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a b s t r a c t

In this work, a full circuit of memristor-based neural network with weighted sum simultaneous pertur-
bation training is proposed. Firstly, a synaptic circuit is designed by using a pair of memristors, which can
represent negative, zero, and positive synaptic weights. Secondly, a full circuit of the neural network is
designed, with all operations being completed on the circuit without any computer aid. The neural net-
work is trained with the weighted sum simultaneous perturbation algorithm. The algorithm does not
involve complex derivative calculation and error back propagation, and it only applies perturbations to
weighted sum, so the circuit implementation is more simple. Finally, application simulations of the pro-
posed neural network circuit are performed via PSpice. The results of simulation indicate that the
memristor-based neural network is practical and effective.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The neural network is one of the most important branches of
artificial intelligence, and the implementation of neural networks
in hardware is a research hotspot. HP labs physically realized the
memristor in 2008 [1]. Meanwhile, the application of memristors
is more and more widely seen in recent years, such as memristive
chaotic circuit [2–7], memristive neural network [8–14]. As a non-
volatile programmable resistor, memristor has the advantages of
high density, low power, and good scalability. It is the most
promising candidate for realizing storage of synaptic weight in
artificial neural network. So the research in memristor-based neu-
ral network is gaining more and more attention.

In memristor-based neural network circuits, memristance is
applied to represent synaptic weight variation. In [15–17], the
synaptic operation was realized by the memristor circuit, which
greatly simplified the structure of the Hopfield neural network,
and the proposed neural network was proved effective via simula-
tion results. Multi-layer neural network is applicable to solve the
problem of nonlinear classification. Some multi-layer neural net-
works based on memristor were proposed by using memristor to
simulate weight [18–20]. These papers applied multiple neural
networks to pattern recognition. Hu et al. [21] proposed a simple
dynamic synapse based on memristor, and studied the spiking
neural network by utilizing the dynamic synapses. In [22], the
memristance of synaptic circuit can be updated by the positive
voltage, and the circuits of memristor-based neural network were
proposed for recognition and classification. Besides, some other
kinds of neural networks were realized by memristor, such as per-
ceptron [23], recurrent neural network [24], RBF neural network
[25,26], cellular neural network [27,28], pulse-coupled neural net-
work [29,30], echo state network [31], and convolutional neural
networks [32–34].

As we all know, an efficient training system is critical for weight
adjustment in neural networks. Researchers proposed neural net-
works based on different learning algorithms in recent years. Ref.
[35] proposed a neural network based on WTA and STDP learning
rules, which was applied to position detection. In [36], a
memristor-based neural network with LMS algorithm was pro-
posed. Ref. [37] realized a simple architecture of synapse by using
CMOS transistor and memristor, and the online gradient descent
training algorithm was used in the process of training. Besides,
the error backpropagation (BP) is the most popular training algo-
rithm in the neural network, which was proposed by Rumelhart
[38]. In [39], a modified BP algorithm was implemented in multi-
layer neural network by using memristor-based synapse. Ref.
[40] proposed a training system which based on backpropagation
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rule for adjustment of synaptic weight. Besides, some hardware-
friendly algorithm were used in circuit implementation of neural
network. For instance, the memristor-based neural network with
the random weight change (RWC) algorithm was proposed [41],
where synaptic weights were turned by a small constant randomly.
The design simplified the circuit structure. Wang et al. [42] pro-
posed a new circuit architecture of neural network based on
weight simultaneous perturbation algorithm (WSP), which signifi-
cantly simplified the circuit of weight adjustment and allowed
simpler and easier circuit implementation of the neural network.
However, for the BP algorithm, the error propagation and deriva-
tive of nonlinear active function are needed and the calculation
of derivative is difficult to be realized by an analog circuit. These
characteristics make the circuit structure of neural network com-
plex. The RWC algorithm does not have complex operations, but
the value of error variance is not utilized in algorithm by only con-
sidering the sign of error variation, which results in low convergent
speed. In WSP algorithm, the value and sign of the error variation
are used to the adjustment of weights. However, perturbations are
added to all weights simultaneously, which makes the circuit of
the multi-layer neural network not concise.

