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Abstract The study of dynamics on artificial neu-
rons and neuronal networks is of great significance
to understand brain functions and develop neuromor-
phic systems. Recently, memristive neuron and neu-
ral network models offer great potential in the inves-
tigation of neurodynamics. Many chaotic dynamics
including chaos, transient chaos, hyperchaos, coexist-
ing attractors, multistability, and extrememultistability
have been researched based on the memristive neu-
rons and neural networks. In this review, we firstly
introduce the basic definition of chaotic dynamics and
review several traditional artificial neuron and neural
network models. Then we categorize memristive neu-
ron and neural network models with different biolog-
ical function mechanisms into five types: memristive
autapse neuron,memristive synapse-coupled bi-neuron
network, memristive synaptic weight neural network,
neuronunder electromagnetic radiation, andneural net-
work under electromagnetic radiation. The modeling
mechanismsof each type are explained anddescribed in
detail. Furthermore, the pioneer works and some recent
important papers related to those types are introduced.
Finally, some open problems in this field are presented
to further explore future work.
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1 Introduction

Numerous physiological experiments show that electri-
cal activities in biological neurons and nervous systems
are closely associated with the brain’s unique abilities
including memory, thinking, and learning [1,2]. The
mysteries of the brain have inspired many researchers
to investigate the working mechanism of neural electri-
cal activities. Various artificial neuron and neural net-
work models have been developed around the 1980s
to mimic the different electrical activities in biolog-
ical neurons and neural systems, such as Hodgkin–
Huxley (HH) neuron model [3], FitzHugh–Nagumo
(FHN) neuron model [4,5], Morris–Lecar (ML) neu-
ron model [6], Hindmarsh–Rose (HR) neuron model
[7], Chay neuron model [8], Hopfield neural network
(HNN) [9], Cellular neural network (CNN) [10], and so
on [11]. From then on, some neural electrical activities
including periodic spiking [12], periodic bursting [13],
and mode transition [14] have been investigated based
on these original neuron and neural network models
as well as their extended versions like the delay time
models [15], noise models [16], and electrical stimulus
models [17,18]. Though the simple electrical activi-
ties were reproduced from these traditional neuron and
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neural network models, more complex dynamics like
chaotic behaviors were not discovered then.

A renewed research interest in neurodynamics was
generated when a physical memristor device was found
in 2008 [19]. Over the past 10 years, memristor
with biomimetic characteristics has made extraordi-
nary development,which has a great impact on artificial
neuron and neural network models. Due to the intrin-
sic properties such as programmability, nonvolatil-
ity, nanoscale, and low-power, the memristor gives
us unprecedented possibilities in imitating biological
functions. For example, Jo et al. [20] proposed the
first nanoscale memristive synapse that exhibits spike-
timing-dependent plasticity, and Lv et al. [21] firstly
described themagnetic floweffect in neurons by using a
voltage-controlled memristor. Memristor is added with
traditional neuron and neural network models in giv-
ing a new concept known as memristive neuron and
neural network models. The involvement of memris-
tor in traditional neuron and neural network models
can trigger complex chaotic dynamics, which is now
attracted by different researchers from all most every
part of theworld.Variousmemristive neuron and neural
network models have been developed based on differ-
ent modeling mechanisms. In 2010, Pershin and Ven-
tra [22] experimentally demonstrated a simple mem-
ristive neural network with three neurons connected by
two memristor synapses. Li et al. [23] in 2014 pro-
posed a small memristive synaptic weight HNN by
using the memductance of the memristor to replace
the synaptic weight. Lv and Ma [24] in 2016 given a
memristive HR neuron model via utilizing a magnetic-
controlled memristor to describe the effect of electro-
magnetic radiation. By using a memristor as a neu-
ral synapse between two neurons, Xu et al. [25] con-
structed a memristive synapse-coupled FHN bi-neuron
network in 2017. Since the induction current can be
described by memristor, Bao et al. [26] in 2018 created
amemristiveHRneuronmodel by considering the elec-
tromagnetic induction effect caused by the membrane
potential of the neuron. Based on the effect of a mag-
netic field in a single neuron, Hu et al. [27] proposed
a memristive HNN under electromagnetic radiation in
the same year. Moreover, in 2020, Lin et al. [28] estab-
lished a locally active memristive neuron model by
using a locally active memristor as a feedback autapse.

