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In this paper, a time-controllable combinatorial inner synchronization and outer
synchronization of anti-star networks, each of which consists of four-wing hyper-chaotic
system as node dynamics, is investigated. Based on the adaptive technique and the stability
of Lyapunov function, some sufficient conditions, which can ensure the realization of not
only combinatorial inner synchronization within an anti-star network with unknown
parameters and external perturbations in the computable time, but also combinatorial
outer synchronization between different sub-networks with external perturbations in
the computable time, are obtained. Moreover, a simple secure communication scheme,
which is based on the adaptive combinatorial outer synchronization between different
sub-networks under the influence of stochastic noise and time-delay, is presented.
Numerical simulation results show the feasibility and validity of the proposed method.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Chaos is a very interesting nonlinear phenomenon and it has been widely studied in the past three decades. Since the
concept for constructing synchronization of coupled chaotic systems was proposed by Pecora and Carroll in 1990 [1], the
control and synchronization problems of chaotic systems have been intensively investigated due to their potential applica-
tions in various fields such as in secure communication, chemical reactions, biological systems and many other fields. Up to
now, various types of control method such as active control [2], adaptive control [3], sliding mode control [4], back-stepping
control [5], linear and nonlinear feedback control [6,7], impulse control [8], pinning control [9], etc. have been successfully
used in the complete synchronization [10], phase synchronization [11], lag synchronization [12], generalized synchroniza-
tion [13], projective synchronization [14], modified projective synchronization [15], Q–S synchronization [16], novel com-
pound synchronization [17] and so on. However, most of the aforementioned works have focused on the synchronization
of the one-to-one system, which limits the application range of synchronization in the reality to some extent. As the fact that
the complex dynamical networks including neural networks, power grids, food webs, ecosystems, the World Wide Webs, etc.
are ubiquitous in our daily lives, it seems that the study of the dynamical structure and the synchronization of complex
networks may have great value to understand the functions of the real-world. In this regard, at present, more and more
researchers begin to draw their attention to the synchronization of large and complex network with multiple nodes. Consid-
ering the complexity of the network structure, the synchronization of networks is still an open and challenging problem. In
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Fig. 1. The network structure diagram with m anti-star sub-networks.
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general, the synchronization of networks can be roughly divided into two kinds: inner synchronization and outer synchro-
nization. In the past decade, the majority of works in synchronization of the network has focused on the inner synchroniza-
tion, which is concerned with the synchronization among the nodes within a network [18–20]. While in the real world, there
are a variety of complex networks with the same or different topological structure, most of them need to realize the synchro-
nization and control between different networks namely outer synchronization. Recently, Wu et al. have investigated the
outer synchronization between drive-response networks with non-identical topological structure and unknown parameters
[21]. In [22], the outer synchronization of uncertain complex delayed networks with adaptive coupling method has been
studied. The generalized outer synchronization between two different delay-coupled complex dynamical networks with
noise perturbation has been investigated in [23]. Moreover, the finite-time control techniques which have been demon-
strated with better disturbance rejection and robustness against uncertainties [24], have become a research hotspot for
its practical application value in engineering. In [25], He et al. have investigated the problem of finite-time mixed outer syn-
chronization of complex networks with coupling time-varying delay, some novel stability criteria for the synchronization
between drive and response complex networks with coupling time-varying delay are derived by using the Lyapunov stability
theory and linear matrix inequalities. Sun et al. have proposed a finite-time stochastic outer synchronization between two
different complex dynamical networks with noise perturbation based on the finite-time stability theory of stochastic differ-
ential equations [26]. In [27], a finite-time synchronization between two complex networks with non-delayed and delayed
coupling has been proposed by using the impulsive control and the periodically intermittent control. However, most of the
above works on the outer synchronization are limited to only two networks, and there are some difficulties to extend these
methods to the synchronization between the three or more ones. As in the reality, there are still three or more sub-networks
that need to synchronize with each other, such as in the secure communication, to improve the security level of the trans-
mitted signal, the transmitted signal may be split into several parts, each part is loaded in different sub-networks respec-
tively, these sub-networks need to achieve the recovery of the information signal in a synchronous way. Therefore, it has
become more and more important and meaningful if we can put forward a more general method to deal with the synchro-
nization of multiple sub-networks.

On the other hand, due to the fact that the chaotic system offers some advantages in communication systems such as
broadband noise-like waveform, prediction difficulty, etc., the synchronization of chaotic systems as an effective encryption
mechanism has been widely used in the secure communication, and the level of security is mostly dependent on the com-
plexity level of the drive’s dynamics and the formation of the driving signal as well as the modulation scheme used [28]. In
the traditional chaotic secure communication scheme, the information signal to be transmitted is added to only one chaotic
system, which has proved to be obtained easily by the attackers [29]. In order to improve the security level of the transmitter
signal, similar to the serial packet transport, we can split the original signal into several parts, each part with different
weighting is loaded in different complex dynamical systems with very complex dynamic behavior, such as hyper-chaotic
systems. Knowing the weightings as secret keys, the receiver will recover the information signal accurately if all parts from
different sub-networks arrive at the destination in the synchronous way. It is qualitative to say that the method may have
much stronger anti-attack and anti-translated capability than the traditional transmission mode [28]. Furthermore, due to
the finite information transmission and processing speed among the network nodes, the transmitted signal is still inevitably
influenced by all kinds of random factors such as channel noise, time-delay, etc. Effectively reflecting these stochastic factors
can help us recognize the real world more reasonably, therefore, it has more practical value to study the chaos synchroni-
zation of stochastic system.

In addition, how to realize the synchronization of large scale complex networks with only fewer controllers is extremely
challenging and far-reaching significance. The star topological structure which is known for its simple structure has been
studied in the synchronization of complex network [30–32], but it needs too many controllers in realizing the inner synchro-
nization and the outer synchronization of complex networks. How to reduce the number of controllers for the synchroniza-
tion of complex networks seems particularly important. The pinning control technique can yet be regarded as a kind of good
way to decrease the number of controllers. Thus, a natural question may arise: can we propose a simple topological structure
by making full use of the superiority of the star topological structure and pinning control scheme to reduce the number of
controllers for the synchronization of large scale complex networks? If this is possible, the method will realize the
synchronization of the nodes within a network or from different ones with only fewer controllers. We may as well name
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it anti-star topological structure, which is similar to the star topological structure proposed in [30,31]. The difference
between them is: the star topological structure needs multiple controllers to realize the synchronization because it lets
the peripheral nodes as the response systems and the central node as the drive system in the divergent way, while the
anti-star topological structure performs in the opposite way, it achieves the combinatorial synchronization between multiple
peripheral nodes and a central node in the convergence way and needs only one controller, which can significantly reduce
costs in realizing the synchronization of complex networks.

Motivated by all of the above discussion, in this paper, we aimed to realize the combinatorial inner synchronization
within an anti-star network and the combinatorial outer synchronization between different sub-networks in the computable
time. By introducing a switch control scheme to the central node, we can choose different connection matrices to couple cen-
tral node and peripheral nodes within a network and all the central nodes in different sub-networks, respectively. The pro-
posed method can realize not only the combinatorial inner synchronization within an anti-star network with unknown
parameters and external disturbances but also the combinatorial outer synchronization between different sub-networks
with external disturbances in the computable time. Finally, we set the application on the recovery of the transmitted signal
under the influence of stochastic noise and time-delay as an example to demonstrate the feasibility and validity of the pro-
posed method.

