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system as node dynamics, is investigated. Based on the adaptive technique and the stability
of Lyapunov function, some sufficient conditions, which can ensure the realization of not
only combinatorial inner synchronization within an anti-star network with unknown
parameters and external perturbations in the computable time, but also combinatorial
outer synchronization between different sub-networks with external perturbations in
the computable time, are obtained. Moreover, a simple secure communication scheme,
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Time-controllable which is based on the adaptive combinatorial outer synchronization between different
Anti-star topological structure sub-networks under the influence of stochastic noise and time-delay, is presented.
Secure communication Numerical simulation results show the feasibility and validity of the proposed method.
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1. Introduction

Chaos is a very interesting nonlinear phenomenon and it has been widely studied in the past three decades. Since the
concept for constructing synchronization of coupled chaotic systems was proposed by Pecora and Carroll in 1990 [1], the
control and synchronization problems of chaotic systems have been intensively investigated due to their potential applica-
tions in various fields such as in secure communication, chemical reactions, biological systems and many other fields. Up to
now, various types of control method such as active control [2], adaptive control [3], sliding mode control [4], back-stepping
control [5], linear and nonlinear feedback control [6,7], impulse control [8], pinning control [9], etc. have been successfully
used in the complete synchronization [10], phase synchronization [11], lag synchronization [12], generalized synchroniza-
tion [13], projective synchronization [14], modified projective synchronization [15], Q-S synchronization [16], novel com-
pound synchronization [17] and so on. However, most of the aforementioned works have focused on the synchronization
of the one-to-one system, which limits the application range of synchronization in the reality to some extent. As the fact that
the complex dynamical networks including neural networks, power grids, food webs, ecosystems, the World Wide Webs, etc.
are ubiquitous in our daily lives, it seems that the study of the dynamical structure and the synchronization of complex
networks may have great value to understand the functions of the real-world. In this regard, at present, more and more
researchers begin to draw their attention to the synchronization of large and complex network with multiple nodes. Consid-
ering the complexity of the network structure, the synchronization of networks is still an open and challenging problem. In
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Fig. 1. The network structure diagram with m anti-star sub-networks.
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general, the synchronization of networks can be roughly divided into two kinds: inner synchronization and outer synchro-
nization. In the past decade, the majority of works in synchronization of the network has focused on the inner synchroniza-
tion, which is concerned with the synchronization among the nodes within a network [ 18-20]. While in the real world, there
are a variety of complex networks with the same or different topological structure, most of them need to realize the synchro-
nization and control between different networks namely outer synchronization. Recently, Wu et al. have investigated the
outer synchronization between drive-response networks with non-identical topological structure and unknown parameters
[21]. In [22], the outer synchronization of uncertain complex delayed networks with adaptive coupling method has been
studied. The generalized outer synchronization between two different delay-coupled complex dynamical networks with
noise perturbation has been investigated in [23]. Moreover, the finite-time control techniques which have been demon-
strated with better disturbance rejection and robustness against uncertainties [24], have become a research hotspot for
its practical application value in engineering. In [25], He et al. have investigated the problem of finite-time mixed outer syn-
chronization of complex networks with coupling time-varying delay, some novel stability criteria for the synchronization
between drive and response complex networks with coupling time-varying delay are derived by using the Lyapunov stability
theory and linear matrix inequalities. Sun et al. have proposed a finite-time stochastic outer synchronization between two
different complex dynamical networks with noise perturbation based on the finite-time stability theory of stochastic differ-
ential equations [26]. In [27], a finite-time synchronization between two complex networks with non-delayed and delayed
coupling has been proposed by using the impulsive control and the periodically intermittent control. However, most of the
above works on the outer synchronization are limited to only two networks, and there are some difficulties to extend these
methods to the synchronization between the three or more ones. As in the reality, there are still three or more sub-networks
that need to synchronize with each other, such as in the secure communication, to improve the security level of the trans-
mitted signal, the transmitted signal may be split into several parts, each part is loaded in different sub-networks respec-
tively, these sub-networks need to achieve the recovery of the information signal in a synchronous way. Therefore, it has
become more and more important and meaningful if we can put forward a more general method to deal with the synchro-
nization of multiple sub-networks.

On the other hand, due to the fact that the chaotic system offers some advantages in communication systems such as
broadband noise-like waveform, prediction difficulty, etc., the synchronization of chaotic systems as an effective encryption
mechanism has been widely used in the secure communication, and the level of security is mostly dependent on the com-
plexity level of the drive’s dynamics and the formation of the driving signal as well as the modulation scheme used [28]. In
the traditional chaotic secure communication scheme, the information signal to be transmitted is added to only one chaotic
system, which has proved to be obtained easily by the attackers [29]. In order to improve the security level of the transmitter
signal, similar to the serial packet transport, we can split the original signal into several parts, each part with different
weighting is loaded in different complex dynamical systems with very complex dynamic behavior, such as hyper-chaotic
systems. Knowing the weightings as secret keys, the receiver will recover the information signal accurately if all parts from
different sub-networks arrive at the destination in the synchronous way. It is qualitative to say that the method may have
much stronger anti-attack and anti-translated capability than the traditional transmission mode [28]. Furthermore, due to
the finite information transmission and processing speed among the network nodes, the transmitted signal is still inevitably
influenced by all kinds of random factors such as channel noise, time-delay, etc. Effectively reflecting these stochastic factors
can help us recognize the real world more reasonably, therefore, it has more practical value to study the chaos synchroni-
zation of stochastic system.

In addition, how to realize the synchronization of large scale complex networks with only fewer controllers is extremely
challenging and far-reaching significance. The star topological structure which is known for its simple structure has been
studied in the synchronization of complex network [30-32], but it needs too many controllers in realizing the inner synchro-
nization and the outer synchronization of complex networks. How to reduce the number of controllers for the synchroniza-
tion of complex networks seems particularly important. The pinning control technique can yet be regarded as a kind of good
way to decrease the number of controllers. Thus, a natural question may arise: can we propose a simple topological structure
by making full use of the superiority of the star topological structure and pinning control scheme to reduce the number of
controllers for the synchronization of large scale complex networks? If this is possible, the method will realize the
synchronization of the nodes within a network or from different ones with only fewer controllers. We may as well name
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it anti-star topological structure, which is similar to the star topological structure proposed in [30,31]. The difference
between them is: the star topological structure needs multiple controllers to realize the synchronization because it lets
the peripheral nodes as the response systems and the central node as the drive system in the divergent way, while the
anti-star topological structure performs in the opposite way, it achieves the combinatorial synchronization between multiple
peripheral nodes and a central node in the convergence way and needs only one controller, which can significantly reduce
costs in realizing the synchronization of complex networks.