It has been shown that the memristive neuron and
neural network models can generate complex chaotic
behaviors. For example, for the first time, chaotic spik-

ing and bursting firings are observed in memristive HR
neurons [29,30]. The phenomena of chaos and syn-
chronization is obtained in memristive bi-neuron net-
works [31–34]. And various complex chaotic phenom-
ena including hyperchaos [35,36], hidden attractors
[37–39], coexisting attractors [40–44], andmulti-scroll
attractors [45,46] are discovered in various memristive
neurons and neural networks. Also, the complicated
dynamics of multistability [28,47–50] and extreme
multistability [35,51,52] have been reported. Undoubt-
edly, the realization of these complex neurodynamics
will be helpful in clinical aspects [53,54]. Besides, the
memristive neuron and neural network models owning
complex dynamics can be better applied in artificial
intelligence fields, especially secure communication
[55]. For instance, Wang et al. [56] proposed an image
encryption and decryption scheme based on a mem-
ristive Hopfield neural network with chaotic behavior.
And Guo et al. [57] solved static and dynamic image
associative memory in a multi-later memristive recur-
rent neural network. In short, memristive neurons and
neural networks have received extensive attention due
to the combination of abundant dynamics and wide
applications.

In this paper, we review the memristive neuron and
neural network models from the perspective of chaotic
dynamics. In Sect. 2, we have given the basic con-
cept of chaotic dynamics. Some traditional artificial
neuron and neural network models are summarized in
Sect. 3. In Sect. 4, different memristive neurons and
neural networks are explained and discussed in detail.
Some open problems and future work are presented in
Sect. 5. Finally, in Sect. 6, conclusions are drawn.

2 Basic concept of chaotic dynamics

Neurodynamics is an interdisciplinary subject of neuro-
science and dynamical system theory [58]. Its purpose
is to study the dynamical characteristics of biological
nervous systems and their evolution over time, espe-
cially the firing behavior, chaotic property, and the phe-
nomena of synchronization and bifurcation by apply-
ing dynamical system theory, especially the thought
and method of nonlinear dynamics. From the perspec-
tive of chaotic dynamics, the dynamical characteris-
tics include chaos, transient chaos, and hyperchaos.
Chaos is a special dynamical behavior [59,60], which
exists widely in all kinds of natural nonlinear systems,
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particularly biological neural systems [61]. Accord-
ing to the theory of Lyapunov, chaos has at least one
positive Lyapunov exponent. And transient chaos is a
dynamical behavior that the existence of chaos is on
finite time [62]. Furthermore, hyperchaos is defined
as chaos with two or more positive Lyapunov expo-
nents [63], which ismore complicated than chaos. Gen-
erally speaking, the dynamical trajectory of chaos is
called attractors. An attractor is called a hidden attrac-
tor if its basin of attraction does not intersect with any
open neighborhood of the system equilibria, or other-
wise, it is called a self-excited attractor [64,65]. Gen-
erally, multi-scroll/wing attractors are more complex
compared with single-scroll/wing attractors [66,67].
From the perspective of stability, the chaotic dynam-
ics contain coexisting attractors [68,69], multistability
[70,71], and extreme multistability [72–74]. The phe-
nomenon of coexisting attractors is an intricate dynam-
ical phenomenon that contains two types of different
chaotic behaviors under two different initial states. The
coexistence of three ormore dynamical states under dif-
ferent initial states is called as multistability. Multista-
bility means that a rich diversity of stable states exists
in a nonlinear system, which reflects the characteristics
of complex systems. And the phenomenon of the coex-
istence of infinitely many attractors is called extreme
multistability. Additionally, from the perspective of the
time domain, chaotic dynamics can be divided into
chaotic spiking, chaotic bursting, and chaos firing [28].
Generally, chaotic spiking includes different periods or
amplitudes spikes. Chaotic bursting includes different
numbers or amplitudes of bursts. And chaos firing is
a completely chaotic ruleless time sequence. It should
be stressed that all chaotic spiking, chaotic bursting,
and chaos firing are chaotic behaviors with at least one
positive Lyapunov exponent.

3 Traditional neuron and neural network models

Artificial neuron and neural networkmodels havemade
a great contribution to the development of neurodynam-
ics. In this section, various classical artificial neuron
models and neural networks are summarized.