To solve the above problems, a full circuit of memristor-based
neural network with weighted sum simultaneous perturbation
training is proposed. The weighted sum simultaneous perturbation
(WSSP) algorithm is a simple and effective training method for
neural network. In the neural network with WSSP algorithm, a per-
turbation signal is added to the weighted sum, then the weights
updated based on the difference between unperturbed and per-
turbed error function. Different from the BP algorithm, the WSSP
algorithm does not involve the complex derivative calculation
and error back propagation. And compared with the WSP algo-
rithm, the WSSP algorithm only applies perturbations to weighted
sum, thus the circuit implementations are more concise. In this
paper, a synaptic circuit is designed firstly by using a pair of mem-
ristors, which can achieve negative, zero, and positive synaptic
weights. Second, a full circuit of neural network based on WSSP
algorithm is designed, the training rule and weight adjustment
are implemented in circuits without any computer aid. The WSSP
algorithm updates weight by calculating the difference between
unperturbed and perturbed error, this method utilizes the value
and the sign of the error variation, which overcomes the defect
of the RWC algorithm. Besides, the computational structure of
WSSP algorithm is much simpler by contrast with the BP algorithm
and WSP algorithm, which make the circuit operations much more
concise and feasible. Finally, odd parity problem and face recogni-
tion are performed by the proposed memristor-based neural net-
work via PSpice simulation. The effectiveness and practicability
of the circuit is proved by simulation results.

The remainder of this paper is organized as follows. The basic
background on the weighted sum simultaneous perturbation algo-
rithm is given in Section 2. The circuit of neuron and neural net-
work is described in Section 3. In Section 4, the simulation
results of the neural network circuit for odd parity and face recog-
nition are analyzed. Section 5 presents the conclusion drawn from
this work.
Fig. 1. The flowchart of WSSP algorithm.
2. Background

2.1. Weighted sum simultaneous perturbation algorithm

The perturbation algorithm [43] was suggested as an alternative
to back-propagation. Compared with the BP algorithm, there is no
complex derivative calculation and error back propagation in this
algorithm, so it is easy to be implemented in hardware. In WSP
algorithm [42], the perturbation p is applied to all weights simul-
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taneously, but in the circuit implementation, the complexity of cir-
cuit will increase with the increased number of synaptic weight.
Different from WSP algorithm, the perturbation p is only applied
to weighted sum in WSSP algorithm, which makes the circuit
design more concise.

In the neural network, the output y and the error function E are
defined as

y ¼ f ð
Xn
i¼1

wixiÞ ð1Þ

E ¼ t � yk k2 ð2Þ
where xi is the input of the network,wi is the weight of the network,
f is the nonlinear activation function, and t is the target value of
output.

The detailed flowchart of WSSP algorithm is shown in Fig. 1. A
small positive constant perturbation signal p is added to the
weighted sum s, and the perturbation affects the output and error.
The detailed calculation process of WSSP algorithm as follows.
First, the error without a perturbation is calculated. Second, a per-
turbation signal is applied to the weighted sum, and the error with
a perturbation is calculated. Finally, The weight updated according
to the difference between unperturbed and perturbed error func-
tion. As a consequence, the weight update rule is given by

Dwi ¼ �a @E
@wi

¼ �a @E
@s

@s
@wi

¼ �a @E
@s xi

wiðmþ 1Þ ¼ wiðmÞ þ Dwi

(
ð3Þ

Dwi � �a DE
Ds xi ¼ �a DE

p xi
wiðmþ 1Þ ¼ wiðmÞ þ Dwi

(
ð4Þ

where

DE ¼ Eper � E ð5Þ
and a is the learning rate, p is a positive constant, Eper is the error
with a perturbation, E is the error without a perturbation.