Motivated by all of the above discussion, in this paper, we aimed to realize the combinatorial inner synchronization
within an anti-star network and the combinatorial outer synchronization between different sub-networks in the computable
time. By introducing a switch control scheme to the central node, we can choose different connection matrices to couple cen-
tral node and peripheral nodes within a network and all the central nodes in different sub-networks, respectively. The pro-
posed method can realize not only the combinatorial inner synchronization within an anti-star network with unknown
parameters and external disturbances but also the combinatorial outer synchronization between different sub-networks
with external disturbances in the computable time. Finally, we set the application on the recovery of the transmitted signal
under the influence of stochastic noise and time-delay as an example to demonstrate the feasibility and validity of the pro-
posed method.

The organization of the paper is listed as follows. A network modeling and some preliminaries are given in Section 2. In
Section 3, some main results for the combinatorial inner synchronization within a network and the combinatorial outer syn-
chronization between different sub-networks are proposed. Two numerical simulation results are given in Section 4. In Sec-
tion 5, a scheme of secure communication based on the adaptive combinatorial outer synchronization between different
sub-networks with stochastic perturbation and time-delay is presented. The conclusions are finally drawn in Section 6.

2. Network modeling and preliminaries

Based on the concept of birds of a feather flock together, the nodes in the same network always have the same system
model. We may assume that the complex network consists of n nodes with m anti-star sub-networks which are described
as V1,V,,...,Vn, and every sub-network has [; (i=1,2,...,m) nodes, which is to say that we have ', =n. Let
¢:{1,2,...,n} — {1,2,...,m}, if node i belongs to the jth sub-network, then we have ¢; =j. The nodes which belong to
the same sub-network are connected by anti-star topological structure, the central node is selected as the response system
and all the peripheral nodes are selected as the drive systems, the network structure diagram with m anti-star sub-networks
is described as Fig. 1. In the Fig. 1,xi (k=1,2,...,m; i=1,2,...,l;) represents a node in a sub-network, the subscript k rep-
resents the kth sub-network, the superscript i represents the ith node. The nodes in their subordinate sub-network are
marked as 1,2,...,I, from outside to inside in a counter-clockwise direction, and the central node is marked as [. The line
from x;; to x;f represents a connection between node i and node [, in the kth sub-network, and there are still some connec-
tions between different sub-networks, which is omitted in this diagram. The corresponding mathematical expression can be
written as follows:

n
X = f5, (%) + Fy ()0 + AR () +> ey, i=1,2,....n (1)

=1
where the superscript i represents the ith node, x'=[xi, x5, ..., xin]TeR” represents the state vector of node
i, fy, (*1) = [fy,(x1Y), fo, (x2D), ..., f(,)l(xn")}T € R" is the continuous nonlinear vector function, Fy (x') is a n x my matrix,

0; € R™*! represents a unknown vector parameter of node i, and Af;(x') € R**' denotes the vector of external disturbance.
C = (Cij),,., denotes a connection matrix, in which ¢;; # 0 if there is a connection from node i to node j (i # j), and satisfies
the condition that the sum of all the elements is equal to O in each line. For the combinatorial inner synchronization within a
network, the aim is to design a suitable controller on the response system to realize the synchronization of multiple drive
systems and only one response system, as the fact that the nodes in each sub-network can perform well alone, we do not
consider the connections between different sub-networks at this stage, so the drive systems in the kth (k=1,2,...,m)
anti-star sub-network can be corrected as

X X . X I . .
X;< :fk(Xkl)+Fk(Xk')9i+Af;‘(Xkl)+ZC,‘J'X},(, 1= 1,27‘..,lk7 1 (2)
=1
The corresponding response system can be described as
I )
Xl = fila) + ()0, + Afy () +> ey 2, + we(t) (3)

j=1

where 1, (t) € R*' is an appropriate controller to be designed.
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Definition 1. If there are some constant diagonal matrices A; (i = 1,2, ..., ;) with suitable dimension, and A,, is a reversible
matrix such that lim Hzﬁ’;]A,—xi — AL

= 0, then the drive systems (2) and the response system (3) are called to realize the

combinatorial inner synchronization within the kth (k = 1,2,...,m) anti-star sub-network, where ||e|| represents the matrix
norm.

By setting the error state as e;(t) = Z'k 1A xk A,kxﬁf, where Ay, A;, ..., A, are diagonal matrices with suitable dimension,
according to the driver systems (2) and response system (3), we can get the combinatorial inner synchronization error sys-
tem as

I-1 f—1 l-1

= ZAJk(in) — A fixi) + ZAiFk(in)gi — A Fi(xi)0,, + ZAiAﬁ(in) — A Ay, (%)
= p

p
L /e , .
+2 (ZAiCiJX}k — Ay Clk-jxlk> — Ay (t) (4)
=\

After the nodes within a sub-network have synchronized, all the unknown parameters of the nodes have been identified
exactly, then we can realize the combinatorial outer synchronization between different sub-networks with exact system
model, so the drive and response systems can be described as

X = fi (&) + Afi, (R) + 376, %, k=1,2,....m-1 (5)
=
K — fu®) + Af, (%) + 38,8 + 0(0) (6)
j=1
where ¥k = [ %%, ... %4 € R" denotes the state vector of node I, fe(%) = [f(%¥). fe(%%). ... .fi(®¥)]" is the continuous non-

linear vector function, and Af, (¥%) € R*" represents the vector of external disturbance of node I;. C € R™™ is a connection

matrix, in which &;; represents the connection weight between the ith central node and the jth central node. ii(t) € R*! is a
controller to be designed.