3.1 HH neuron model

In 1952,Hodgkin andHuxley (HH) [3] first constructed
a nonlinear dynamical system as a mathematical model

of single-neuron based on their electrophysiological
experiments with squid giant atoms. The HH neuron
model describes the spiking behavior and refractory
properties of real neurons and serves as a paradigm for
spiking neurons based on the nonlinear conductance
of ion channels. The model is given by four nonlinear
coupled equations, one for the membrane potential V ,
and three for gating variables, m, n, and h: [75]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CmdV/dt = Iion + Isyn + Iext
dm/dt = m∞(V )−m

τm (V )

dh/dt = h∞(V )−h
τh(V )

dn/dt = n∞(V )−n
τn(V )

(1)

where

Iion = −gNam
3h(V − VNa) − gKn

4(V − VK)

−gL(V − VL) (2)

where Iion, Isyn and Iext represent ionic current, synap-
tic current, and external stimulus, respectively. The
ionic current Iion is related to the gating variables of
m, n, h and describes the ionic transport through the
membrane. The constants gNa, gK, and gL are themaxi-
mal conductances for sodium ion (Na+), potassium ion
(K+) and leakage channels, and VNa, VK, VL are the
corresponding reversal potentials.m∞,h∞,n∞ and τm ,
τh , τn represent the saturation values and the relaxation
times of the gating variables.

3.2 FHN neuron model

In 1962, the two-dimensional FitzHugh–Nagumo
(FHN) model which is simplified from the four-
dimensionalHHmodelwas introduced to describe neu-
ronal excitability and spiking firing [4,5]. The FHN
model reflects the main characteristics of neuron firing
activity and can be described by [76]
{
dx/dt = 1

a

(
x − x3

3 − y + Iext
)

dy/dt = ax − by + c
(3)

where x is the membrane potential (fast variable), y is
the ion current (slow variable), and Iext is the external
stimulus. The constant a, b, c are model parameters.

3.3 ML neuron model

In 1981, Morris and Lecar (ML) [6] proposed a sim-
plified HH neuron model called ML model. The ML
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neuron model is a biological neuron model developed
to reproduce the variety of oscillatory behavior in rela-
tion to calcium ion (Ca2+) and K+ conductance in the
giant barnacle fibers. This model is a two-dimensional
system of nonlinear differential equations: [77]
⎧
⎨

⎩

CdV/dt = −gCaM∞(V )(V − VCa)
−gKW (V − VK) − gL(V − VL) + Iext

dW/dt = τW (W∞(V ) − W )

(4)

where⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M∞(V ) = 0.5 + 0.5tanh
(
V−V1
V2

)

W∞(V ) = 0.5 + 0.5tanh
(
V−V3
V4

)

τW (V ) = 1
τ̄W

cosh
(
V−V3
2V4

)
(5)

where V and W represent the variables for the mem-
brane potential and gate channel, respectively. C is
the capacitance of the membrane, and gCa, gK, and
gL denote maximum conductance of Ca2+, maximum
conductance of K+, and maximum conductance of
leakage current, respectively. Iext is an external stim-
ulus. VCa, VK and VL are steady-state potentials for
Ca2+, K+ and leak ion channels, respectively. M∞(V )

and W∞(V ) define the stable values of opening prob-
ability for calcium and potassium, where V1, V2, V3,
and V4 are parameters of steady states, and τw is the
system parameter.

3.4 HR neuron model

In 1984, Hindmarsh and Rose (HR) [7] developed a
powerful HR model which can not only facilitate the
calculation but also can generate most of the firing
behaviors exhibited by real biological neurons, such
as quiescence, spiking firing, and bursting firing. The
HR model includes a 2D model and a 3D model. The
2D HR neuron model is regarded by many scholars as
to the idealistic one in the study of actual neuron firing.
Its mathematical expression is [78]
{
dx/dt = y − ax3 + bx2 + Iext
dy/dt = c − dx2 − y

(6)

where x and y denote membrane potential and recov-
ery variables of the neuron, a, b, c, and d are model
parameters, and Iext is the external stimulus. The 3D
HRneuronmodel is described by the following dynam-
ical system: [79]
⎧
⎨

⎩

dx/dt = y − ax3 + bx2 − z + Iext
dy/dt = c − dx2 − y
dz/dt = r(s(x + ε) − z)

(7)

where the state variable x represents the membrane
potential, y describes the exchange of ions across the
neuron membrane through fast ionic channels, and z
is a slowly changing adaptation current. Iext mimics
the external current for biological neurons, and r is a
small parameter that controls the speed of variation of
the slow variable z, ε sets the resting potential of the
system. And a, b, c, d, s, r are system parameters.