2.2. MNN architecture with WSSP algorithm

Multi-layer neural network (MNN) is applicable to solve the
problem of nonlinear classification. The architecture of MNN
trained by WSSP algorithm is shown in Fig. 2. The MNN cascades
multiple single-layer neural networks usually, and the mathemat-
ical model of a neural network with two layers is defined as

Y ¼ W2f ðW1XÞ ð6Þ
where f denotes the nonlinear activation function, W1 and W2 are
the weight matrix. As described as Eq. (4), the weight adjust rule
for network with two layers is defined as

DW1 ¼ �a DE
p X1

DW2 ¼ �a DE
p X2

(
ð7Þ



Fig. 2. The architecture of MNN trained by WSSP algorithm.

C. Xu, C. Wang, Y. Sun et al. Neurocomputing 462 (2021) 581–590
where X1 and X2 are input of the two-layer neural network, respec-
tively. As for a general MNN with WSSP algorithm, all weight matri-
ces are updated according to the following formula synchronously.

DWk ¼ �aDE
p

Xk ð8Þ

where k is the index of the neural network layer.
2.3. Algorithms comparison

In BP algorithm, the error propagate from output layer to the
hidden layers, and weights adjustment are related to the derivative
calculation of the activation function. WSSP algorithm does not
contain a complex derivative calculation and error back propaga-
tion. Besides, compared with the WSP algorithm, the WSSP algo-
rithm only applies perturbations to the weighted sum as shown
in Fig. 2, which simplifies the algorithm structure and implementa-
tion complexity. To validate the effectiveness of the algorithm,
comparison experiments were conducted using two typical algo-
rithms and the WSSP algorithm in Matlab (R2016b). A multilayer
neural network with three training algorithms performed recogni-
tion on the MNIST data set of handwritten digits. The neural net-
work consists of 38 input � 80 hidden � 10 output. 5000 images
were used for training and 1000 images for testing in our experi-
ment. The network was trained by WSSP, BP, and WSP algorithms,
respectively. The mean squared errors vs the number of iterations
for WSSP, BP, and WSP algorithms are shown in Fig. 3. From the
curve of training error, it indicates that the convergence speed of
WSSP is faster than BP andWSP algorithms. So the WSSP algorithm
is feasible and effective.
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3. Circuit design and simulations

3.1. Memristor

As the fourth basic circuit element, memristor has the same reg-
ulation mechanism as the weight regulation of synapse, so the
memristor is the most promising device for designing circuits of
neural network. In this work, the circuit of neural network was
designed using a voltage-controlled memristor model [44]. If the
applied input signal exceeds the threshold, the memristance of this
device will change, else it remains unchanged. The expressions of
the memristor model are described as

RðtÞ ¼ Ron
xðtÞ
D

þ Roff ð1�xðtÞ
D

Þ ð9Þ

dxðtÞ
dt

¼
lv

Ron
D

ioff
ion

f ðxðtÞÞ; vðtÞ < VT� < 0
0; VT� 6 vðtÞ 6 VTþ

lv
Ron
D

ioff
iðtÞ�i0

f ðxðtÞÞ; vðtÞ > VTþ > 0

8>><
>>: ð10Þ

where xðtÞ denotes the width of the doped region, lv denotes the
average ion mobility, i0; ioff , and ion are constants, VT� and VTþ are
negative and positive threshold voltages, respectively, and the win-
dow function is

f ðxðtÞÞ ¼ 1� ð2xðtÞ
D

� 1Þ
2a

ð11Þ

where a is a positive integer parameter of window function. The
main parameters used in this work are
Ron ¼ 100X;Roff ¼ 10kX;D ¼ 10nm;lv ¼
1� 10�12m2s�1X�1; ion ¼ 1A; ioff ¼
1� 10�5A; i0 ¼ 1� 10�3A;VTþ ¼ 2V ;VT� ¼ �2V ; a ¼ 4.
00 1200 1400 1600 1800 2000
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Fig. 4. The memristor-based neuron circuit.
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3.2. Neuron circuit