Definition 2. If there are some constant diagonal matrices A, (k=1,2,...,m) with suitable dimension, and Am is a

reversible matrix such that lim;_ Hzﬁqlﬁik’f — A& || = 0, then the drive systems (5) and response system (6) are called to

realize the combinatorial outer synchronization between different sub-networks, where | e|| represents the matrix norm.
Let e(t) = ,7”:}1A,~52’i — A as the error state, and Ay, A, ..., A, are diagonal matrices with suitable dimension. Then the
combinatorial outer synchronization error system can be described as

m-1_ - ~ m—1__ B m ~
= S TAS(R) — Anfn (&) + Y AN (R — AnAf, (X)) + Z (ZA &% — Aty ]xz) — Anl(t) 7)
i=1 i=1 i
Prior to designing the synchronizing controller in the network, some assumptions must be noted as follows:

A1l. The uncertain parameters 0; are all norm bounded, such as ||0;|| < J,,, where §, are known positive constants and
i=1,2...,,; k=1,2,....m.
A2. The unknown uncertainties Af;(x') (i=1,2,...,l;) are all bounded, which means that there are some positive

constants p,, p, such that Hzlk VAAS(X) — Ay A, (X)

S0 AAS (RE) — AnAf, (Xim)
A3. There is a sufficient small positive constant ¢,

‘ < Py, k=1,2,...,m for the combinatorial inner synchroni-

zation and ‘

‘ p for the combinatorial outer synchronization.
>e(i=1,2,...,l;; k=1,2,...,m). Note that
HH — 0 H 0, and ¢ is a presupposed positive constant that can be chosen arbitrarily small.

Remark 1. The purpose of introducing ¢ is to avoid the unknown parameters from appearing in controllers and parameters
update laws.

Now we give the definition of the time-controllable combinatorial synchronization between the drive systems (2) (or (5))
and the response system (3) (or (6)), and some lemmas which will be used later.

Definition 3. The drive systems (2) (or (5)) and the response system (3) (or (6)) are defined to be combinatorial
synchronized in a network (or between different sub-networks) with the computable time if, for a suitable feedback
controller, there is a constant T > 0, such that ltm% llell =0 and |le|| =0 for t > T.
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Lemma 1. Assume that a continuous and positive definite function V(t) satisfies the following differential inequality [33]:
V(1) < —cV(1)

forany t > 0,V(ty) = 0, where c > 0,0 < 1 < 1 are all constants. Then, for any given to, V(t) satisfies the following inequality:
VI <Vt —c(1 =)t —to), to<t<T

. 1y
and V() =0 for t > T with T = to + ‘712"

Lemma 2. For any real number a; (i=1,2,...,n) and 0 < ¢ < 1, the following inequality[34] holds:

(la] +az| + -+ lan)* < @] + a2 + - + |an

Lemma 3 (Barbalat lemma [35]). If w: R, — R, is a uniformly continuous function for t > 0 and if the limit of the integral
!im ‘]g w(2)d). exists and is finite, then !im w(t) =0.

3. Main results for the combinatorial inner synchronization and outer synchronization

In this section, we shall establish some synchronization criteria for the combinatorial inner synchronization within a net-
work and the combinatorial outer synchronization between different sub-networks, respectively.

3.1. The combinatorial inner synchronization criterion within the kth sub-network
Theorem 1. Let (A1)-(A3) hold and the controller uy(t) is given by

he-1 -1 b /-1
_ ; A A . e . )
w(t) = A, <ZAJ"(X"I) — Aufe(a) + Y AF ()0 — A Fi(Xi) 0y, + pysign(er) +; e’,i 2 (ZAiCin'k - Azkflk.j’*)
i=1 i=1

el " 2\ &

L o8+ o 0]
+2,»:1 — #”2) 8)

where sign(ey) (k = 1,2,...,m) stands for the sign function. Meanwhile, the update laws of unknown parameters

0; (i=1,2,...,1) in the kth sub-network are taken as follows:
0 = Fl (x)A e P T S

&

N 9)
AH’k - Hlk
—

0, = —Fi(x)Al e, +

where A0; = [5y,,, 59 <004, " e R, dy, is the upper bound of the jth component of the unknown parameters 0;, and d, satisfies
the condition that 6, > , /Z}Zﬂéﬁﬁ (i=1,2,3...,l). Then, the combinatorial inner synchronization within the kth sub-network

can be achieved globally asymptotically in the computable time.
The proof of the Theorem 1 is standard but lengthy, we shall present it in Appendix A of this paper later.

i1? 27"

Remark 2. The constant p, can be estimated by simulation, and the value of the designed constant p, must be large enough.

Remark 3. The magnitude of e, /| ex|| in the controller u,(t) will turn to infinity as e, — 0, in order to avoid the occurrence of
this phenomenon, we can add a sufficient small positive constant ¢ to its denominator in practice.

3.2. The combinatorial outer synchronization criterion between different sub-networks
After all of the systems parameters have been identified by the combinatorial inner synchronization within a sub-net-
work, the central nodes in different sub-networks have precise system models, then we can build the combinatorial outer

synchronization criterion between different sub-networks.

Theorem 2. Let (A2) holds and the controller u(t) is given by

i) = A} (niﬁifi(k’f) — Anfn(&m) + psign(@) + —+ Em: (niﬁfﬁl,.jk’f - Emﬁzmﬁ?’f» (10)
i=1 i
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Then, the combinatorial outer synchronization between different sub-networks can be achieved globally asymptotically in the com-
putable time.
The detailed proof of Theorem 2 is presented in Appendix B.

4. Numerical simulations for the combinatorial inner synchronization and outer synchronization

In the following section, the four-wing hyper-chaotic system [36] which is proposed by Li et al. is taken as the node
dynamics to validate the feasibility and effectiveness of the proposed approach. The dynamic equation of the system can
be given as follows:

X=ax—yz+kw

b
Y VX (11)
Z=—cz+xy+dx

w=—-mx

where a,b,c,d,k,m are the system parameters, x,y,z,w € R are the state variables. When the parameters are chosen as
a=4,b=12,c=55d=1,k=25m=1, the system (11) is hyper-chaotic with Lyapunov exponents /; =0.7052,
J2 =0.1106, 43 = 0,14 = —14.2811, and the Lyapunov dimension is d; = 3.0567. The phase diagram of the four-wing
hyper-chaotic attractor is shown in Fig. 2.

Considering the complexity of large scale network, we just assume [, =4 (k=1,2,3,4) in the following simulation,
which is to say that the network is composed of four anti-star sub-networks and every sub-network has three peripheral
nodes and only one central node. The four-wing hyper-chaotic system is selected as the node dynamics. Star-like connection
matrix and chain connection matrix are chosen as the interior connection matrix and the exterior connection matrix
respectively. Numerical simulation results for the combinatorial inner synchronization and outer synchronization show
the feasibility and validity of the proposed scheme. The concrete network structure diagram is described as Fig. 3.