3.5 Chay neuron model

In 1985, to reproduce the firing behaviors of β-cell,
Chay [8] developed a three-dimensional neuron model
that can simulate bursting and chaos firing. The Chay
model is described using the following three differen-
tial equations: [80]
⎧
⎨

⎩

dV/dt = −Iion − Ikv − Ikc − IL + Iext
dn/dt = (n∞ − n)/τn
dC/dt = ρ(m3∞h∞(Vc − V ) − kcC)

(8)

where
⎧
⎪⎪⎨

⎪⎪⎩

Iion = gionm3∞h3∞(V − Vion)
Ikv = gkvn4(V − Vk)
Ikc = gkc(C/(1 + C))(V − Vk)
IL = gL(V − VL)

(9)

where V , n, and C are the membrane potential, the
probability of opening voltage-dependent K+ chan-
nels, and the intracellular Ca2+ concentration, respec-
tively. Iion, Ikv , and Ikc are the inward mixed Na+–
Ca2+ ionic current, the outward voltage-dependent K+
ionic current, and the outward calcium-dependent K+
ionic current, respectively. And IL and Iext are the leak-
age current and external stimulus, respectively. Vion,
VK, and VL are reversal potentials for mixed Na+–
Ca2+, K+, and leakage ions, respectively. gion, gkv ,
gkc, and gL represent themaximal conductances,where
the subscripts refer to the voltage-dependent mixed
ionic channel, the voltage-dependent K+ channel, the
Ca2+-dependent K+ channel, and leakage channels,
respectively. m∞ and h∞ in Eq. (9) are the probabili-
ties of activation and inactivation of the mixed channel,
respectively. n∞ is the steady-state value of n.

According to Sects. 3.1–3.5, all single neuron mod-
els can be simplified as a common neuron model,
namely
⎧
⎪⎨

⎪⎩

dVmem/dt = f (Vmem, Vy, . . . , Iext)
dVy/dt = f (Vmem, Vy, . . .)
...

(10)
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where Vmem represents the membrane potential of the
neuron, various other Vy represent some state variables
induced by various ion channels. Iext is the external
stimulus.

3.6 Hopfield neural network

In 1984, Hopfield [9] proposed an ideal neural net-
work, namely Hopfield neural network (HNN). Due to
its strong nonlinear and flexible algebraic expression,
the HNN is particularly suitable for simulating various
complex dynamical behaviors in the brain, especially
chaotic behavior. HNN can be described by a set of
nonlinear ordinary differential equations corresponded
to n-neurons. The mathematical model of HNN can be
given by [81]

Cidxi/dt = −xi/Ri +
n∑

j=1

wi jv j + Iiext (11)

where Ci , Ri , xi are membrane capacitance, mem-
brane resistance, andmembrane potential of i th neuron,
respectively.wi j is the synaptic weight between the i th
and j th neurons. v j=tanh(x j ) is the neuron activation
function, and Iiext is the external stimulus.

3.7 Cellular neural network

In 1988, Chua and Yang [10] presented a Cellular neu-
ral network (CNN) based on cellular automata and
Hopfield neural networks. The basic unit circuit of
CNN is called a cell. The system equation for anM×N
CNN is [82]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cdxi j/dt = −xi j/R + ∑

C(k,l)∈Nr (i, j)
A(i, j; k, l)ykl

+ ∑

C(k,l)∈Nr (i, j)
B(i, j; k, l)ukl + Ii jext

yi j = 0.5(
∣
∣xi j + 1

∣
∣ − ∣

∣xi j − 1
∣
∣)

(12)

where C and R are linear capacitor and linear resis-
tor, respectively. xi j , yi j , ui j are internal state, out-
put, input of neuron (i , j), respectively. A (i , j ; k, l)
and B (i , j ; k, l) are output feedback parameter and
input control parameter, respectively. Ii jext is exter-
nal input current. C (k, l) represents neuron (k, l),
and Nr (I , j) represents the r -neighborhood of neuron
(I , j), namely,{(k, l)|max{|k − i |, |l − j |} ≤ r, 1 ≤
k ≤ M, 1 ≤ l ≤ N }. Additionally, |xi j (θ)| ≤ 1 and
|ui j | ≤ 1.

(a) (b)

Fig. 1 Circuit symbol and pinched hysteresis loop of the mem-
ristor. a Circuit symbol. b Pinched hysteresis loop

4 Memristive neuron and neural network models

Memristor was postulated first by Chua in 1971 [83]
as the fourth basic electrical element that links flux
(ϕ) and charge (q). Later the concept is generalized
to any two-terminal device exhibiting a pinched hys-
teresis loop which always passes through the origin
in the voltage–current plane when driven by any peri-
odic voltage or current signal that results in a periodic
response of the same frequency [84–86]. The symbol
of the memristor and its unique pinched hysteresis loop
are shown in Fig. 1a and b, respectively, where M and
W represent memristance and memductance, respec-
tively. Although the concept of memristor was intro-
duced in the early time, an actual physical memristor
was discovered until 2008 [19]. After that, various dif-
ferent devices have been identified as memristors, and
corresponding memristor models that can mimic the
approximately the measured pinched hysteresis loops
have been developed and applied [87,88].