The designed neuron circuit is shown in Fig. 4. A synapse in the
circuit is composed of two memristors, and the activation function
is implemented by using amplifiers and resistors. The output Vo of
the neuron is given by

Vo ¼ Rf ðI1þ � I1�Þ þ ðI2þ � I2�Þ þ � � � þ ðInþ � In�Þ½ �

¼ Rf ½V1ð 1
M1a

� 1
M1b

Þ þ � � �Vnð 1
Mna

� 1
Mnb

Þ� ¼ Rf

Xn
i¼1

Viwi ð12Þ

where

wi ¼ ð 1
Mia

� 1
Mib

Þ ¼ Gia � Gib ð13Þ

When the saturation voltage of amplifier is Vss and Vcc , it can be
also described as

Vo ¼

Vss; Vo < Vss

Rf

Xn
i¼1

Viwi; Vss 6 Vo 6 Vcc

Vcc; Vo > Vcc

8>>><
>>>:

ð14Þ

PSpice simulation of memristor synapse is performed, the
results are shown in Fig. 5. The polarity of memristor Mia is clearly
opposite to that of Mib, so the change in memristances of Mia and
Mib is opposite under a positive or a negative voltage. According
to Eq. (13) and Fig. 5(b), it indicates that the synapse can achieve
positive, zero, and negative synaptic weights.
0 1 2 3 4

-3

0

3

Fig. 5. The weight adjustment of memristor synapse. (a
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3.3. Circuit design of neural network with WSSP training algorithm

In off-chip neural network training works, the training process
is implemented in software, then the calculated weights are down-
loaded to the circuit, which leads to the lack of the parallelism of
neural network. As shown in Fig. 6, for the full circuit implementa-
tion of neural network, a full circuit is designed by using the WSSP
algorithm. Different from the commonly used BP algorithm, the
WSSP algorithm does not involve the complex derivative calcula-
tion, this makes the circuit implementation is more concise. The
training is divided into two processes, forward propagation and
feedback adjustment process, and they are executed alternately,
controlled by signal Vc in the circuit, until the algorithm converges.
The switching function is performed by transmission gate switches
SW, the used operational amplifier is LM741, the sample and hold
is LF398. The main parameters R ¼ 3kX;Rf ¼ 600X;Vcc ¼
15V ;Vss ¼ �15V ;VTþ ¼ 2V ;VT� ¼ �2V . The details of the full
circuit are described as follows.

a. The process of forward propagation: When the control signal
Vc is at a high level, the input signals input to the network for error
calculation. The input signal of the neural network is denoted as
Viði ¼ 1;2; . . . ;nÞ;Vp is a small positive voltage, which is the pertur-
bation signal of WSSP algorithm. Vo is the output without a pertur-
bation, Vper is the output with a perturbation, VT is the target value.
The error E and Eper are calculated by

E ¼ VT � Voð Þ2 ð15Þ

Eper ¼ VT � Vper
� �2 ð16Þ

Then the difference between unperturbed and perturbed error
is calculated by

DE ¼ ðEper � EÞ ð17Þ
b. The process of feedback adjustment: When the control signal

Vc is at the low level, the adjusting voltages Vfbiði ¼ 1;2; . . . ;nÞ feed
back to network for weight updating. In the WSSP algorithm, as
shown in Eq. (4), the weight adjustment depends on the error dif-
ference, perturbation signal, and input. In the circuit design, the
adjusting signal of synapse weight depends on the error difference
and the sign of input signal. Besides, we add the threshold voltage
to ensure the adjusting voltage is greater than threshold of mem-
ristor, it can be described as

V fbi ¼
�ðDEþ VT�Þ � signðViÞ; if ðDEÞ < 0
�ðDEþ VTþÞ � signðViÞ; if ðDEÞ > 0

�
ð18Þ
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Fig. 6. Circuit of the memristor-based neural network with WSSP algorithm.
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where VT� and VTþ are the negative and positive threshold of mem-
ristor. If the adjusting voltage is greater than threshold of memris-
tor, the memristance will increase or decrease, otherwise it remains
unchanged. That is, the synaptic weight increases or decreases until
the error is close to zero.