4.1. Combinatorial inner synchronization within an anti-star sub-network

For the combinatorial inner synchronization within an anti-star sub-network, we label the nodes from outside to inside,
so the star-like connection matrix can be chosen as

40 20

10

-10

-20
50 -50 0 50

Fig. 2. The phase diagram of the four-wing hyper-chaotic system.
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E X, 1 X X, i X, j
® C‘éj ()
Fig. 3. The network structure diagram formed by four sub-networks with anti-star topological structure.
1 0o 0 -1
0 1 0 -1
C= (12)
0 0 1 -1
-1 -1 -1 3
Both the drive systems and the response system can be expressed as
X1 ax; — Y121 w; O 0.1sin(x;) X1 — X4
o yi | | by +xz N 0 O (k] > N 0.2sin(y;) Y1 —Ya
z —CZ1 +X1)4 0 x4 d 0.3sin(z;) Z1— 24
W —mx; 0 0 0, 0.4 sin(wy) Wi — Wy
fix) Fi(x1) Afy (x1) ey X
Xy Xy — Y52, w, 0 —0.1 cos(x;) Xy — Xa
@ V2 | | —bya+xz N 0 0 <k2> N —0.2 cos(y,) N Y2 —Ya
22 —CZy + X3¥» 0 x dz -03 COS(Zz) 2y — 24 (13)
. SN——
W, —mx; 0 O 0, —0.4 cos(w,) Wy — Wy
h(x?) Fy(x2) Af(2) ey X
X3 ax3 — Y323 ws 0 0.1sin(x3) X3 — X4
B Vi | | —bys +xs3z3 N 0 0 <k3> N —0.2 cos(ys) L] Y3V
Z3 —CZ3 + X3Y3 0 x5 d; 0.3 cos(z3) 23— 24
. SN —
W3 —MX3 0 0 03 —0.4sin(ws) W3 — Wy
f(x3) F3(x3) Af3(x3) Sy
X4 X4 — Y4Za ws O —0.1 cos(x4)
@ Va4 B —by, + X424 N 0 0 k4 N 0.2sin(y,)
Tz || —cza+xay, 0 x4 da 0.3 cos(z4)
Wy —MXy 0 0 04 —0.4 sin( W4
falx4) Fa(x4) Afy( X4
14
—X1 — Xy — X3+ 3X4 uq(t) (14)
n “Y1=Y2=Y3+3Y4 Us(t)
—Z1— 2y — 23+ 324 us(t)
—Wy; — Wy — W3 + 3wy U4(t)
u(t)

where the superscript i (i = 1,2,3,4) represents the ith node, the parameters are selected as a=4,b=12,c=55m=1,
and k;,d; (i=1,2,3,4) are unknown. Let the error state as

01X1 + X2 + V1X3 — MiXy
02y + + -m

e :A1X] +A2X2 +A3X3 —A4X4 _ 2Y1 ﬁZyZ V23 2Y4 (15)
0321 + 32 + V323 — M32Z4

0aW1 + faWy + P,W3 — MWy

where A, = diag(o, 02, 03, 0ta), Ay = diag(By, By, B3, Ba), As = diag(yy, V4, Vs, V), Aa = diag(my, my, m3, my), and according to the
detailed theory analysis presented in Section 3, the combinatorial inner synchronization within an anti-star sub-network is
easily realized. In the simulation process, we take the matrices as A; =diag(3,2,1,4),A; =diag(2,3,3,2),
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A; = diag(3,2,4,3),As = diag(2,3,2,1). The initial conditions for the drive systems and the response system are chosen as
(X107y107210<,W10) = (47 75, 12, 78), (X207y2072207 W20) = (6, 87 72, ‘10)7 (X30,y30,Z3O,W30) = (5, 74, 8, 16) and (X40,y40,240,W40) =
(2,6,10,—4). Thus, we can obtain (e, €20, €30, €40) = (35, —12,18,40). The initial values of estimated parameters are chosen
as (ky,d;) = (2.05,0.05), (k,, ds) = (1.25,0.45), (ks,ds) = (2.15,0.25) and (k4,d,) = (2.05,0.35). The upper bound of the jth
(j=1,2) component of the unknown parameters 0; (i=1,2,3,4) are selected as (dy,,,d,,) = (2.55,1.05), (dy,,,J0,,) =
(2.6,1.1), (845, d05,) = (2.65,1.15), (dy,,, do,,) = (2.7,1.2). Meanwhile, we assume &= 0.25,0y, =2.7577,9,, = 2.8231,
dp, = 2.8888,9, =2.9547, and p=>5. The time responses of the error variables and the adaptive parameters
ki,d1, ks, da, ks, d3, ks, ds are shown in Figs. 4-6 respectively. It can be seen that the combinatorial synchronization errors
e1, ey, e3,e4 converge to zero in the computable time, which means that the combinatorial inner synchronization within
an anti-star sub-network with unknown parameters and external disturbances is realized in the computable time. Further-
more, all the estimated parameters k;, d; (i=1,2,3,4) tend to the expected values respectively.

)&y

4.2. Combinatorial outer synchronization between different sub-networks

From the Section 4.1, we know that the parameters of all the nodes are identified, but the systems may also be disturbed
by some external disturbances unavoidably. In the combinatorial outer synchronization between different sub-networks, the
chain connection matrix is chosen as the exterior connection matrix, which can be written as

0 0 0 O
- 1 -1 0 0
“=lo 1 -1 o0 (16)
0o 0 1 -1
The drive systems and the response system can be selected as
X1 axy — yq,z1 + kw, 0.1sin(xq)
o - V1 _ —by, +x124 N 0.2sin(y;)
Z —CZ1 + X1y +dx; 0.3 sin(z;
Wy —mx; 0.4sin(wy)
fix) Afy (x1)
Xo axy — Y77 + kwy —0.1cos(x;) X1 — X
2 V2 _ ( ~by, + %25 n ( —0.2 cos(y,) n Yi=Y2
Z —CZy + X2¥, + dx —0.3cos(z,) Z1— 2y (17)
W, —mx; —0.4 cos(w,) Wi — W,
f(x) AH () pXogRY
X3 axs — Y373 + kws 0.2sin(x3) Xy — X3
e V3 _ ( —by; + X323 " ( 0.3 cos(ys) Y2-Y3
Z3 —C23 + X3Y5 + dX3 0.4 sin(z3) 2 — 73
W3 —mx3 0.5 cos(ws) Wy — W3
f203) Af3(x3) e300
X4 X4 — Y4Za + kwy —0.1 cos(x4)
A Va _ ( —by, + X424 N ( 0.2sin(y,)
Z4 —CZs + X4y 4 + dX4 0.3 cos(z4)
Wy —MXy —0.4sin(wy)
fa(x%) Afa(x*)
X3 — X4 iy (t) (18)
n Y3 —Ys n l:lz(f)
73— 24 us(t)
W3 — Wy Uy (t)
254ij u(t)