The organization of the paper is listed as follows. A network modeling and some preliminaries are given in Section 2. In
Section 3, some main results for the combinatorial inner synchronization within a network and the combinatorial outer syn-
chronization between different sub-networks are proposed. Two numerical simulation results are given in Section 4. In Sec-
tion 5, a scheme of secure communication based on the adaptive combinatorial outer synchronization between different
sub-networks with stochastic perturbation and time-delay is presented. The conclusions are finally drawn in Section 6.
2. Network modeling and preliminaries

Based on the concept of birds of a feather flock together, the nodes in the same network always have the same system
model. We may assume that the complex network consists of n nodes with m anti-star sub-networks which are described
as V1;V2; . . . ;Vm, and every sub-network has li ði ¼ 1;2; . . . ;mÞ nodes, which is to say that we have

Pm
k¼1lk ¼ n. Let

/ : f1;2; . . . ;ng ! f1;2; . . . ;mg, if node i belongs to the jth sub-network, then we have /i ¼ j. The nodes which belong to
the same sub-network are connected by anti-star topological structure, the central node is selected as the response system
and all the peripheral nodes are selected as the drive systems, the network structure diagram with m anti-star sub-networks
is described as Fig. 1. In the Fig. 1, xi

k ðk ¼ 1;2; . . . ;m; i ¼ 1;2; . . . ; lkÞ represents a node in a sub-network, the subscript k rep-
resents the kth sub-network, the superscript i represents the ith node. The nodes in their subordinate sub-network are
marked as 1;2; . . . ; lk from outside to inside in a counter-clockwise direction, and the central node is marked as lk. The line

from xi
k to xlk

k represents a connection between node i and node lk in the kth sub-network, and there are still some connec-
tions between different sub-networks, which is omitted in this diagram. The corresponding mathematical expression can be
written as follows:
_xi ¼ f/i
ðxiÞ þ F/i

ðxiÞhi þ DfiðxiÞ þ
Xn

j¼1

ci;jxj; i ¼ 1;2; . . . ;n ð1Þ
where the superscript i represents the ith node, xi ¼ ½xi
1; xi

2; . . . ; xi
n�

T 2 Rn represents the state vector of node

i; f /i
ðxiÞ ¼ ½f/i

ðx1
iÞ; f /i

ðx2
iÞ; . . . ; f /i

ðxn
iÞ�T 2 Rn is the continuous nonlinear vector function, F/i

ðxiÞ is a n�m0 matrix,

hi 2 Rm0�1 represents a unknown vector parameter of node i, and DfiðxiÞ 2 Rn�1 denotes the vector of external disturbance.
C ¼ ðci;jÞn�n denotes a connection matrix, in which ci;j – 0 if there is a connection from node i to node j ði – jÞ, and satisfies
the condition that the sum of all the elements is equal to 0 in each line. For the combinatorial inner synchronization within a
network, the aim is to design a suitable controller on the response system to realize the synchronization of multiple drive
systems and only one response system, as the fact that the nodes in each sub-network can perform well alone, we do not
consider the connections between different sub-networks at this stage, so the drive systems in the kth ðk ¼ 1;2; . . . ;mÞ
anti-star sub-network can be corrected as
_xi
k ¼ fkðxk

iÞ þ Fkðxk
iÞhi þ Dfiðxk

iÞ þ
Xlk

j¼1

ci;jx
j
k; i ¼ 1;2; . . . ; lk � 1 ð2Þ
The corresponding response system can be described as
_xlk
k ¼ fkðxk

lk Þ þ Fkðxk
lk Þhlk þ Dflk ðxk

lkÞ þ
Xlk

j¼1

clk ;jx
j
k þ ukðtÞ ð3Þ
where ukðtÞ 2 Rn�1 is an appropriate controller to be designed.



626 L. Zhou et al. / Commun Nonlinear Sci Numer Simulat 22 (2015) 623–640
Definition 1. If there are some constant diagonal matrices Ai ði ¼ 1;2; . . . ; lkÞ with suitable dimension, and Alk is a reversible

matrix such that lim
t!1

Plk�1
i¼1 Aixi

k � Alk xlk
k

��� ��� ¼ 0, then the drive systems (2) and the response system (3) are called to realize the

combinatorial inner synchronization within the kth ðk ¼ 1;2; . . . ;mÞ anti-star sub-network, where �k k represents the matrix
norm.

By setting the error state as ekðtÞ ¼
Plk�1

i¼1 Aixi
k � Alk xlk

k , where A1;A2; . . . ;Alk are diagonal matrices with suitable dimension,
according to the driver systems (2) and response system (3), we can get the combinatorial inner synchronization error sys-
tem as
_ekðtÞ ¼
Xlk�1

i¼1

Aifkðxk
iÞ � Alk fkðxk

lkÞ þ
Xlk�1

i¼1

AiFkðxk
iÞhi � Alk Fkðxk

lk Þhlk þ
Xlk�1

i¼1

AiDfiðxk
iÞ � Alk Dflk ðxk

lk Þ

þ
Xlk

j¼1

Xlk�1

i¼1

Aici;jx
j
k � Alk clk ;jx

j
k

 !
� Alk ukðtÞ ð4Þ
After the nodes within a sub-network have synchronized, all the unknown parameters of the nodes have been identified
exactly, then we can realize the combinatorial outer synchronization between different sub-networks with exact system
model, so the drive and response systems can be described as
_~xlk ¼ fkð~xlk Þ þ Dflk ð~x
lk Þ þ

Xm

j¼1

~clk ;j
~xlj ; k ¼ 1;2; . . . ;m� 1 ð5Þ

_~xlm ¼ fmð~xlm Þ þ Dflm ð~xlm Þ þ
Xm

j¼1

~clm ;j~x
lj þ ~uðtÞ ð6Þ
where ~xlk ¼ ½~xlk
1 ; ~x

lk
2 ; . . . ; ~xlk

n �
T
2 Rn denotes the state vector of node lk; fkð~xlk Þ ¼ ½fkð~xlk

1 Þ; fkð~xlk
2 Þ; . . . ; fkð~xlk

n Þ�
T

is the continuous non-

linear vector function, and Dflk ð~xlk Þ 2 Rn�1 represents the vector of external disturbance of node lk. ~C 2 Rm�m is a connection

matrix, in which ~ci;j represents the connection weight between the ith central node and the jth central node. ~uðtÞ 2 Rn�1 is a
controller to be designed.

Definition 2. If there are some constant diagonal matrices ~Ak ðk ¼ 1;2; . . . ;mÞ with suitable dimension, and ~Am is a

reversible matrix such that limt!1
Pm�1

i¼1
eAi~xli � eAm~xlm

��� ��� ¼ 0, then the drive systems (5) and response system (6) are called to

realize the combinatorial outer synchronization between different sub-networks, where �k k represents the matrix norm.
Let ~eðtÞ ¼

Pm�1
i¼1

eAi~xli � ~Am~xlm as the error state, and ~A1; ~A2; . . . ; ~Am are diagonal matrices with suitable dimension. Then the
combinatorial outer synchronization error system can be described as
_~eðtÞ ¼
Xm�1

i¼1

eAifið~xli Þ � eAmfmð~xlm Þ þ
Xm�1

i¼1

eAiDfli ð~x
li Þ � eAmDflm ð~xlm Þ þ

Xm

j¼1

Xm�1

i¼1

eAi~cli ;j
~xlj � eAm~clm ;j~x

lj

 !
� eAm~uðtÞ ð7Þ
Prior to designing the synchronizing controller in the network, some assumptions must be noted as follows:

A1. The uncertain parameters hi are all norm bounded, such as hik k 6 dhi
, where dhi

are known positive constants and
i ¼ 1;2; . . . ; lk; k ¼ 1;2; . . . ;m.