3.4. Synaptic weight update

The threshold memristor is used in our work, if the adjusting
voltage is greater than the threshold of memristor, the memris-
tance will increases or decreases, otherwise it remains unchanged.
Based on the rule of the WSSP algorithm, the four possible weight
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Fig. 7. The process of synaptic weight update. (a) The variation of Vfb;

Table 1
Weight update situation.

DE sign(Vi) Vfbi

Case 1 + + –
Case 2 + – +
Case 3 – + +
Case 4 – – –
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update situations during the training process as listed in Table 1,
and the simulation results of case 1 and case 2 are shown in
Fig. 7. As can be seen from the results, the memristor-based synap-
tic weight can be adjusted by WSSP algorithm effectively.

Case 1: Input Vi and error DE are positive, adjusting voltage Vfb

is negative as shown in Table 1. As shown in Fig. 7(a), the adjusting
voltage Vfb decreases gradually, since the actual output is close to
the targeted output gradually. The memristance of Ma increases,
while theMb decreases. As described in Section 3.3, a cycle of train-
ing is divided into two stages: adjustment and forward propaga-
tion. Take one cycle as an example, in adjustment stage (38–
40 ms), the memristance of Ma and Mb increases and decreases
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Fig. 8. The full circuit architecture of memristor-based MNN with WSSP algorithm.

C. Xu, C. Wang, Y. Sun et al. Neurocomputing 462 (2021) 581–590
by adjusting voltage, respectively, and in forward propagation
stage (40–42 ms), the error difference is recalculated, the memris-
tances remain unchanged in this stage. Synaptic weights con-
stantly adjusted until the error is close to zero. About at 100 ms,
the Vfb is equal to threshold of memristor, the training process of
weight is completed, then the memristances remain unchanged.

Case 2: As shown in Fig. 7(b), the positive adjusting voltage Vfb

decreases gradually, the memristance of Ma decreases, and Mb

increases, so the synaptic weight increases in this case. For
instance, in one cycle (82–86 ms), the memristances of Ma and
Mb are adjusted based on Vfb in first half cycle, then the error is
recalculated in the second half cycle. The training process is com-
pleted until the error is close to zero. In this simulation, the train-
ing process is completed about at 120 ms, then the memristances
remain unchanged.

Case 3: The error DE is negative, while the sign of input is pos-
itive, so the Vfb is a positive voltage as listed in Table 1. The update
process of weight is similar to that of case 2.

Case 4. In this case, input and error are negative voltages, so the
adjusting voltage is negative. It is similar to case 1, the adjustment
of synaptic weight is a decrease process in this case.
Fig. 9. Odd Parity. (a) Multilayer n
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4. Applications

The proposed memristor-based neural network circuit with
WSSP training algorithm dose not involve the complex derivative
calculation and error back propagation. The full circuit architecture
of memristor-based multilayer neural network (MNN) is shown in
Fig. 8, and the details of the error calculation circuit by WSSP algo-
rithm is shown in Fig. 6. For verifying the practicability of the cir-
cuit, the memristor-based multi-layer neural network is applied to
parity problem and face recognition.

4.1. Parity problem

A parity check is a method to check the correctness of code
transmission. To prove the feasibility of the WSSP algorithm in
MNN, the memristor-based MNN is adopted to the three input
odd parity problem. The simulation was implemented by using a
network of 3 inputs � 5 hidden � 1 output is shown in Fig. 9(a).
The truth table of 3-bit odd parity is shown in Fig. 9(b). The circuit
of memristor-based MNN for odd parity problem is composed of 3
inputs � 5 hidden � 1 outputs. Besides, the weight adjustment of
eural network. (b) Truth table.