During the simulation process, we take the matrices as A; = diag(2,3,4,2),A, = diag(3,2,4,1),A; = diag(4,2,1,3),
A4 = diag(2,4,3,3). The initial conditions of the drive systems and the response system are selected as (X10, 19,210, Wi0) =
(8,—7,8,12), (X20, Y20, 220, W20) = (4,8, 10, 1), (X30, 30,230, W30) = (3,2,—2,5) and (X40,Y49,Za0, Wao) = (4,6,2,6). Thus, we
have (eqo, €20, €30, €10) = (32, —25,—-16,22). Meanwhile, we assume p = 6. The time responses of the error variables are



L. Zhou et al./ Commun Nonlinear Sci Numer Simulat 22 (2015) 623-640 631

40
el
e2
301 e3 [
\ e4
20 b
10 b
<
5 I
@
Q .
& 0 MAA
«
R
-10 ]
-20 ]
-30H ]
—40 . . . .
1 2 3 4 5
t
Fig. 4. Time response of the error variables ey, e,, e3, 4.

150 T T 250 T
alpha1*x1+beta1*x2+gamma1*x3 alpha2*y1+beta2*y2+gamma2*y3

m1*x4 —— m2*y4
100k ] 200 B
x >

kel ksl 7
8 % 8
e) o)
I} I}

c 5 i
> >
2 of o]
o] z
(2] 2]
o o
[} (9]
£ gl I
£ £
Q Q
o o

-100} 1 1

-150 s s s s -100 L L s N
0 1 2 3 4 5 0 1 2 3 4 5
t t
(a) (b)

250 T 40 T T T T
alpha3*z1+beta3*z2+gamma3*z3 alphad4*w1+betad*w2+gammad*w3
m3-z4 m4*w4

200 1

combined state variables of z
combined state variables of w

Fig. 5. Time response of the combined state variables of x,y, z, w.

shown in Figs. 7 and 8 respectively. It can be seen that the combinatorial outer synchronization errors e;,e,,es, e,
converge to zero in the computable time, which means that the combinatorial outer synchronization between different
sub-networks with external disturbances is realized in the computable time.
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5. Application of the proposed scheme in secure communication

In this section, we will test the feasibility and validity of the proposed method in the application of secure communica-
tion. As the chaotic system offers some advantages in communication systems such as broadband noise-like waveform, pre-
diction difficulty, etc., the synchronization of chaotic systems as an effective encryption mechanism has been widely used in
the secure communication [28,37]. The so-called chaotic secure communication means that one or more chaotic systems are
selected as transmitter (regarded as the drive systems) and the information signal is mixed at the transmitter end to gen-
erate a chaotic transmission signal which is transmitted to the receiver end (regarded as the response system), the receiver
is also a chaotic dynamic system, whose structure is based on that of the transmitter, then the information signal will be
extracted by the receiver if the drive and response systems are synchronous. The level of security is mostly dependent on
the complexity level of the drive’s dynamics and the formation of the driving signal as well as the modulation scheme used.
However, most of the typical method applied in the chaotic communication is just adding the transmitted signal to only one
chaotic system, although the chaotic system with complex dynamic behavior can provide a certain degree of security, it still
cannot stop the hackers, just as it is not very wise to put all your eggs in a basket. Can we transmit the information signal
similar to the serial packet transport? Motivated by this, by splitting the original signal into several parts, each part with
different weighting is loaded in different chaotic systems. In order to improve the security level of the transmitted informa-
tion, we can select hyper-chaotic systems with much more complex dynamic behavior as the drive systems for the transmit-
ter. Only when all parts from different sub-networks arrive at the destination in the synchronous way and the weightings as
secret keys are known, will the receiver recover the signal accurately. It is qualitative to say that the method can provide dual
protection for the security of the signal transmission. Furthermore, the transmitted signal is still inevitably influenced by all
kinds of random factors such as channel noise, time-delay and so on, effectively reflecting these stochastic factors can help us
recognize the real world more reasonably. In the following section, we will apply the combinatorial outer synchronization
approach between different sub-networks with the influence of white Gaussian noise and time-delay to the secure commu-
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nication. Assuming m(t) = m;(t) + my(t) + ms(t) are the message signals which should be sent to the receiver. In order to
make sure that the transmitted signals have much stronger anti-attack and anti-translated ability, we add m; (t), m,(t)
and mjs(t) to the drive systems, so the state variable equations of the transmitter can be written as
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dx* = (fk(x") + Afe(X*) + iéijf(t -1T)+ Mk> dt, k=1,2,3 (19)

=

where M is a column matrix with only one nonzero element m, and suitable dimension.
The receiver with the impact of transmission delay and stochastic noise can be constructed as

dx* = <f4(x )+ Afax*) + Zc4jxf (t—1)+ut)+ s(t)) dt + o(t,e(t),e(t — 1))dw (20)

j=1

where §: R" x R* x R* — R** is noisy intensity function, and o = (w1, @, w3, w,)" is a four-dimensional Brownian motion.
Let e=Ax"+Bx*+ (x> — Dx* es = asmy + bym, + cums — dss, where A = diag(ay,a,,as,a4), B = diag(by, ba, bs, by),
C =diag(cy, c2,C3,C4), D = diag(dy,d>, ds, ds). Before giving the Theorem 3, some assumptions must be presented.

A4. There is a constant p such that |a;1iy + byriy + 3| < @

A5. The time-varying coupling delay 7(t) is a differential function with 0 < 7(t) < ¢ < 1. Clearly, this hypothesis is
ensured if the delay 7(t) is a constant.

A6. There are two positive constants p and g such that the noise intensity function J(t, e(t), e(t — 7)) satisfies the con-

dition that trace((Ds)" (D5)) < ‘2’ e+ geT(t T)e(t — 7). Moreover, (t,0,0) = 0.

For studying the convergence of random process, instead of the standard Euclidian norm, the mean square norm, > norm
is used, which is defined as |le| = [E(eTe )]2 where E(') is the expected value function.