A2. The unknown uncertainties DfiðxiÞ ði ¼ 1;2; . . . ; lkÞ are all bounded, which means that there are some positive

constants qk;q, such that
Plk�1

i¼1 AiDfiðxiÞ � Alk Dflk ðxlk Þ
��� ��� 6 qk; k ¼ 1;2; . . . ;m for the combinatorial inner synchroni-

zation and
Pm�1

i¼1
eAiDfli ð~xli Þ � eAmDflm ð~xlm Þ

��� ��� 6 q for the combinatorial outer synchronization.

A3. There is a sufficient small positive constant e, such that hi � ĥi

��� ���P e (i ¼ 1;2; . . . ; lk; k ¼ 1;2; . . . ;m). Note that

hi � ĥi

��� ���P 0, and e is a presupposed positive constant that can be chosen arbitrarily small.
Remark 1. The purpose of introducing e is to avoid the unknown parameters from appearing in controllers and parameters
update laws.

Now we give the definition of the time-controllable combinatorial synchronization between the drive systems (2) (or (5))
and the response system (3) (or (6)), and some lemmas which will be used later.

Definition 3. The drive systems (2) (or (5)) and the response system (3) (or (6)) are defined to be combinatorial
synchronized in a network (or between different sub-networks) with the computable time if, for a suitable feedback
controller, there is a constant T > 0, such that lim

t!T
ek k ¼ 0 and ek k ¼ 0 for t > T .
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Lemma 1. Assume that a continuous and positive definite function VðtÞ satisfies the following differential inequality [33]:
_VðtÞ 6 �cVgðtÞ
for any t > 0;Vðt0ÞP 0, where c > 0;0 < g < 1 are all constants. Then, for any given t0;VðtÞ satisfies the following inequality:
V1�gðtÞ 6 V1�gðt0Þ � cð1� gÞðt � t0Þ; t0 6 t 6 T
and VðtÞ ¼ 0 for t > T with T ¼ t0 þ V1�gðt0Þ
cð1�gÞ .
Lemma 2. For any real number ai ði ¼ 1;2; . . . ;nÞ and 0 < c 6 1, the following inequality[34] holds:
a1j j þ a2j j þ � � � þ anj jð Þc 6 a1j jc þ a2j jc þ � � � þ anj jc
Lemma 3 (Barbalat lemma [35]). If w : Rþ ! Rþ is a uniformly continuous function for t P 0 and if the limit of the integral
lim
t!1

R t
0 wðkÞdk exists and is finite, then lim

t!1
wðtÞ ¼ 0.
3. Main results for the combinatorial inner synchronization and outer synchronization

In this section, we shall establish some synchronization criteria for the combinatorial inner synchronization within a net-
work and the combinatorial outer synchronization between different sub-networks, respectively.

3.1. The combinatorial inner synchronization criterion within the kth sub-network

Theorem 1. Let (A1)–(A3) hold and the controller ukðtÞ is given by
ukðtÞ ¼ A�1
lk

Xlk�1

i¼1

Aifkðxk
iÞ � Alk fkðxk

lk Þ þ
Xlk�1

i¼1

AiFkðxk
iÞĥi � Alk Fkðxk

lk Þĥlk þ qksignðekÞ þ
ek

ekk k
þ
Xlk

j¼1

Xlk�1

i¼1

Aici;jx
j
k � Alk clk ;jx

j
k

 ! 

þ 2
Xlk

i¼1

d2
hi
þ dhi

ĥi

��� ���
e

ek

ekk k2

1A ð8Þ
where signðekÞ ðk ¼ 1;2; . . . ;mÞ stands for the sign function. Meanwhile, the update laws of unknown parameters
ĥi ði ¼ 1;2; . . . ; lkÞ in the kth sub-network are taken as follows:
_̂hi ¼ FT
kðxk

iÞAT
i ek þ

Dhi � ĥi

e
; i ¼ 1;2; . . . ; lk � 1

_̂hlk ¼ �FT
kðxk

lk ÞAT
lk

ek þ
Dhlk � ĥlk

e
:

ð9Þ
where Dhi ¼ ½dhi1 ; dhi2 ; . . . dhim0
�T 2 Rm0�1; dhij

is the upper bound of the jth component of the unknown parameters hi, and dhi
satisfies

the condition that dhi
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm0
j¼1d

2
hij

q
ði ¼ 1;2;3 . . . ; lkÞ. Then, the combinatorial inner synchronization within the kth sub-network

can be achieved globally asymptotically in the computable time.
The proof of the Theorem 1 is standard but lengthy, we shall present it in Appendix A of this paper later.

Remark 2. The constant qk can be estimated by simulation, and the value of the designed constant qk must be large enough.
Remark 3. The magnitude of ek= ekk k in the controller ukðtÞ will turn to infinity as ek ! 0, in order to avoid the occurrence of
this phenomenon, we can add a sufficient small positive constant ~e to its denominator in practice.
3.2. The combinatorial outer synchronization criterion between different sub-networks

After all of the systems parameters have been identified by the combinatorial inner synchronization within a sub-net-
work, the central nodes in different sub-networks have precise system models, then we can build the combinatorial outer
synchronization criterion between different sub-networks.

Theorem 2. Let (A2) holds and the controller ~uðtÞ is given by
~uðtÞ ¼ eA�1
m

Xm�1

i¼1

eAifið~xli Þ � eAmfmð~xlm Þ þ qsignð~eÞ þ
~e
~ek k þ

Xm

j¼1

Xm�1

i¼1

eAi~cli ;j
~xlj � eAm~clm ;j~x

lj

 ! !
ð10Þ
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Then, the combinatorial outer synchronization between different sub-networks can be achieved globally asymptotically in the com-
putable time.

The detailed proof of Theorem 2 is presented in Appendix B.
4. Numerical simulations for the combinatorial inner synchronization and outer synchronization

In the following section, the four-wing hyper-chaotic system [36] which is proposed by Li et al. is taken as the node
dynamics to validate the feasibility and effectiveness of the proposed approach. The dynamic equation of the system can
be given as follows:
_x ¼ ax� yzþ kw
_y ¼ �byþ xz
_z ¼ �czþ xyþ dx
_w ¼ �mx

8>>><>>>: ð11Þ
where a; b; c; d; k;m are the system parameters, x; y; z;w 2 R are the state variables. When the parameters are chosen as
a ¼ 4; b ¼ 12; c ¼ 5:5; d ¼ 1; k ¼ 2:5;m ¼ 1, the system (11) is hyper-chaotic with Lyapunov exponents k1 ¼ 0:7052;
k2 ¼ 0:1106; k3 ¼ 0; k4 ¼ �14:2811, and the Lyapunov dimension is dL ¼ 3:0567. The phase diagram of the four-wing
hyper-chaotic attractor is shown in Fig. 2.