Fig. 11. The flowchart of face recognition based on memritor-based MNN.

Fig. 12. Face images for recognition: the first 7 images are used for training and the last 3 images are used for testing.
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the input and hidden layer depends on the sign of the input signals
and the error difference as shown in Eq. (7). It can be seen that
there is no complex derivative calculation and error back propaga-
tion in the circuit. So, the architecture of the MNN with WSSP algo-
rithm is simpler.

Four different input case of odd parity were simulated by
PSpice. The voltages �1 V and 1 V represent logic ‘0’ and logic ‘1’
in the circuit simulation, respectively. Fig. 10(a–c) are the input
voltages, the four different cases were (�1,�1,�1) V, (�1,�1,1) V,
(1,1,�1) V and (1,1,1) V, and the corresponding target output were
�1 V, 1 V, �1 V and 1 V. The four cases were input to the network
iteratively. Fig. 10(d) is the output of the MNN, the output voltage
is approaching to the target value during the training process. After
64 ms, the output is equal to the target value. The simulation
results indicated that the memristor-based MNN can make parity
check correctly after training.

4.2. Face recognition

Face recognition plays an important role in daily life, and it is
widely used in intelligent systems, such as automatic picture
587
archiving system, identity verification system and so on. The pro-
posed memristor-based neural network with WSSP algorithm
was applied to face recognition by using ORL database of faces.
The flowchart of face recognition is shown in Fig. 11. In order to
reduce the complexity of data, the feature extraction and dimen-
sionality reduction of images are processed at first, then the
reduced image feature vector are normalized to (�1,1). For circuit
simulation, the feature values are converted to voltage values as
the inputs of network. Based on the size of feature vector and
the number of classes, the size of the memristor-based MNN is
set as 16 � 10 � 6. One people with ten different images are shown
in Fig. 12, the first 7 images are used for training and the last 3
images are used for testing. The target value of this kind of face
images is set as [0.5 V,�0.5 V,�0.5 V,�0.5 V,�0.5 V,�0.5 V].
Besides, the images preprocessing were implemented in Matlab,
and the training process of the proposed memristor-based neural
network was simulated by PSpice.

The PSpice simulation result is shown in Fig. 13. As we can seen,
during the training process (0–60 ms), the feature vector of testing
image as the inputs data, and the outputs are approaching to the
target values gradually. After the training completed, the
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remaining 3 testing images as the input of the network, the images
were recognized correctly. The training and testing results indi-
cated that the proposed memristor-based MNN with WSSP algo-
rithm is effective for face recognition.
5. Conclusion

In this paper, a full memristive circuit of neural network with
the weighted sum simultaneous perturbation algorithm is pro-
posed. The weighted sum simultaneous perturbation training algo-
rithm does not involve the complex derivative calculation and
error back propagation, and it only applies perturbations to the
weighted sum, which makes the circuit implementation more con-
cise and feasible. By using a pair of memristors, the synaptic circuit
can represent negative, zero, and positive synaptic weights. Based
on the memristive synaptic circuit, a circuit of neural network with
WSSP algorithm is presented. The training process of the
memristor-based neural network contains forward propagation
and feedback adjustment, which are implemented in the circuit
without computer aid. Besides, the four possible weight update sit-
uations during the training process are analyzed in detail. Finally,
the memristive circuit of the neural network is applied to the
odd parity problem and face recognition.

The simulation results verified the effectiveness of the proposed
memristive circuit in practical application. However, the proposed
memristive circuit adopts discrete components to realize the train-
ing process, which is inconvenient for large-scale integration. To
accomplish the widespread application of memristor-based neural
networks, we will focus on designing a large-scale integrated
memristive circuit with simple structure and low power consump-
tion in future work.
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