where Dxl is the change of WS4 in the gradual learning

stage and Dxt is the change of WS4 in the gradual trans-

ferring stage and Dxf is the change of WS4 in the gradual

forgetting stage. The sgn is a function defined as

sgnðNxÞ ¼ 1 Nx is activated

0 Nx is not activated

�
ð12Þ

where Nx represents the neurons Ng, Nn or Nb. The

synaptic weight change rule for Synapse 3 can be derived

in the same way as for Synapse 4. At the learning stage, the

memristance (M3 or M4) will decrease, which leads to the

increase of the synaptic weight. If the circuit is at the

gradual forgetting stage, the memristance will increase and

the synaptic weight will decrease. In the gradual transfer-

ring stage, the increase or decrease of the synapse weights

are determined by the input neurons and the control mod-

ule. However, before the learning stage, the synaptic

weights of Synapse 3 and Synapse 4 are less than the

synaptic thresholds, thus the neurons Np and Nu will not be

activated by firing the Nn neuron alone.

The control module is utilized to judge the state of the

affective associative memory neural network. The Trigger

is used to solve the problems of time delay and asyn-

chronism between the output spikes of neurons.

6.2 Simulation and analysis

The simulation result of the affective associative memory

neural network is shown in Fig. 14. The test stages aim to

Fig. 13 The circuit design of affective associative memory neural network with the functions of gradual learning, gradual transferring and

gradual forgetting
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test the current emotional state. In Test 1, there is only

good news signal, the Ng neuron will be activated and

output spikes. Because of the strong weight between neu-

rons Ng and Np, Np will be triggered, which means the

pleasure feeling is produced. On the contrary, the synaptic

weight between neurons Ng and Nu is weak, Nu will not

respond and there is no upset feeling. In Test 2, there is

only bad news and the neuron Nb is activated , the neuron

Nu will be activated while the neuron Np will not respond.

In the Gradual learning stage, both the good news signal

and the notification signal are input to the neurons Ng and

Nn, Ng and Nn are triggered together. At this time, the

learning signal of Synapse 3 is at high level and the tran-

sistors T1 and T3 will be turned on while T2 and T4 will be

turned off, the sum of voltages V3 and V4 will be applied to

Synapse 3. The current flows through T3, M3 and T1 to the

neuron Np, which causes the memristance ofM3 decreasing

and the synaptic weight of Synapse 3 increasing. As a

result, the firing frequency of the neuron Np gradually

increases, which means the feeling of pleasure is stronger

and stronger gradually when the notification comes. This is

the learning process with gradually increasing emotional

intensity. The purpose of Test 4 is to verify whether the

learning process has been completed.

In the Gradual Transferring 1 stage, the neurons Nn and

Nb send out spikes together, before the forgetting stage, the

association between the notification and good news has not

been forgotten. Due to the strong strength of Synapse 3 and

Synapse 4 at this time, the neurons Np and Nn are all

activated, which means the complex emotion is generated.

The voltages V3, V4 are applied to the Synapse 3 while V5,

V6 are applied to Synapse 4. While the learning signal of

Synapse 3 is at low level state, the transistors T2, T4 are

turned on and T1, T3 are turned off. The current flows

through T2, M3 and T4 to the Np neuron, which causes the

decreases of the synaptic weight of Synapse 3. Therefore,

the firing frequency of the neuron Np decreases, which

means the feeling of pleasure becomes weaker gradually.

Meanwhile, the current flows through T7, M4 and T5
causing the increase of the firing frequency of the neuron

Nu. As a result, the neuron Np is inhibited and the firing

frequency of Nu exceeds the peak. The Test 5 is to verify

the gradual transferring result in the Gradual Transferring 1

stage. From the Test 5, the feeling of pleasure is weakened

and disappears while the feeling of the upset is strength-

ened in the process.

In the Gradual Transferring 2 stage, the neurons Nn and

Nb send out spikes together. After the Gradual Transferring

1 stage, the feeling of fear has not been forgotten.

Fig. 14 PSPICE simulation result of the affective associative memory neural network with the gradual learning, gradual transferring and gradual

forgetting stages
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Therefore, the mixed complex emotions are generated

again. In contrast with the Gradual Transferring 1 stage, the

synaptic weight WS3 of Synapse 3 increases gradually

while the synaptic weight WS4 of Synapse 4 decreases

gradually. Therefore, the firing frequency of the neuron Np

increases and the feeling of pleasure gradually becomes

stronger. Meanwhile, the feeling of upset is weaker and

weaker with the decreasing firing frequency of the neuron

Nu. In Test 6, there is only a notification signal, the feeling

of pleasure is generated and the upset feeling has disap-

peared, which means the pleasure feeling has become the

core emotion and replaced the fear feeling.

In the Gradual Forgetting stage, there are no notification

signals input to the Nn neuron, so the forgetting process

takes place. In this stage, the forgetting signals of Synapse

3 and Synapse 4 are at high-level states and the switches S2
and S5 are turned on, the voltages V2 and V7 are applied to

Synapse 3 and Synapse 4 to make the memristors M3 and

M4 return to a high-impedance state gradually. Therefore,

the synaptic weights of Synapse 3 and Synapse 4 are

weaker and weaker, which means the association between

the neurons Nn and Ng or the neurons Nn and Nb is for-

gotten. As a result, the firing frequencies of the emotional

expression neurons will decrease and the generated emo-

tions will become weaker gradually and disappear at last.

In Test 7, it is verified that no emotions will be generated

when the notification appears, which means the forgetting

process is completed.

7 Conclusion

The affective associative memory neural network has been

studied in recent years. In the existing memristor-based

affective associative memory model, the change of emo-

tions in learning and forgetting processes is abrupt and the

intensity of emotions is invariable. Further, the gradual

processes in learning, forgetting and transferring stages are

not considered. In this work, a memristor-based affective

associative neural network has been proposed, which

includes the gradual learning, gradual forgetting and

gradual transferring functions with variable emotional

intensity. In the designed circuit, the memristors are uti-

lized to define the synaptic weights. When the memristance

decreases, the corresponding synaptic weight will increase

and the synapse strength will be stronger. Making use of

the leaky integrate-and-fire neuron model, the firing fre-

quency of the output neurons is variable. By correlating the

emotional intensity with the firing frequency of output

neurons, the intensity of emotions can gradually change

from strong to weak or from weak to strong, which is in

line with the changing laws of human emotions. Compared

with the existing affective associative memory neural

network model, the circuit proposed in this paper can better

imitates the changing process of human emotions, which

provides new ideas for modeling the intelligent functions

of the human brain and realizing emotional robots. Future

works will focus on the design of more compact circuit and

more efficient practical applications based on affective

associative memory neural network.
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