Considering the complexity of large scale network, we just assume lk ¼ 4 ðk ¼ 1;2;3;4Þ in the following simulation,
which is to say that the network is composed of four anti-star sub-networks and every sub-network has three peripheral
nodes and only one central node. The four-wing hyper-chaotic system is selected as the node dynamics. Star-like connection
matrix and chain connection matrix are chosen as the interior connection matrix and the exterior connection matrix
respectively. Numerical simulation results for the combinatorial inner synchronization and outer synchronization show
the feasibility and validity of the proposed scheme. The concrete network structure diagram is described as Fig. 3.

4.1. Combinatorial inner synchronization within an anti-star sub-network

For the combinatorial inner synchronization within an anti-star sub-network, we label the nodes from outside to inside,
so the star-like connection matrix can be chosen as
Fig. 2. The phase diagram of the four-wing hyper-chaotic system.
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Fig. 3. The network structure diagram formed by four sub-networks with anti-star topological structure.
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C ¼

1 0 0 �1
0 1 0 �1
0 0 1 �1
�1 �1 �1 3

0BBB@
1CCCA ð12Þ
Both the drive systems and the response system can be expressed as
_x1 ¼

_x1

_y1

_z1

_w1

0BBB@
1CCCA ¼

ax1 � y1z1

�by1 þ x1z1

�cz1 þ x1y1

�mx1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f1ðx1Þ

þ

w1 0
0 0
0 x1

0 0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
F1ðx1Þ

k1

d1

� �
|fflfflffl{zfflfflffl}

h1

þ

0:1 sinðx1Þ
0:2 sinðy1Þ
0:3 sinðz1Þ
0:4 sinðw1Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df1ðx1Þ

þ

x1 � x4

y1 � y4

z1 � z4

w1 �w4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Rc1;jxj

_x2 ¼

_x2

_y2

_z2

_w2

0BBB@
1CCCA ¼

ax2 � y2z2

�by2 þ x2z2

�cz2 þ x2y2

�mx2

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f2ðx2Þ

þ

w2 0
0 0
0 x2

0 0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
F2ðx2Þ

k2

d2

� �
|fflfflffl{zfflfflffl}

h2

þ

�0:1 cosðx2Þ
�0:2 cosðy2Þ
�0:3 cosðz2Þ
�0:4 cosðw2Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df2ðx2Þ

þ

x2 � x4

y2 � y4

z2 � z4

w2 �w4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Rc2;jxj

_x3 ¼

_x3

_y3

_z3

_w3

0BBB@
1CCCA ¼

ax3 � y3z3

�by3 þ x3z3

�cz3 þ x3y3

�mx3

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f3ðx3Þ

þ

w3 0
0 0
0 x3

0 0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
F3ðx3Þ

k3

d3

� �
|fflfflffl{zfflfflffl}

h3

þ

0:1 sinðx3Þ
�0:2 cosðy3Þ
0:3 cosðz3Þ
�0:4 sinðw3Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df3ðx3Þ

þ

x3 � x4

y3 � y4

z3 � z4

w3 �w4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Rc3;jxj

ð13Þ

_x4 ¼

_x4

_y4

_z4

_w4

0BBB@
1CCCA ¼

ax4 � y4z4

�by4 þ x4z4

�cz4 þ x4y4

�mx4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f4ðx4Þ

þ

w4 0
0 0
0 x4

0 0

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
F4ðx4Þ

k4

d4

� �
|fflfflffl{zfflfflffl}

h4

þ

�0:1 cosðx4Þ
0:2 sinðy4Þ
0:3 cosðz4Þ
�0:4 sinðw4Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df4ðx4Þ

þ

�x1 � x2 � x3 þ 3x4

�y1 � y2 � y3 þ 3y4

�z1 � z2 � z3 þ 3z4

�w1 �w2 �w3 þ 3w4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rc4;jxj

þ

u1ðtÞ
u2ðtÞ
u3ðtÞ
u4ðtÞ

0BBB@
1CCCA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
uðtÞ

ð14Þ
where the superscript i ði ¼ 1;2;3;4Þ represents the ith node, the parameters are selected as a ¼ 4; b ¼ 12; c ¼ 5:5;m ¼ 1,
and ki; di ði ¼ 1;2;3;4Þ are unknown. Let the error state as
e ¼ A1x1 þ A2x2 þ A3x3 � A4x4 ¼

a1x1 þ b1x2 þ c1x3 �m1x4

a2y1 þ b2y2 þ c2y3 �m2y4

a3z1 þ b3z2 þ c3z3 �m3z4

a4w1 þ b4w2 þ c4w3 �m4w4

0BBB@
1CCCA ð15Þ
where A1 ¼ diagða1;a2;a3;a4Þ;A2 ¼ diagðb1; b2; b3; b4Þ;A3 ¼ diagðc1; c2; c3; c4Þ;A4 ¼ diagðm1;m2;m3;m4Þ, and according to the
detailed theory analysis presented in Section 3, the combinatorial inner synchronization within an anti-star sub-network is
easily realized. In the simulation process, we take the matrices as A1 ¼ diagð3;2;1;4Þ;A2 ¼ diagð2;3;3;2Þ;
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A3 ¼ diagð3;2;4;3Þ;A4 ¼ diagð2;3;2;1Þ. The initial conditions for the drive systems and the response system are chosen as
ðx10; y10; z10;w10Þ ¼ ð4;�5;12;�8Þ; ðx20; y20; z20;w20Þ ¼ ð6;8;�2;10Þ; ðx30; y30; z30;w30Þ ¼ ð5;�4;8;16Þ and ðx40; y40; z40;w40Þ ¼
ð2;6;10;�4Þ. Thus, we can obtain ðe10; e20; e30; e40Þ ¼ ð35;�12;18;40Þ. The initial values of estimated parameters are chosen
as ðk̂1; d̂1Þ ¼ ð2:05;0:05Þ; ðk̂2; d̂2Þ ¼ ð1:25;0:45Þ; ðk̂3; d̂3Þ ¼ ð2:15;0:25Þ and ðk̂4; d̂4Þ ¼ ð2:05;0:35Þ. The upper bound of the jth
ðj ¼ 1;2Þ component of the unknown parameters hi ði ¼ 1;2;3;4Þ are selected as ðdh11 ; dh12 Þ ¼ ð2:55;1:05Þ; ðdh21 ; dh22 Þ ¼
ð2:6;1:1Þ; ðdh31 ; dh32 Þ ¼ ð2:65;1:15Þ; ðdh41 ; dh42 Þ ¼ ð2:7;1:2Þ. Meanwhile, we assume e ¼ 0:25; dh1 ¼ 2:7577; dh2 ¼ 2:8231;
dh3 ¼ 2:8888; dh4 ¼ 2:9547, and q ¼ 5. The time responses of the error variables and the adaptive parameters
k̂1; d̂1; k̂2; d̂2; k̂3; d̂3; k̂4; d̂4 are shown in Figs. 4–6 respectively. It can be seen that the combinatorial synchronization errors
e1; e2; e3; e4 converge to zero in the computable time, which means that the combinatorial inner synchronization within
an anti-star sub-network with unknown parameters and external disturbances is realized in the computable time. Further-
more, all the estimated parameters k̂i; d̂i ði ¼ 1;2;3;4Þ tend to the expected values respectively.