According to the theory of thememristor, a common
ideal memristor model can be written by
{
i = W (ϕ)v

dϕ/dt = v
(13)

where v, i are the input voltage and output current,
respectively.W is a continuous function of ϕ, called the
memductance, and ϕ is the flux. And a generic mem-
ristor is defined by
{
i = W (x)v
dx/dt = f (x, v)

(14)

whereW is a continuous function of x , called themem-
ductance, x is the state variable, and f (x , v) is a Lips-
chitz function.

As we all know, a memristor is a two-terminal elec-
tronic device whose memductance can be precisely
modulated by charge or flux through it. Furthermore,
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Fig. 2 Schematic illustration of the concept of using memristor
as neural synapse

the memristor enjoys many biomimetic features such
as nanoscale, nonlinearity, programmability, andmem-
orability [89]. Therefore, the memristor has two impor-
tant biomimetic functions. On the one hand, the mem-
ristor can be used to imitate synaptic functions such
as plasticity. Numerous research results show that the
mechanism of moving nanoscale particles in memris-
tors is very similar to the behavior of moving neuro-
transmitters in synapses [90]. Thus, a memristor can be
considered as an artificial neural synapse, as shown in
Fig. 2. Also, many experimental results demonstrated
that nanoscale memristor devices can support synap-
tic plasticity [91,92]. As a result, using memristors
as synapses in neuron and neural network models can
establish more realistic artificial neuron and neural net-
work models.

On the other hand, the memristor can be used to
describe the effect of electromagnetic radiation on neu-
ronal electrical activity. When a neuron is exposed to
external electromagnetic radiation, the motion of ions
with charge can be controlled by the electromagnetic
field, and an electromagnetic induction current can be
generated [21,24]. Hence, the effect of electromagnetic
radiation can be considered as magnetic flux across
the membrane of the neuron, and a memristor can be
used to describe the coupling between magnetic flux
and membrane potential, as shown in Fig. 3. With
electromagnetic radiation being considered, the tradi-
tional neuronmodel can present more abundant chaotic
dynamics.

Therefore, memristors can be employed to mimic
biological neural synapses or to describe electromag-
netic induction effects caused by external electromag-
netic radiation. With the advent of memristors, many
types of traditional neuron and neural network models
have been improved bymemristors. Next, we introduce
various memristive neuron and neural network models
and discuss how these models simulate real biological

Fig. 3 Schematic illustration of the concept of using memristor
to describe the coupling between magnetic flux and membrane
potential

neurons and nervous systems. Especially,we review the
recent papers related to the chaotic dynamics of various
memristive neurons and memristive neural networks.

4.1 Memristive autapse neuron model

As it is well known, a neuron is made up of the nucleus
encoding information, the dendrite collecting electri-
cal signals, and the axon propagating electrical sig-
nals. Synapse is an important bridge for connecting
the axon and the dendrite of different neurons, which
plays a key role in receiving and transferring electri-
cal signals between neurons. Based on some physical
and biological experiments, electrical activities can be
modulated by the synapse current. Autapse can con-
nect the axon and the dendrite of the same neuron by a
close loop, which is a type of special synapse [93]. As
reported in [94], autapse can regulate neuronal activity
by a negative feedback autapse current. Therefore, it is
significant and necessary to consider autapse as a part
of a neuronal system. A great number of researches
show that biological neural synapse owning memory
characteristic is considered as a kind of memristor
device [95]. Therefore, the memristor can efficiently
mimic the neural synapses. Under this strategy, intro-
ducing an autapse current generated by the memristor-
based autapse into the traditional single neuron model,
a memristive autapse neuron model can be established
[28]. The reduced diagram of the memristive autapse
neuron is given in Fig. 4. As shown in Fig. 4, the mem-
ristive autapse current can be computed by an induction
current caused by memductance and membrane poten-
tial, namely

Iaut = ρVmemW (x) (15)
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Fig. 4 Concept diagramof thememristive autapse neuronmodel

where Vmem is the membrane potential of the neuron,
W (x) is memductance of the memristor, and ρ indi-
cates the feedback gain of the autapse current. When
the autapse current Iaut in Equation (15) is considered
in the traditional neuron model in Equation (10), the
memristive autapse neuron model can be constructed
by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dVmem/dt = f (Vmem, Vy, . . . , Iext) − Iaut
dVy/dt = f (Vmem, Vy, . . .)
...