Theorem 3. Let (A1)-(A6) hold and if the controller u(t) is given by

1

t 2 4
u(t) (Af1 )+ B (x?) + Cfs (x%) — Dfa(x*) + psign(e) + (2(120) /H e’ (s)e(s)ds ) e ”2+AZcUx (t—7)+BY Gp¥(t—1)

Jj=1 Jj=1

4
+COY Gt —1) Dz%xf +1"e+g+HeH> (21)
=

where I' = diag{y,,7,, 73,74} (y; €R,i=1,2,3,4),8 = (0,0,0,es)", and the message update law of s(t) is designed as
. 1 es
§(t) = (,uSIgn(e5) Tes H> (22)

Then we can obtain that E(e;(t)) — 0 (i = 1,2,3,4,5) in the computable time, which means that s(t) can recover the message sig-
nal m(t) in the computable time.

Detailed mathematical proof of Theorem 3 can be found in Appendix C of this paper.

As the message signal has been split into three parts m(t), my(t), ms(t), we add m; (t) to the right-hand side of the last
equation for the first transmitter (the first drive system in Eq. (17)), m,(t) to the right-hand side of the last equation for
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Fig. 10. Simulation results on the recovering the information signal.

the second transmitter (the second drive system in Eq. (17)) and the ms(t) to the right-hand side of the last equation for the
third transmitter (the last drive system in Eq. (17)), so the drive systems of the transmitter can be modified as:

dx'

dx?

dx’

X1 axy, — Y421 + kwy 0.1sin(xy) 0
y —by, +x12 0.2 sin(y 0
_ . 1 _ 1 141 dt n . ( 1) dt
Z —CzZ1 + X1y +dxq 0.3sin(z;) 0
W] —mXq 0.4 Sil’l(W]) my (t)
fixh) Afp (x1)
X Xy — Y922 + kws —0.1 cos(xy) X1 — X
V2 —by, +x:2, —0.2 cos(y,) Yi—=Y2
=|" = dt+ t+ dt + dt
2 —CZy + X2Y, + dxy —0.3 cos(zz) -2 (23)
W, —mX; —0.4 cos(w,) Wy — Wy my(t)
fr(x?) Af(x2) oY
)'(3 axX3 — Y323 + kW3 0.2 Sin(X;;) X2 — X3 0
y —by; +x32 0.3 cos Y, =y
_ J'/3 _ V3 323 dt + . ) 2 3 dt + dt
Z3 —C2Z3 + X3y + dx3 0.4sin(z3) 2 — 73 0
W3 —mx3 0.5 cos(ws) Wy — W3 ms(t)
f3(3) Af3(x3) Py
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and the receiver can be constructed as

X4 X4 — Y424 + kwy —0.1 cos(x4) X3 — X4 0
y ) 0.2sin - 0
= J"4 _ V4 + X4Z4 dt + ) dt + Y3 —Va dt + dt
Z4 —CZ4 + X4Y4 + dX4 0.3 COS(Z4) 23 — 24 0
Wy —MXy —0.4sin(wy) W3 — Wy s(t)
fa(x) Afy(x4) Ry (24)
041 (61 — 6'1-[) 0 0 0 da)1 uq
0 o — 0 0 d
" 2(€2 — ex) () " [15) dt
0 0 o3 (83 — 631) 0 dCO3 us
0 0 0 064(94 — 641) da)4 Uy
——
s(te(t) do u(t)

here we take A = diag(2,3,4,2),B=diag(3,2,4,2),C =diag(4,2,1,2),D =diag(2,4,3,3),01 = 1,0 = —1,03 = =2, 04 = 2,
p=4,79,=757,=80,73=78,7, =82, u=>5,7=0.05 and m; = 0.3 sin(t),m, = 0.2 cos(nt), m3 = 0.15sin(2xt). The initial
values of the drive systems and the response system are selected as (X10,¥19,Z10,W10) = (8,—10,6,8), (X20, Y20, Z20, W20) =
(4,8,—-12,4), (X30,Y30, 230, W30) = (3,2,—4,6) and (X0, 40,240, Wa0) = (4,8,3,6). The time response of the error variables
E(e;) (i=1,2,3,4) is shown in Fig. 9, and the numerical simulation results on the recovering the original information signal
are shown in Fig. 10. From the 9 and 10, we can easily get that E(e;) (i =1,2,3,4,5) tend to 0 in the computable time, which
means that the proposed method has good immunity to the time-delay and stochastic disturbance.

6. Conclusions

In this paper, a time-controllable combinatorial inner synchronization and outer synchronization of anti-star networks,
each of which consists of four-wing hyper-chaotic systems as node dynamics, is investigated. The method can realize not
only the combinatorial inner synchronization within an star-like network with unknown parameters and external distur-
bances but also the combinatorial outer synchronization between different sub-networks with external disturbances by a
switch control scheme. The switch control scheme can be set as a time trigger or an event trigger. Every sub-network has
only one response system (central node in every anti-star network) as a control center to contact with not only the nodes
within a sub-network but also other control centers in different sub-networks. The central node is assigned to coordinate
with the other peripheral nodes, which belong to the same sub-network with the central node, to realize the combinatorial
inner synchronization at first. As the fact that every sub-network can perform well alone at the same time for the combina-
torial inner synchronization, and the time of the synchronization is computable, so we can set a suitable time threshold.
Once it achieves at the scheduled time threshold, the control center will switch to contact with other control centers in dif-
ferent sub-networks for the combinatorial outer synchronization, which means that the proposed switch control scheme is
fit for not only the synchronization within a network but also between different sub-networks. Furthermore, a secure com-
munication scheme based on the adaptive combinatorial outer synchronization between different sub-networks under the
influence of channel noise and time-delay is proposed. By splitting the transmitted signal into several parts, each part with
different weighting is loaded in different central nodes. Only when all parts from different sub-networks arrive at the
destination in the synchronous way and the weightings as secret keys are known, will the receiver recover the transmitted
signal accurately in the computable time, which may have much stronger anti-attack and anti-translated ability than the
traditional communication scheme with the only one-to-one transfer mode to some extent. Finally, an example on the
application in the secure communication testifies the proposed method performance well even under the influence of
white Gaussian noise and time-delay, which may have much more research value in the practical situation.
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Appendix A. Proof of Theorem 1

Proof. Let us consider the following Lyapunov function:

2

1, ., 1& .
Vi) = 5 [lel +§ZH9i—9i’ (25)
P
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Taking the derivative on both sides of Eq. (25), and according to Eqgs. (8) and (9), we can get