4.2. Combinatorial outer synchronization between different sub-networks

From the Section 4.1, we know that the parameters of all the nodes are identified, but the systems may also be disturbed
by some external disturbances unavoidably. In the combinatorial outer synchronization between different sub-networks, the
chain connection matrix is chosen as the exterior connection matrix, which can be written as
~C ¼

0 0 0 0
1 �1 0 0
0 1 �1 0
0 0 1 �1

0BBB@
1CCCA ð16Þ
The drive systems and the response system can be selected as
_x1 ¼

_x1

_y1

_z1

_w1

0BBB@
1CCCA ¼

ax1 � y1z1 þ kw1

�by1 þ x1z1

�cz1 þ x1y1 þ dx1

�mx1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f1ðx1Þ

þ

0:1 sinðx1Þ
0:2 sinðy1Þ
0:3 sinðz1Þ
0:4 sinðw1Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df1ðx1Þ

_x2 ¼

_x2

_y2

_z2

_w2

0BBB@
1CCCA ¼

ax2 � y2z2 þ kw2

�by2 þ x2z2

�cz2 þ x2y2 þ dx2

�mx2

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f2ðx2Þ

þ

�0:1 cosðx2Þ
�0:2 cosðy2Þ
�0:3 cosðz2Þ
�0:4 cosðw2Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df2ðx2Þ

þ

x1 � x2

y1 � y2

z1 � z2

w1 �w2

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
R~c2;jxj

_x3 ¼

_x3

_y3

_z3

_w3

0BBB@
1CCCA ¼

ax3 � y3z3 þ kw3

�by3 þ x3z3

�cz3 þ x3y3 þ dx3

�mx3

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f3ðx3Þ

þ

0:2 sinðx3Þ
0:3 cosðy3Þ
0:4 sinðz3Þ
0:5 cosðw3Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df3ðx3Þ

þ

x2 � x3

y2 � y3

z2 � z3

w2 �w3

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
R~c3;jxj

ð17Þ

_x4 ¼

_x4

_y4

_z4

_w4

0BBB@
1CCCA ¼

ax4 � y4z4 þ kw4

�by4 þ x4z4

�cz4 þ x4y4 þ dx4

�mx4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f4ðx4Þ

þ

�0:1 cosðx4Þ
0:2 sinðy4Þ
0:3 cosðz4Þ
�0:4 sinðw4Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df4ðx4Þ

þ

x3 � x4

y3 � y4

z3 � z4

w3 �w4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Rc4;jxj

þ

~u1ðtÞ
~u2ðtÞ
~u3ðtÞ
~u4ðtÞ

0BBB@
1CCCA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
~uðtÞ

ð18Þ
During the simulation process, we take the matrices as A1 ¼ diagð2;3;4;2Þ;A2 ¼ diagð3;2;4;1Þ;A3 ¼ diagð4;2;1;3Þ;
A4 ¼ diagð2;4;3;3Þ. The initial conditions of the drive systems and the response system are selected as ðx10; y10; z10;w10Þ ¼
ð8;�7;8;12Þ; ðx20; y20; z20;w20Þ ¼ ð4;8;�10;1Þ; ðx30; y30; z30;w30Þ ¼ ð3;2;�2;5Þ and ðx40; y40; z40;w40Þ ¼ ð4;6;2;6Þ. Thus, we
have ðe10; e20; e30; e40Þ ¼ ð32;�25;�16;22Þ. Meanwhile, we assume q ¼ 6. The time responses of the error variables are
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Fig. 4. Time response of the error variables e1; e2; e3; e4.

0 1 2 3 4 5
−150

−100

−50

0

50

100

150

t

co
m

bi
ne

d 
st

at
e 

va
ria

bl
es

 o
f x

alpha1*x1+beta1*x2+gamma1*x3
m1*x4

0 1 2 3 4 5
−100

−50

0

50

100

150

200

250

t

co
m

bi
ne

d 
st

at
e 

va
ria

bl
es

 o
f y

alpha2*y1+beta2*y2+gamma2*y3
m2*y4

0 1 2 3 4 5
−50

0

50

100

150

200

250

t

co
m

bi
ne

d 
st

at
e 

va
ria

bl
es

 o
f z

alpha3*z1+beta3*z2+gamma3*z3
m3*z4

0 1 2 3 4 5
−10

−5

0

5

10

15

20

25

30

35

40

t

co
m

bi
ne

d 
st

at
e 

va
ria

bl
es

 o
f w

alpha4*w1+beta4*w2+gamma4*w3
m4*w4

Fig. 5. Time response of the combined state variables of x; y; z;w.
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shown in Figs. 7 and 8 respectively. It can be seen that the combinatorial outer synchronization errors e1; e2; e3; e4

converge to zero in the computable time, which means that the combinatorial outer synchronization between different
sub-networks with external disturbances is realized in the computable time.
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Fig. 6. Time response of the update parameters k̂1; d̂1; k̂2; d̂2; k̂3; d̂3; k̂4; d̂4.
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5. Application of the proposed scheme in secure communication

In this section, we will test the feasibility and validity of the proposed method in the application of secure communica-
tion. As the chaotic system offers some advantages in communication systems such as broadband noise-like waveform, pre-
diction difficulty, etc., the synchronization of chaotic systems as an effective encryption mechanism has been widely used in
the secure communication [28,37]. The so-called chaotic secure communication means that one or more chaotic systems are
selected as transmitter (regarded as the drive systems) and the information signal is mixed at the transmitter end to gen-
erate a chaotic transmission signal which is transmitted to the receiver end (regarded as the response system), the receiver
is also a chaotic dynamic system, whose structure is based on that of the transmitter, then the information signal will be
extracted by the receiver if the drive and response systems are synchronous. The level of security is mostly dependent on
the complexity level of the drive’s dynamics and the formation of the driving signal as well as the modulation scheme used.
However, most of the typical method applied in the chaotic communication is just adding the transmitted signal to only one
chaotic system, although the chaotic system with complex dynamic behavior can provide a certain degree of security, it still
cannot stop the hackers, just as it is not very wise to put all your eggs in a basket. Can we transmit the information signal
similar to the serial packet transport? Motivated by this, by splitting the original signal into several parts, each part with
different weighting is loaded in different chaotic systems. In order to improve the security level of the transmitted informa-
tion, we can select hyper-chaotic systems with much more complex dynamic behavior as the drive systems for the transmit-
ter. Only when all parts from different sub-networks arrive at the destination in the synchronous way and the weightings as
secret keys are known, will the receiver recover the signal accurately. It is qualitative to say that the method can provide dual
protection for the security of the signal transmission. Furthermore, the transmitted signal is still inevitably influenced by all
kinds of random factors such as channel noise, time-delay and so on, effectively reflecting these stochastic factors can help us
recognize the real world more reasonably. In the following section, we will apply the combinatorial outer synchronization
approach between different sub-networks with the influence of white Gaussian noise and time-delay to the secure commu-
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Fig. 7. Time response of the error variables e1; e2; e3; e4.
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Fig. 8. Time response of the combined state variables of x; y; z;w.
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nication. Assuming mðtÞ ¼ m1ðtÞ þm2ðtÞ þm3ðtÞ are the message signals which should be sent to the receiver. In order to
make sure that the transmitted signals have much stronger anti-attack and anti-translated ability, we add m1ðtÞ;m2ðtÞ
and m3ðtÞ to the drive systems, so the state variable equations of the transmitter can be written as
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dxk ¼ fkðxkÞ þ DfkðxkÞ þ
X4

j¼1

~ck;jxjðt � sÞ þMk

 !
dt; k ¼ 1;2;3 ð19Þ
where Mk is a column matrix with only one nonzero element mk and suitable dimension.
The receiver with the impact of transmission delay and stochastic noise can be constructed as
dx4 ¼ f4ðx4Þ þ Df4ðx4Þ þ
X4

j¼1

~c4;jxjðt � sÞ þ uðtÞ þ sðtÞ
 !