dx/dt = f (x, Vmem)

(16)

where Vmem is the membrane potential of the neuron,
Iaut is often regarded as a negative feedback current,
dx/dt is the state function of thememristor, and x is the
internal state of the memristor in Equation (14). Base
on this type of memristive neuron model, many com-
plex chaotic dynamics can be investigated [96,97]. For
example, firingmultistability including chaotic spiking
and chaotic bursting is observed in the locally active
memristive HR neuron [28]. Multiple firing modes can
begenerated in thememristiveFHNneuron [98].More-
over, the autapse current is also regarded as a kind of
self-induction current caused by the membrane poten-
tial of the neuron. Hidden bursting firing [97] and coex-
isting behaviors [99] are found in the memristive HR
neurons.

4.2 Memristive synapse-coupled bi-neuron network

Synapse plays an important role in the signal exchange
and information encoding between neurons. Elec-
tric and chemical synapses are often used to inves-
tigate the synchronization and chaos in the electri-
cal activities of neurons. Since memristor can mimic
biological synapse, it can use to connect two neu-
rons and construct a memristive synapse-coupled bi-
neuron network. The simplified schematic diagram of

Fig. 5 Concept diagramof thememristive autapse neuronmodel

the memristive-synapse coupled bi-neuron network is
given in Fig. 5. As shown in Fig. 5, the signal exchange
can be induced when two neurons are connected via
memristor, namely, a synapse current can be generated
on the memristive synapse. According to the nonlin-
ear property of the memristor, the memristive synapse
current can be described by

Isyn = ρ (Vmem1 − Vmem2)W (x) (17)

where Vmem1 and Vmem2 denote two membrane poten-
tials of neuron 1 and neuron 2. W (x) and ρ are mem-
ductance of the memristor and the coupling strength
between the memristor and neurons. According to the
dynamical equation of the traditional neuron models,
thememristive synapse-coupled bi-neuron network can
be described by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dVmem1/dt = f (Vmem1, Vy1, . . . , Iext1) − Isyn
dVy1/dt = f (Vmem1, Vy1, . . .)
...

dVmem2/dt = f (Vmem2, Vy2, . . . , Iext2) + Isyn
dVy2/dt = f (Vmem2, Vy2, . . .)
...

dx/dt = f (x, (Vmem1 − Vmem2))

(18)

Under this mechanism, some synapse-coupled bi-
neuron networks and their neurodynamics can be fur-
ther analyzed. For instance, the phenomena of chaos
[31,34] and synchronization [25,100–104] are detected
in various memristive synapse-coupled bi-neuron net-
works. Coexisting multiple firing patterns are observed
in the memristive synapse-coupled HR bi-neuron net-
work [43,44,47].

4.3 Memristive synaptic weight neural network

By applying voltage or current to the memristor,
its memductance can be altered like the biological
synapse. And from the electronic point of view, both
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Fig. 6 Concept diagram of the memristive synaptic weight neu-
ral network

the synapticweight of the synapse andmemductance of
the memristor are in the units of Siemens [20]. There-
fore, the memductance is very suitable to realize the
synaptic weight. Under this mechanism, a memristive
synaptic weight neural network can be modeled based
on the traditional neural networks. Figure 6 shows the
conceptual structure of the memristive synaptic weight
neural network, where the memristor is used to simu-
late the synapse between the i th neuron (Ni ) and the
j th neuron (N j ) in a neural network. As a result, the
synapse weight wi j of the synapse can be described by
using ρW (x), where W (x) and ρ represent the mem-
ductance and the coupling strength of the memristor,
respectively.

According to the above analysis, assuming that the
synapse weight wi j in the Hopfield neural network is
replaced by the memductance ρW (x), a memristive
Hopfield neural network can be modeled by

⎧
⎨

⎩

Cidxi/dt = −xi/Ri +
n∑

k=1,k �= j
wikvk + wi jv j + Iiext

dx/dt = f (x, v j )

(19)

where i , j ⊂ [1, n]. In recent years,many scholars have
devoted great enthusiasm to the memristive Hopfield
neural network and its chaotic dynamics. For the first
time, hyperchaotic behavior and hidden attractors are,
respectively, revealed in two small memristive HNNs
with a quadratic memristive synaptic weight [23,37].
Coexisting two asymmetric attractors are observed in a
memristive HNN with a hyperbolic-type memristive
synaptic weight [41]. The phenomena of coexisting
multiple attractors and remerging Feigenbaum trees are
discovered in a four neuron-based memristive HNN
with a nonlinear memristive synaptic weight [49]. And
coexistence of infinite attractors can be obtained from a
four neuron-basedmemristiveHNNwith amulti-stable
memristive synaptic weight [51]. Very recently, in

[46], the initial offset boosting coexistingmulti-double-
scroll attractors are revealed in a memristive HNNwith
a non-ideal flux-controlled memristor synapse. Also,
other memristive HNNs are also studied based on this
model [105–107].