. l—1 )
Vi(t) = ekek+z (O —0p) =e] (ZAJk (') = A fi (i) + > AF (000 — Ay Fie (%) 0y,

i=1 i=1

-1 ) b (l— . .
+ZAiAfi(Xk') —A N )+ (ZAiCi.jXL *Alkcliji{> *Alkuk(t)>

=1 \'i=1

A0, b AO, —D
+20 ;) (FTxk)ATekf 18 '>+(0’k*01,{) (FkT(xklk)AzekflkTIk>

h—1 _ X . l—1 ) I 00 + 3y, Hg
= e{ ZAiFk(Xkl)(ei —6;) —A[ka(Xklk) (le — le) + ZAiAfi (%) —A,k Af’k (Xk )— pkszgn ex)— Z W
i=1 i=1 =1 € k
(L . AO; —0; N AG, — D
T T i i Ty || T l/ ;
+;(9i —0i) <_Fk (XA e ———— | + (91k - 91k) (Fi" (% )A, ex — kF ——)

LS i I ; €k k3, 40 Hg A0 —0;
=ef | D AR — A Ay (%) — pysign(er) — Tl _ZZf el Z _T
i1 i =

llexl ) Z <0 8A0i>7§: F 2 (26)

[ _ i 0F+ou |01 e
=el | Y Afi(x) — A Afi, (xik) - pysign(er) - H@ i~ Z
i=1 =1 &

Using the A1, we can easily get the following inequalities:
-~ T N N N ~
(0 — )" (05— A0y = 6705 — 6} A, — 5705+ 0780, < |0 + [ |16 + [} v+ 7 11461

<2(5§l_+5,,‘.HéiH), i=1,2,...1 (27)

[k N . .
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P €

With the help of the A2 and the inequalities (27), the Eq. (26) can be described as

l—1 i 5%1 H@,‘
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In view of the A3, we have HO,- — ()iH < M, which is to say that —M < —H()l- - (),-H, thus we can easily get

Vik(t) < —lleell —

0, - (29)

According to the Lemma 2, we can get

1
I X 2 I R
<ek|2+ZH0i_01 2) < ||e,<||+ZH9,-_9,-H (30)
i=1 i=1
which is to say that inequality (29) can be written as
Vi(t) < J lew” + ZHel o = J ( giH2> — _VAVh () (31)

Obviously, according to the Barbarlat lemma, LaSalle’ invariance principle and Lemma 1, it is easy to know that the combi-
natorial inner synchronization error system (4) is asymptotically stable in the computable time with the largest invariant set
E={et) — 0,0, — 0;,i=1,2,... I; k=1,2,...,m}, which means that the combinatorial inner synchronization within the
kth sub-network can be achieved globally asymptotically in the computable time. Furthermore, the setting time T can be cal-
culated by

1
Te=to+V2V3 (t)) O
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Appendix B. Proof of Theorem 2
Proof. Let us consider the following Lyapunov function:
1,50
Va(t) =5 llell (32)

Taking the derivative on both sides of Eq. (32) and according to Eq. (10), we can obtain

Vy(t) = éTé = <ZAJ — Apfn(®m) + mi?\,-Aﬁ,_ (X)) — AmAfy, (Xm) + zm: (miﬁiah & — At ﬂlx) - mea(t)>
i=1

=1 \'i=1

o[ =~ - ~ - . e - w1l ~ - -
=e (ZAiAf:,- (X") — AnAfi, (X) — psign(e) - |é|> <e| (’ ; — Andfy (Rm)|| - p) —[le] (33)
i=1 i=1
In view of A2, one can obtain
- - 1 .. 1
Va(t) < —lef = —v2 §||€II2 = —V2Vi() (34)

By using the Barbarlat lemma and Lemma 1, the combinatorial outer synchronization error system (7) is asymptotically sta-
ble at the origin point é = 0 in the computable time, which is to say that the combinatorial outer synchronization between
different sub-networks can also be achieved globally asymptotically in the computable time, and

T=ty+V2Vi(ty) O
Appendix C. Proof of Theorem 3

Proof. We first calculate the derivative of 1eZ, by using the message update law of s(t), we can get

d [e? . . . ) . . . . ) e
a (;) = @565 = e5(A4My + by, + C41M3 — daS) = €5 (a4m1 + bamy + ¢4tz — psign(es) — HT2H>
s

< |les||(Jaamy + bamy + camis| — ||e H

) < —llesll (35)
Then, we choose the corresponding Lyapunov function as
Vs(t) = Tere PR /t el (s)e(s)ds + le (36)
3 2 41-0) ). 275

According to the properties about Weiner process and Ito-differential rule[38], taking the derivation of V5(t), we can get

E[eT{Afl(X1)+Bf2(x2)+Cf3(x3)—Df4(x4)+AAf1(x1)+BAf2(x2)+CAf3(X) DAfy(x* +Azfuxjf 7)

j=1

+B§:Ezjxf(t4) +Ci(~:3,jxj(ff’[) fDiE”xf(tf 7) — Du(t) +AM; + BM; + CM3 —Ds(t)}dt+%trace((D(S)T(D(s))dt
Jj=1 j=1 i1
+4(lq_ o) (ee—(1-1)e'(t—T)e(t—1))dt + esésdf] (37)

Substituting u(t) from Eq. (21) into Eq. (37), this yields

Vs =E {eT {AAf] (X") + BAL(X*) + CAf (x*) — DAfi(x*) — psign(e) — @ ~Te- <ﬁ /[ r eT(S)€<s)d5>7:z}dt

1 (eTe — (1 —1)e'(t — T)e(t — 1))dt + esésdt} (38)

+ %trace((Dé)T(D(S))dt a1 o)

In view of A2, A4, A5 and the above inequality (35), one obtains
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o<~ gre (5t [ eT(”e(s)ds)iﬁ 4(pe'e ad' et )
T g e~ (1= Dt e(t 1)) ~es]
- %(%ﬁ)u - r)e + (% a1 f))ef(t ~Te(t 1) - (ﬁ / e%s)e(s)ds)%
el — fes]
<ete— (570 [ ewesias) - lel - el (39)

where Q = (§+ ﬁ)h — T' is a negative diagonal matrix with suitable diagonal elements y; (i = 1,2, 3,4). According to the
Lemma 2, we can get

Vi(t) < —ﬁ\/ﬁ /H eT(s)e(s)ds+%||e||2 +%||es||2 — —Vavj(o) (40)

Based on the Barbarlat lemma, Lemma 1 and LaSalle’ invariance principle of stochastic differential equation, we can get
E(ei(t)) — 0 (i=1,2,3,4,5) in the computable time, which means that s(t) can recover the message signal m(t) in the com-
putable time and the setting time T can be defined by