dt þ dðt; eðtÞ; eðt � sÞÞdx ð20Þ
where d : Rþ � R4 � R4 ! R4�4 is noisy intensity function, and x ¼ ðx1;x2;x3;x4ÞT is a four-dimensional Brownian motion.
Let e ¼ Ax1 þ Bx2 þ Cx3 � Dx4; e5 ¼ a4m1 þ b4m2 þ c4m3 � d4s, where A ¼ diagða1; a2; a3; a4Þ;B ¼ diagðb1; b2; b3; b4Þ;

C ¼ diagðc1; c2; c3; c4Þ;D ¼ diagðd1; d2; d3; d4Þ. Before giving the Theorem 3, some assumptions must be presented.

A4. There is a constant l such that a1 _m1 þ b1 _m2 þ c1 _m3j j 6 l.
A5. The time-varying coupling delay sðtÞ is a differential function with 0 6 _sðtÞ 6 r < 1. Clearly, this hypothesis is

ensured if the delay sðtÞ is a constant.
A6. There are two positive constants p and q such that the noise intensity function dðt; eðtÞ; eðt � sÞÞ satisfies the con-

dition that traceððDdÞTðDdÞÞ 6 p
2

eT eþ q
2

eTðt � sÞeðt � sÞ. Moreover, dðt;0;0Þ � 0.

For studying the convergence of random process, instead of the standard Euclidian norm, the mean square norm, L2 norm
is used, which is defined as ek k ¼ ½EðeT eÞ�

1
2, where Eð�Þ is the expected value function.

Theorem 3. Let (A1)–(A6) hold and if the controller uðtÞ is given by
uðtÞ ¼ D�1 Af1ðx1Þ þ Bf2ðx2Þ þ Cf3ðx3Þ � Df4ðx4Þ þ qsignðeÞ þ q
2ð1� rÞ

Z t

t�s
eTðsÞeðsÞds

� �1
2 e

ek k2 þ A
X4

j¼1

~c1;jxjðt � sÞ þ B
X4

j¼1

~c2;jxjðt � sÞ
 

þ C
X4

j¼1

~c3;jxjðt � sÞ � D
X4

j¼1

~c4;jxjðt � sÞ þ Ceþ g þ e
ek k

!
ð21Þ
where C ¼ diagfc1; c2; c3; c4gðci 2 R; i ¼ 1;2;3;4Þ; g ¼ ð0;0;0; e5ÞT , and the message update law of sðtÞ is designed as
_sðtÞ ¼ 1
d4

lsignðe5Þ þ
e5

e5k k

� �
ð22Þ
Then we can obtain that EðeiðtÞÞ ! 0 ði ¼ 1;2;3;4;5Þ in the computable time, which means that sðtÞ can recover the message sig-
nal mðtÞ in the computable time.

Detailed mathematical proof of Theorem 3 can be found in Appendix C of this paper.
As the message signal has been split into three parts m1ðtÞ;m2ðtÞ;m3ðtÞ, we add m1ðtÞ to the right-hand side of the last

equation for the first transmitter (the first drive system in Eq. (17)), m2ðtÞ to the right-hand side of the last equation for
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Fig. 10. Simulation results on the recovering the information signal.
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the second transmitter (the second drive system in Eq. (17)) and the m3ðtÞ to the right-hand side of the last equation for the
third transmitter (the last drive system in Eq. (17)), so the drive systems of the transmitter can be modified as:
dx1 ¼

_x1

_y1

_z1

_w1

0BBBBB@

1CCCCCA ¼
ax1 � y1z1 þ kw1

�by1 þ x1z1

�cz1 þ x1y1 þ dx1

�mx1

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f1ðx1Þ

dt þ

0:1 sinðx1Þ

0:2 sinðy1Þ

0:3 sinðz1Þ

0:4 sinðw1Þ

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Df1ðx1Þ

dt þ

0

0

0

m1ðtÞ

0BBBBB@

1CCCCCAdt

dx2 ¼

_x2

_y2

_z2

_w2

0BBBBB@

1CCCCCA ¼
ax2 � y2z2 þ kw2

�by2 þ x2z2

�cz2 þ x2y2 þ dx2

�mx2

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f2ðx2Þ

dt þ

�0:1 cosðx2Þ

�0:2 cosðy2Þ

�0:3 cosðz2Þ

�0:4 cosðw2Þ

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Df2ðx2Þ

dt þ

x1 � x2

y1 � y2

z1 � z2

w1 �w2

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

R~c2;jxj

dt þ

0

0

0

m2ðtÞ

0BBBBB@

1CCCCCAdt

dx3 ¼

_x3

_y3

_z3

_w3

0BBBBB@

1CCCCCA ¼
ax3 � y3z3 þ kw3

�by3 þ x3z3

�cz3 þ x3y3 þ dx3

�mx3

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f3ðx3Þ

dt þ

0:2 sinðx3Þ

0:3 cosðy3Þ

0:4 sinðz3Þ

0:5 cosðw3Þ

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Df3ðx3Þ

dt þ

x2 � x3

y2 � y3

z2 � z3

w2 �w3

0BBBBB@

1CCCCCA
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

R~c3;jxj

dt þ

0

0

0

m3ðtÞ

0BBBBB@

1CCCCCAdt

ð23Þ
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and the receiver can be constructed as
dx4 ¼

_x4

_y4

_z4

_w4

0BBB@
1CCCA ¼

ax4 � y4z4 þ kw4

�by4 þ x4z4

�cz4 þ x4y4 þ dx4

�mx4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f4ðx4Þ

dt þ

�0:1 cosðx4Þ
0:2 sinðy4Þ
0:3 cosðz4Þ
�0:4 sinðw4Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Df4ðx4Þ

dt þ

x3 � x4

y3 � y4

z3 � z4

w3 �w4

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
R~c4;jxj

dt þ

0
0
0

sðtÞ

0BBB@
1CCCAdt

þ

a1ðe1 � e1sÞ 0 0 0
0 a2ðe2 � e2sÞ 0 0
0 0 a3ðe3 � e3sÞ 0
0 0 0 a4ðe4 � e4sÞ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dðt;eðtÞÞ

