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ABSTRACT

In this paper, we focus on synchronization issue of coupled multistable memristive neural networks
(CMMNNs) with time delay under multiple stable equilibrium states. First, we build delayed CMMNNs
consisting of one master subnetwork without controller and M_1 identical slave subnetworks with con-
trollers, and every subnetwork has n nodes. Moreover, this paper investigates multistability of delayed
CMMNNs with continuous nonmonotonic piecewise linear activation function [PLAF) owning 2r + 2 cor-
ner points. By using the theorems of differential inclusion and fixed point, sufficient conditions are de-
rived such that master subnetwork of CMMNNs can acquire (r+ 2)" exponentially stable equilibrium
points, stable periodic orbits or hybrid stable equilibrium states. Then, this paper proposes hybrid mul-
tisynchronization of delayed CMMNNs related with various external inputs under multiple stable equi-
librium states for the first time. There exist (r + 2" hybrid multisynchronization manifolds in CMMNNs
with different initial conditions and external inputs, Finally, two numerical simulations are given to illus-
trate the effectiveness of the obtained results.

@ 2019 Elsevier BV, All rights reserved,

1. Introduction

Memristor was first speculated by Chua in [1], and it was
identified as the fourth basic circuit element. After memristor pro-
totype was realized by HP Lab |2], memristor-based circuits and
applications |3-8] have attracted increasing attention. Using the
nonvolatility of memristor [7,8], conventional neural network (NN)
system can be changed into memristive neural network [(MNN)
systern by replacing resistor with memristor to emulate synapse.
Because of the capability of memristor in storing and accessing
data [78] and the potential applications of MNN systems in many
areas |9-11] such as associative memory and static image process-
ing, the dynamic characteristics of isolated MNN system have been
widely studied, see [12-22|. Compared with an isolated system,
coupled systems have wider applications in many fields [23-25],
such as robots, dynamic image processing, associative memory of
video. Therefore, some dynamic characteristics of coupled systems
were investigated in recent years [25-36]. For example, synchro-
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nization of coupled NN systems was researched in |[30.31] and
[35]. Papers [26-29] studied synchronization of coupled MMM
systems. In [22-34), multistability and multisynchronization of
coupled multistable NN systems were investigated, However, there
is no relevant work on studying dynamic characteristics of coupled
multistable MMM (CMMNN] systems.

As one of the most important dynamic characteristics, multi-
stability of complex dynamical systems has been extensively in-
vestigated in recent years |12-14,37-41|. For example, papers |37-
41] researched multistability of NNs, Wu and Zhang analyzed mul-
tistability of delayed MNNs with PLAF having 2 corner points in
[13]. In [14], Nie et al. researched multistability of delayed MNNs
with PLAF having 4 corner points. In the above researches | 13,14],
MNMs can only obtain a small quantity of stable equilibrium states
with a few corner points. Actually, as many stable equilibrium
states as possible are very necessary for coupled systems including
CMMMNNs in some applications [12-14,23,24,32-34,36-42], such as
associative memory storage, image processing,

Synchronization is a common phenomenon in nature [43], such
as migratory birds, fireflies in the forest. And synchrenization
has broad potential applications in many areas [2544], such
as secure communication, biological systems and so on. Over
the years, there are many researches on studying synchroniza-
tion problems |[15-20,26-354546]. For example, exponential
synchronization of inertial BAM NNs |45, MNNs [15] and cou-
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pled MMNs |26] was researched. Asymptotical synchronization
of MNNs [16] and coupled MMNNs [27], anti-synchronization of
MNNs |[17] were investigated. Zheng et al. studied finite-time
projective  synchronization of delayed fractional-order MNNs in
[ 18], Adaptive synchronization of MNNs in [19] and [20], lag syn-
chronization of NNs [4G] and coupled MNNs [28] were discussed.
Li and Cao studied cluster synchronization of coupled stochastic
NNs with time delay in [31). In literatures [15-2026-31,4546],
synchronization was addressed under a stable equilibrium state,
As discussed previously, multiple stable equilibrium states are
very necessary for coupled systems including CMMNNs in some
applications [12-14,2324,32-34,36-42). Therefore, when coupled
systems have multiple stable equilibrivm states, how to achieve
synchronization of coupled systems (called multisynchronization
in this case) becomes more challenging and meaningful. During
the last three years, multisynchronization of coupled multistable
MM systems under multiple stable equilibrium states had aroused
the interest of researchers. For instance, Wang et al. studied
impulsive dynamical and static multisynchronization of delayed
coupled multistable MNs in [32]. On the basis of Wang et al. [32],
Zhang studied static multisynchronization of coupled multistable
fractional-order NNs in [33] and Lv et al. investigated dynamical
and static multisynchronization of coupled multistable NMs with
parametric uncertainties in |[34]. Literatures |22-34| achieved
dynamical {or static) multisynchronization by setting external
inputs of all nodes as periodic (or constant) signals, However,
these researches [32-34| neglect that external inputs of each node
may be various in reality. Therefore, dynamical multisynchroniza-
tion and static multisynchronization are not suitable for use in
CMMNN systems when multiple stable equilibrium states exist in
the systems and external inputs of each node are various.