4.4 Neuron under electromagnetic radiation

With the development of modern industry, the wide
utilization of electric equipment makes the biological
nervous system be exposed to an environment full of
electromagnetic radiation, which has a great influence
on the dynamics of a single neuron and neuronal net-
works [2]. Indeed, the motion of the charged particle
can be controlled by an electromagnetic field and the
spatial distribution of charged particles becomes com-
plex when these charged particles are exposed to the
external electromagnetic field. According to the phys-
ical law of electromagnetic induction, the distribution
and density of magnetic flux across the membrane can
be changed when the cell is exposed to an electromag-
netic field. Consequently, the electrical activities of the
biological neuron can be changed due to the electro-
magnetic induction during the exchange of ion currents
and the fluctuation of ion concentrations. Therefore, the
effects of electromagnetic radiation on the dynamics
of the nervous system should be considered with the
increasing use of electric devices. As we all know, the
magnetic (voltage)-controlled memristor describes the
relation between magnetic flux and its memductance.
When the effect of electromagnetic radiation on a neu-
ron is considered as magnetic flux across the mem-
brane of the neuron, the coupling between magnetic
flux and membrane potential can be described by using
a magnetic-controlled memristor [21,24]. As a con-
sequence, the neuron under electromagnetic radiation
can be modeled by adding an induction current in the
traditional neuron model. The reduced diagram of the
model of the neuron under electromagnetic radiation is
given in Fig. 7. As shown in Fig. 7, the electromagnetic
induction current can be computed by a memristor cur-
rent, namely

IER = kW (ϕ)Vmem (20)

where ϕ describes the magnetic flux across the mem-
brane of a neuron, k denotes the coupling strength
between membrane potential and magnetic flux. When
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Fig. 7 Schematic diagram of the neuron under electromagnetic
radiation

the electromagnetic induction current IE R in Eq. (20) is
considered in the traditional neuron model in Eq. (10),
the model of the single neuron under electromagnetic
radiation can be expressed by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dVmem/dt = f (Vmem, Vy, . . . , Iext) − IER
dVy/dt = f (Vmem, Vy, . . .)
...

dϕ/dt = μVmem − h(ϕ)

(21)

where IE R defines the feedback current on membrane
potential when the magnetic flux is changed. The terms
μVmem and h(ϕ) are the membrane potential-induced
changes on magnet flux and leakage of magnet flux,
respectively. Based on the memristive neuron model
under electromagnetic radiation, the influence of elec-
tromagnetic radiation on neuronal activity in a single
neuron can be studied. For example, reference [108]
shows that electromagnetic radiation can excite quies-
cent neurons but also can suppress the electrical activi-
ties in the neuron aswell.Coexistingmultiplefiringpat-
terns in single neuron are detected when external elec-
tromagnetic radiation is imposed on the neuron [109–
113]. In [114,115], the phenomenon of hidden homo-
geneous extrememultistability is discovered in a mem-
ristive HR neuron under electromagnetic field. Further-
more chaotic behaviors are observed in the neuron sub-
jected to external electromagnetic radiation [115–117].

4.5 Neural network under electromagnetic radiation

Inspired by the mechanism of a single neuron under
electromagnetic radiation, the neural network with
multiple neurons under electromagnetic radiation can
be modeled. The conceptual structure of the neural net-
work exposed to electromagnetic radiation is shown in

Fig. 8 Schematic diagram of the neural network under electro-
magnetic radiation

Fig. 8. In Fig. 8, when the neuron i (Ni ) in the neu-
ral network is subjected to electromagnetic radiation,
the induction current IERi will be induced by electro-
magnetic radiation. And the induction current can be
described by kW (ϕ)vi , where k is the feedback gain of
the external stimulus induced by electromagnetic radi-
ation,W (ϕ) is the memductance of the memristor, and
vi is the membrane potential of the neuron i .