dx1

dx2

dx3

dx4

0BBB@
1CCCA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dx

þ

u1

u2

u3

u4

0BBB@
1CCCA

|fflfflfflffl{zfflfflfflffl}
uðtÞ

dt

ð24Þ
here we take A ¼ diagð2;3;4;2Þ; B ¼ diagð3;2;4;2Þ;C ¼ diagð4;2;1;2Þ;D ¼ diagð2;4;3;3Þ;a1 ¼ 1;a2 ¼ �1;a3 ¼ �2;a4 ¼ 2;
q ¼ 4; c1 ¼ 75; c2 ¼ 80; c3 ¼ 78; c4 ¼ 82;l ¼ 5; s ¼ 0:05 and m1 ¼ 0:3 sinðtÞ;m2 ¼ 0:2 cosðptÞ;m3 ¼ 0:15 sinð2ptÞ. The initial
values of the drive systems and the response system are selected as ðx10; y10; z10;w10Þ ¼ ð8;�10;6;8Þ; ðx20; y20; z20;w20Þ ¼
ð4;8;�12;4Þ; ðx30; y30; z30;w30Þ ¼ ð3;2;�4;6Þ and ðx40; y40; z40;w40Þ ¼ ð4;8;3;6Þ. The time response of the error variables
EðeiÞ ði ¼ 1;2;3;4Þ is shown in Fig. 9, and the numerical simulation results on the recovering the original information signal
are shown in Fig. 10. From the 9 and 10, we can easily get that EðeiÞ ði ¼ 1;2;3;4;5Þ tend to 0 in the computable time, which
means that the proposed method has good immunity to the time-delay and stochastic disturbance.

6. Conclusions

In this paper, a time-controllable combinatorial inner synchronization and outer synchronization of anti-star networks,
each of which consists of four-wing hyper-chaotic systems as node dynamics, is investigated. The method can realize not
only the combinatorial inner synchronization within an star-like network with unknown parameters and external distur-
bances but also the combinatorial outer synchronization between different sub-networks with external disturbances by a
switch control scheme. The switch control scheme can be set as a time trigger or an event trigger. Every sub-network has
only one response system (central node in every anti-star network) as a control center to contact with not only the nodes
within a sub-network but also other control centers in different sub-networks. The central node is assigned to coordinate
with the other peripheral nodes, which belong to the same sub-network with the central node, to realize the combinatorial
inner synchronization at first. As the fact that every sub-network can perform well alone at the same time for the combina-
torial inner synchronization, and the time of the synchronization is computable, so we can set a suitable time threshold.
Once it achieves at the scheduled time threshold, the control center will switch to contact with other control centers in dif-
ferent sub-networks for the combinatorial outer synchronization, which means that the proposed switch control scheme is
fit for not only the synchronization within a network but also between different sub-networks. Furthermore, a secure com-
munication scheme based on the adaptive combinatorial outer synchronization between different sub-networks under the
influence of channel noise and time-delay is proposed. By splitting the transmitted signal into several parts, each part with
different weighting is loaded in different central nodes. Only when all parts from different sub-networks arrive at the
destination in the synchronous way and the weightings as secret keys are known, will the receiver recover the transmitted
signal accurately in the computable time, which may have much stronger anti-attack and anti-translated ability than the
traditional communication scheme with the only one-to-one transfer mode to some extent. Finally, an example on the
application in the secure communication testifies the proposed method performance well even under the influence of
white Gaussian noise and time-delay, which may have much more research value in the practical situation.
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Appendix A. Proof of Theorem 1

Proof. Let us consider the following Lyapunov function:
V1kðtÞ ¼
1
2

ekk k2 þ 1
2

Xlk

i¼1

hi � ĥi

��� ���2
ð25Þ
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Taking the derivative on both sides of Eq. (25), and according to Eqs. (8) and (9), we can get
_V1kðtÞ¼ eT
k

_ekþ
Xlk

i¼1

ðhi� ĥiÞ
Tð� _̂hiÞ¼ eT

k

Xlk�1

i¼1

Aifkðxk
iÞ�Alk fkðxk

lk Þþ
Xlk�1

i¼1

AiFkðxk
iÞhi�Alk Fkðxk

lk Þhlk

 

þ
Xlk�1

i¼1

AiDfiðxk
iÞ�Alk Dflk ðxk

lk Þþ
Xlk

j¼1

Xlk�1

i¼1

Aici;jx
j
k�Alk clk ;jx

j
k

 !
�Alk ukðtÞ

!

þ
Xlk�1

i¼1

ðhi� ĥiÞ
T �FT

kðxk
iÞAT

i ek�
Dhi� ĥi

e

 !
þðhlk � ĥlk Þ

T
Fk

T ðxk
lk ÞAT

lk
ek�

Dhlk � ĥlk

e

 !

¼ eT
k

Xlk�1

i¼1

AiFkðxk
iÞðhi� ĥiÞ�Alk Fkðxk

lk Þ hlk � ĥlk

� �
þ
Xlk�1

i¼1

AiDfiðxk
iÞ�Alk Dflk ðxk

lk Þ�qksignðekÞ�
ek

ekk k
�2
Xlk

i¼1

d2
hi
þdhi

ĥi

��� ���
e

ek

ekk k2

0@ 1A
þ
Xlk�1

i¼1

ðhi� ĥiÞ
T �FT

kðxk
iÞAT

i ek�
Dhi� ĥi

e

 !
þ hlk � ĥlk

� �T
ðFk

T ðxk
lk ÞAT

lk
ek�

Dhlk � ĥlk

e
Þ

¼ eT
k

Xlk�1

i¼1

AiDfiðxk
iÞ�Alk Dflk ðxk

lk Þ�qksignðekÞ�
ek

ekk k
�2
Xlk

i¼1

d2
hi
þdhi

ĥi

��� ���
e

ek

ekk k2

0@ 1AþXlk

i¼1

ðhi� ĥiÞ
T �Dhi� ĥi

e

 !

¼ eT
k

Xlk�1

i¼1

AiDfiðxk
iÞ�Alk Dflk ðxk

lk Þ�qksignðekÞ�
ek

ekk k
�2
Xlk

i¼1

d2
hi
þdhi

ĥi

��� ���
e

ek

ekk k2

0@ 1AþXlk

i¼1

ðhi� ĥiÞ
T hi�Dhi

e

� �
�
Xlk

i¼1

hi� ĥi

��� ���2

e
ð26Þ
Using the A1, we can easily get the following inequalities:
ðhi � ĥiÞ
Tðhi � DhiÞ ¼ hT

i hi � hT
i Dhi � ĥT

i hi þ ĥT
i Dhi 6 hik k2 þ hT

i

�� �� Dhik k þ ĥT
i

��� ��� hik k þ ĥT
i

��� ��� Dhik k

6 2 d2
hi
þ dhi

ĥi

��� ���� �
; i ¼ 1;2; . . . ; lk ð27Þ
With the help of the A2 and the inequalities (27), the Eq. (26) can be described as
_V1kðtÞ 6 eT
k

�� �� Xlk�1

i¼1

AiDfiðxk
iÞ � Alk Dflkðxk

lk Þ
�����

������ qk

 !
� ekk k � 2

Xlk

i¼1

d2
hi
þ dhi

ĥi

��� ���
e

þ
Xlk

i¼1

ðhi � ĥiÞ
T hi � Dhi

e

� �

�
Xlk

i¼1

hi � ĥi

��� ���2

e

6 � ekk k �
Xlk

i¼1

hi � ĥi

��� ���2

e
ð28Þ
In view of the A3, we have hi � ĥi

��� ��� 6 hi�ĥik k2

e , which is to say that � hi�ĥik k2

e 6 � hi � ĥi

��� ���, thus we can easily get
_V1kðtÞ 6 � ekk k �
Xlk

i¼1

hi � ĥi

��� ��� ð29Þ
According to the Lemma 2, we can get
ekk k2 þ
Xlk

i¼1

hi � ĥi

��� ���2
 !1

2

6 ekk k þ
Xlk

i¼1

hi � ĥi

��� ��� ð30Þ
which is to say that inequality (29) can be written as
_V1kðtÞ 6 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekk k2 þ