T=ty+ «/§V§(t0) 0

References

[1] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 1990;64:821-4.
[2] Yassen MT. Chaos synchronization between two different chaotic systems using active control. Chaos Solitons Fract 2005;23:131-40.
[3] Gu H. Adaptive synchronization for competitive neural networks with different time scales and stochastic perturbation. Neurocomputing
2009;73:350-6.
[4] Yan]J], Yang YS, Chiang TY, Chen CY. Robust synchronization of unified chaotic systems via sliding mode control. Chaos Solitons Fract 2007;34:947-54.
[5] Tong S, Li C, Li Y. Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Set Syst 2009;160:2755-75.
[6] Li T, Yu ], Wang Z. Delay-range-dependent synchronization criterion for Lur'e systems with delay feedback control. Commun Nonlinear Sci Numer
Simul 2009;14:1796-803.
[7] Chen HH, Sheu GJ, Lin YL, Chen CS. Chaos synchronization between two different chaotic systems via nonlinear feedback control. Nonlinear Anal
Theory 2009;70:4393-401.
[8] Li C, Chen L, Aihara K. Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks. Chaos
2008;18:023132.
[9] Xiong W], Ho DWC, Huang C. Pinning synchronization of time-varying polytopic directed stochastic networks. Phys Lett A 2010;374:439-47.
[10] Grosu I, Padmanaban E, Roy PK, Dana SK. Designing coupling for synchronization and amplification of chaos. Phys Rev Lett 2008;100:234102.
[11] Ma J, Li F, Huang L, Jin WY. Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun
Nonlinear Sci Numer Simul 2011;16:3770-85.
[12] Guo W. Lag synchronization of complex networks via pinning control. Nonlinear Anal Real World Appl 2011;12:2579-85.
[13] Zhang G, Liu Z, Ma Z. Generalized synchronization of different dimensional chaotic dynamical systems. Chaos solitions Fract 2007;32:773-9.
[14] Jia Q. Projective synchronization of a new hyperchaotic Lorenz system. Phys Lett A 2007;370:40-5.
[15] Cai N, Jing Y, Zhang S. Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Commun Nonlinear
Sci Numer Simul 2010;15:1613-20.
[16] Yan Z. Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems: a symbolic-numeric
computation approach. Chaos 2005;15:023902.
[17] Sun], Shen, Yin Q, Xu C. Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 2013;23:013140.
[18] Zhou ], Lu JA, Lii JH. Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans Autom Control 2006;51:652-6.
[19] Guo W, Austin F, Chen S. Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling. Commun
Nonlinear Sci Numer Simul 2010;15:1631-9.
[20] Rao P, Wu Z, Liu M. Adaptive projective synchronization of dynamical networks with distributed time delays. Nonlinear Dyn 2012;67:1729-36.
[21] Wu Z, Fu X. Outer synchronization between drive-response networks with nonidentical nodes and unknown parameters. Nonlinear Dyn
2012;69:685-92.
[22] Wu X, Lu H. Outer synchronization of uncertain general complex delayed networks with adaptive coupling. Neurocomputing 2012;82:157-66.
[23] Sun Y, Li W, Ruan ]. Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation. Commun
Nonlinear Sci Numer Simul 2013;18:989-98.
[24] Bhat SP, Bernstein DS. Finite-time stability of continuous autonomous systems. SIAM ] Control Optim 2000;38:751-66.
[25] He P, Ma SH, Fan T. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos 2012;22:043151.
[26] Sun Y, Li W, Zhao D. Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos
2012;22:023152.
[27] Mei ], Jiang M, Xu W, Wang B. Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer
Simul 2013;18:2462-78.
[28] Luo R, Wang Y. Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication.
Chaos 2012;22:023109.
[29] Short KM. Steps toward unmasking secure communications. Int ] Bifur Chaos 1994;4:959-77.
[30] Qin ], Yu HJ. Synchronization of star-network of hyperchaotic Rossler systems. Acta Phys Sinica 2007;56:6828-36.
[31] Yu HJ, Zheng N. Chaotic synchronization of network of Chen’s chaotic attractors using nonlinear coupling function. Acta Phys Sinica 2008;57:4712-21.
[32] Wang ], Zhang Y. Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys Lett A 2010;374:1464-8.


http://refhub.elsevier.com/S1007-5704(14)00320-7/h0005
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0010
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0015
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0015
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0020
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0025
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0030
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0030
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0035
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0035
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0040
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0040
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0045
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0050
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0055
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0055
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0060
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0065
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0070
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0075
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0075
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0080
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0080
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0085
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0090
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0095
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0095
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0100
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0105
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0105
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0110
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0115
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0115
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0120
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0125
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0130
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0130
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0135
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0135
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0140
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0140
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0145
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0150
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0155
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0160

640 L. Zhou et al./ Commun Nonlinear Sci Numer Simulat 22 (2015) 623-640

[33] Wang H, Han Z, Xie Q, Zhang W. Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun Nonlinear Sci
Numer Simul 2009;14:2239-47.

[34] Huang X, Lin W, Yang B. Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 2005;41:881-8.

[35] Khalil HK. Nonlinear system. third ed. New Jersey: Prentice Hall; 2002.

[36] Li Y, Cao Y, Huang X, Gao M. A new 4D four-wing hyperchaotic attractor and its circuit implementation. In: International conference on
communications, circuits and systems (ICCCAS), 2010. p. 742-6.

[37] Wu X, Wang H, Lu H. Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure
communication. Nonlinear Anal Real World Appl 2012;13:1441-50.

[38] Friedman A. Stochastic differential equations and applications. New York: Academic Press; 1976.


http://refhub.elsevier.com/S1007-5704(14)00320-7/h0165
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0165
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0170
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0175
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0185
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0185
http://refhub.elsevier.com/S1007-5704(14)00320-7/h0190

	Time-controllable combinatorial inner synchronization and outer synchronization of anti-star networks and its application in secure communication
	1 Introduction
	2 Network modeling and preliminaries
	3 Main results for the combinatorial inner synchronization and outer synchronization
	3.1 The combinatorial inner synchronization criterion within the kth sub-network
	3.2 The combinatorial outer synchronization criterion between different sub-networks

	4 Numerical simulations for the combinatorial inner synchronization and outer synchronization
	4.1 Combinatorial inner synchronization within an anti-star sub-network
	4.2 Combinatorial outer synchronization between different sub-networks

	5 Application of the proposed scheme in secure communication
	6 Conclusions
	Acknowledgements
	Appendix A Proof of Theorem 1
	Appendix B Proof of Theorem 2
	Appendix C Proof of Theorem 3
	References