According to the above analysis, assuming that the
Hopfield neural network is exposed to electromagnetic
radiation, a Hopfield neural network under electromag-
netic radiation can be modeled by [36]

⎧
⎨

⎩

Cidxi/dt = −xi/Ri +
n∑

j=1
wi jv j + IERi + Iiext

dϕi/dt = μi xi − h(ϕi )

(22)

where IERi = kiW (ϕi )xi ,ϕi is themagnetic flux across
the membrane of neuron i , μi denotes the contribution
of magnetic flux on the formation of neuron i mem-
brane potential. The term h(ϕi ) represents the leak-
age of the magnetic flux. Based on this model, the
influence of electromagnetic radiation on chaotic neu-
rodynamics in neural networks can be analyzed. For
example, the complex coexistence of periodic attrac-
tors, chaotic attractors, and transient chaotic attrac-
tors has been observed in a small HNN under elec-
tromagnetic radiation [27]. Hidden extreme multista-
bility with hyperchaos and transient chaos is discussed
in a three neuron-based HNN under electromagnetic
radiation [35]. Furthermore, some coupled bi-neuron
networks under electromagnetic radiation have been
studied based on this mechanism [118–121]. And some
chaotic dynamics such as chaos, chaotic bursting, and
coexisting attractors are reported in these neural net-
works.
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To better exhibit the chaotic dynamics of the mem-
ristive neurons and neural networks, we give a perfor-
mance comparison with the original neurons and neu-
ral networks, as shown in Table 1. As can be seen,
the original neurons and neural networks only gener-
ate some simple dynamical behaviors such as periodic
spiking, periodic bursting, and simple chaos. On the
contrary, the memristive neurons can generate multiple
firing patterns including periodic and chaotic spiking
firings, periodic and chaotic bursting firings, as well
as complex chaos. Moreover, the memristive neural
networks exhibit more complex dynamics, especially
chaotic dynamics including chaos, coexisting attrac-
tors, hidden attractors, multistability, and extrememul-
tistability. Consequently, the study of memristive neu-
rons and neural networks is significantly important to
promote the development of computational neurody-
namics.

5 Open problems and future work

As reviewed above, the chaotic dynamics of the mem-
ristive neuron and neural network models have greatly
stimulated researchers’ interest and many valuable
research results have been reported until now.However,
several important questions still remain to be answered.
As we all know, the nervous system has a large num-
ber neurons and these neurons have different biolog-
ical structures and functions. Whereas most memris-
tive neuron and neural network models consider only a
special structure and a single biological function. Thus,
more different memristive neuron and neural network
models need to be developed based on the different
biological neuronal systems, such as astrocytes [122],
microglia [123], and so on [124]. Moreover, the bio-
logical neurons and nervous systems are very sensi-
tive to their living environment. At present, the ubiqui-
tous factors including light, sound, and temperature are
rarely considered in the existingmemristive neuron and
neural network models. In fact, building a reliable and
multifunctional neuron model is critical for estimating
complex neurodynamics. Besides, from the viewpoint
of biophysical mechanism and function, the physical
effects of electromagnetic induction should be con-
sidered in the neurons and neural networks [58,125].
Indeed, Ma et al [126–128] regard that the biophys-
ical effects, biological function, and field coupling
between neurons and neuronal networks should be con-

sidered. Although several interesting results related to
physical effects in memristive neurons and neuronal
networks have been revealed [129,130], more inves-
tigations need to do in further. From the viewpoint
of application, the memristive neuron and neural net-
work models can be used in various artificial intelli-
gence fields including synchronous control [131–134],
image encryption [135–137], and neuromorphic sys-
tems [138–140]. However, the relationship between the
effects of these applications and the neurodynamics of
the memristive neural systems is still unclear. That is
to say, whether the influences of the external stimuli
like electromagnetic radiation on the memristive neu-
ral systems in actual applications have the same effects
as the biological nervous systems is an open problem.
This would be a new area for exploring memristive
neurodynamics.

6 Conclusion

Recent advances in neurodynamics by variousmemris-
tive neuron and neural networkmodels are discussed in
detail which will certainly help the researchers to study
this new prospect. Starting with the basics definition
of chaotic dynamics, it slowly introduced the basics
of the traditional artificial neuron and neural network
models. Five types of memristive neuron and neural
network models are summarized and addressed based
on different biological neural mechanisms. It may be
noted that the memristor plays an important and vital
role in the memristive neuron and neural network mod-
els. Research results as reported by previous authors
show that the memristive neural models have complex
chaotic dynamics. Although some memristive neuron
and neural network models and their chaotic dynamics
have been investigated, it is still in the infant stage and
the same need to be further explored. We believe that
investigating the chaotic dynamics of memristive neu-
ron and neural network models will help to elucidate
more detailed functions of the brain as well as engi-
neering applications.
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