Xlk

i¼1

hi � ĥi

��� ���2

vuut ¼ �
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ekk k2 þ
Xlk

i¼1

hi � ĥi

��� ���2
 !vuut ¼ �

ffiffiffi
2
p

V
1
2
1kðtÞ ð31Þ
Obviously, according to the Barbarlat lemma, LaSalle’ invariance principle and Lemma 1, it is easy to know that the combi-
natorial inner synchronization error system (4) is asymptotically stable in the computable time with the largest invariant set
E ¼ fekðtÞ ! 0; hi ! ĥi; i ¼ 1;2; . . . ; lk; k ¼ 1;2; . . . ;mg, which means that the combinatorial inner synchronization within the
kth sub-network can be achieved globally asymptotically in the computable time. Furthermore, the setting time T can be cal-
culated by
Tk ¼ t0 þ
ffiffiffi
2
p

V
1
2
1kðt0Þ �
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Appendix B. Proof of Theorem 2

Proof. Let us consider the following Lyapunov function:
V2ðtÞ ¼
1
2

~ek k2 ð32Þ
Taking the derivative on both sides of Eq. (32) and according to Eq. (10), we can obtain
_V2ðtÞ ¼ ~eT _~e ¼ ~eT
Xm�1

i¼1

eAifið~xli Þ � eAmfmð~xlm Þ þ
Xm�1

i¼1

eAiDfli ð~x
li Þ � eAmDflm ð~xlm Þ þ

Xm

j¼1

Xm�1

i¼1

eAi~cli ;j
~xlj � eAm~clm ;j~x

lj

 !
� eAm~uðtÞ

 !

¼ ~eT
Xm�1

i¼1

eAiDfli ð~x
li Þ � eAmDflm ð~xlm Þ � qsignð~eÞ �

~e
~ek k

 !
6 ~eT
�� �� Xm�1

i¼1

eAiDfli ð~x
li Þ � eAmDflm ð~xlm Þ

�����
������ q

 !
� ~ek k ð33Þ
In view of A2, one can obtain
_V2ðtÞ 6 � ~ek k ¼ �
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

~ek k2

r
¼ �

ffiffiffi
2
p

V
1
2
2ðtÞ ð34Þ
By using the Barbarlat lemma and Lemma 1, the combinatorial outer synchronization error system (7) is asymptotically sta-
ble at the origin point ~e ¼ 0 in the computable time, which is to say that the combinatorial outer synchronization between
different sub-networks can also be achieved globally asymptotically in the computable time, and
T ¼ t0 þ
ffiffiffi
2
p

V
1
2
2ðt0Þ �
Appendix C. Proof of Theorem 3

Proof. We first calculate the derivative of 1
2 e2

5, by using the message update law of sðtÞ, we can get
d
dt

e2
5

2

� �
¼ e5 _e5 ¼ e5 a4 _m1 þ b4 _m2 þ c4 _m3 � d4 _sð Þ ¼ e5 a4 _m1 þ b4 _m2 þ c4 _m3 � lsignðe5Þ �

e5

e5k k

� �
6 e5k kð a4 _m1 þ b4 _m2 þ c4 _m3j j � l� e5

e5k k
Þ 6 � e5k k ð35Þ
Then, we choose the corresponding Lyapunov function as
V3ðtÞ ¼
1
2

eT eþ q
4ð1� rÞ

Z t

t�s
eTðsÞeðsÞdsþ 1

2
e2

5 ð36Þ
According to the properties about Weiner process and Itô-differential rule[38], taking the derivation of V3ðtÞ, we can get
dV3¼E eTfAf1ðx1ÞþBf2ðx2ÞþCf3ðx3Þ�Df4ðx4ÞþADf1ðx1ÞþBDf2ðx2ÞþCDf3ðx3Þ�DDf4ðx4ÞþA
X4

j¼1

~c1;jxjðt�sÞ
"

þB
X4

j¼1

~c2;jxjðt�sÞþC
X4

j¼1

~c3;jxjðt�sÞ�D
X4

j¼1

~c4;jxjðt�sÞ�DuðtÞþAM1þBM2þCM3�DsðtÞgdtþ1
2

traceððDdÞTðDdÞÞdt

þ q
4ð1�rÞðe

T e�ð1� _sÞeTðt�sÞeðt�sÞÞdtþe5 _e5dt
	

ð37Þ
Substituting uðtÞ from Eq. (21) into Eq. (37), this yields
dV3 ¼ E eT ADf1ðx1Þ þ BDf2ðx2Þ þ CDf3ðx3Þ � DDf4ðx4Þ � qsignðeÞ � e
ek k � Ce� q

2ð1� rÞ

Z t

t�s
eTðsÞeðsÞds

� �1
2 e

ek k2

( )
dt

"

þ 1
2

traceððDdÞTðDdÞÞdt þ q
4ð1� rÞ eT e� ð1� _sÞeTðt � sÞeðt � sÞ


 �
dt þ e5 _e5dt

	
ð38Þ
In view of A2, A4, A5 and the above inequality (35), one obtains
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_V3ðtÞ 6 eT � e
ek k � Ce� q

2ð1� rÞ

Z t

t�s
eTðsÞeðsÞds

� �1
2 e

ek k2

 !
þ 1

4
peT eþ qeTðt � sÞeðt � sÞ

 �

þ q
4ð1� rÞ eT e� ð1� _sÞeTðt � sÞeðt � sÞ


 �
� e5k k

¼ eT p
4
þ q

4ð1� rÞ

� �
I4 � C

� �
eþ q

4
� q

4ð1� rÞ ð1�
_sÞ

� �
eTðt � sÞeðt � sÞ � q

2ð1� rÞ

Z t

t�s
eTðsÞeðsÞds

� �1
2

� ek k � e5k k

6 eTXe� q
2ð1� rÞ

Z t

t�s
eTðsÞeðsÞds

� �1
2

� ek k � e5k k ð39Þ
where X ¼ ðp4þ
q

4ð1�rÞÞI4 � C is a negative diagonal matrix with suitable diagonal elements ci ði ¼ 1;2;3;4Þ. According to the
Lemma 2, we can get
_V3ðtÞ 6 �
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

4ð1� rÞ

Z t

t�s
eTðsÞeðsÞdsþ 1

2
ek k2 þ 1

2
e5k k2

s
¼ �

ffiffiffi
2
p

V
1
2
3ðtÞ ð40Þ
Based on the Barbarlat lemma, Lemma 1 and LaSalle’ invariance principle of stochastic differential equation, we can get
EðeiðtÞÞ ! 0 ði ¼ 1;2;3;4;5Þ in the computable time, which means that sðtÞ can recover the message signal mðtÞ in the com-
putable time and the setting time T can be defined by
T ¼ t0 þ
ffiffiffi
2
p

V
1
2
3ðt0Þ �
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