Inspired by the aforementioned discussions, this paper focuses
on synchronization issue of CMMNN systems. According to the
literatures [32-34], it is necessary to ensure multistability in
order to achieve synchronization of coupled multistable systems,
Therefore, this paper studies multistability issue of CMMNN sys-
tems before achieving synchronization. To get a mass of stable
equilibrium states, we extend the number of corner points of
nonmonotonic PLAF to 2r + 2 in this paper. In this case, the num-
ber of stable equilibrium states (stable equilibrium points, stable
periodic orbits or hybrid stable equilibrivm states) for the master
subnetwork of CMMMMNs is increased to (r+ 2)". To solve the
above-mentioned problem which dynamical multisynchronization
and static multisynchronization cannot solve, this paper proposes
hybrid multisynchronization of CMMMNMs related with wvarious
external inputs under multiple stable equilibrium states for the
first time. Hybrid multisynchronization is a new type of syn-
chronization phenomenon and has two features: owning multiple
synchronization manifolds and considering various external inputs.
It should be noted that dynamical and static multisynchronization
introduced in [32-34] can be seen as two special cases of hybrid
multisynchronization, Combining various external inputs with the
above-mentioned wide applications of memristor, coupled sys-
tems, multiple stable equilibrium states and synchronization, we
can boldly speculate that hybrid multisynchronization of CMMNNs
will have broad potential applications in some complex areas such
as secure communication in multiple networks, obstacle avoidance
for robots, formation flying of unmanned air vehicles and so on.
Hence, the proposed results are general and meaningful, and
improve the existing results,

The main contributions can be summarized as follows,

(1) This paper builds CMMNMN systems which consist of one
master subnetwork without controller and N-1 identical slave sub-
networks with controllers, and every subnetwork has n nodes. The
special structure of CMMNNs makes it differ from drive-response
[master-slave) system [15,17,19], coupled NNs [30,31,35], coupled

MNNs [26-28], and coupled multistable MNs [32-34], The advan-
tages of this structure are that all slave subnetworks can syn-
chronize the master subnetwork by controllers and multistabil-
ity of the master subnetwork without controller can be addressed
expediently.

(2} The multistability of delayed CMMNNs is studied with con-
tinuous nonmonotonic PLAF owning 2r + 2 corner points. By using
theorems of differential inclusion and fixed point, sufficient condi-
tions are derived such that the master subnetwork of CMMNMNs has
{r+2)" exponentially stable equilibrium peints. Then on this ba-
sis, we study stable periodic orbits and hybrid stable equilibrium
states (the hybrid of exponentially stable equilibrium points and
stable periodic orbits), and obtain (r+ 23" stable periodic orhits
and (r+ 2)" hybrid stable equilibrium states. Compared with the
existing researches [13,14], this paper can obtain more stable equi-
librium states.

(3} Hybrid multisynchronization of delayed CMMMNNs related
with various external inputs under multiple stable equilibrium
states is proposed for the first time. Hybrid multisynchronization
can solve the problem that dynamical and static multisynchro-
nization [32-34] cannot take into consideration various external
inputs. When some sufficient conditions are given, the CMMMNNs
with time delays can achieve hybrid multisynchronization and ob-
tain (r+2)" hybrid multisynchronization manifolds, Both dynam-
ical and static multisynchronization of delayed CMMMNNs can also
be achieved. It should be noted that dynamical and static multi-
synchronization introduced in [32-34] can be seen as two special
cases of hybrid multisynchronization.

The rest of the paper is organized as follows. Some prelim-
inaries are presented in Section 2. In Section 3, we build de-
layed CMMMNNs with (r+ 2)" stable equilibrium states, and pro-
pose hybrid multisynchronization of delayed CMMMNNs, Two nu-
merical examples and a conclusion are shown in Sections 4 and 5,
respectively.

2. Preliminaries

First, we give some notations which will be used later.

Norations: £ = 0 represents that real matrix Z is negative
semidefinite, 7 = 0 represents that real matrix £ is positive
semidefinite. C([—7, 0], %") denotes the space of continuous func-
tions mapping [—7.0] into %", PaQ is Kronecker product of matri-
ces P and @ Ey is m ox m ounit matrix, [...] represents the interval,
We define 7] = {Zj;I:rl?-}:'a for vector T = (M. Ta..... M) &
MY is empty set.

From [15,17,19], an isolated MMM with time delay can be con-
sidered as:

X(t) = —Dx(t) + C(x(£))f(x()) +Hix( — T))f(x(t — ) + (D)
(1)
where x(f) = (x)(f), xa0(t). ..., x0T represents state vector; D
= diag{d,, ds, ....du}] is self-feedback vector for the correspond-
ing nerve cells, d;=0i=12, ..., n Tix(t)) = w00 ) Jnen
and  Hix(r = th) = |ey; (00 = Tj)nwn  stand  for  memristive
weight matrices;  fix(£)) = (fi0x(0)). falxa(t)), .. Salxa(0D))7
denotes activation function; t; = 0 is time delay; i) =
(h(t) ity ... Iy(t))7 represents external input vector.
This paper considers two types of simple memristor models,
Memristor model (A) [19]:
Ky %0 = &,
J('.'J:L’!J{[ )= l,_" | 1 I /
Kij |x1'“]'| > &
and
ahj xpt =] < &
fui;[x,-(r—r.-m=‘--’ i D=8
LT |XJ“—T|J}| = E_f‘
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Fig. 1. The schematic diagram of hybrid multisynchronization of CAMMMNNs.

where ;. .r, jo @ and Py j represent constants, £; = 0 is switching
rhreslmld
Memristor model (B} [13]:

Kij.  x(t) =0,

x”(x"””=l§-- xj(t) = 0
b X(0) =0,

and

@y, alt— 1) =0,
axi(xi(t — 1)) = |4;'-Jjj_ xj(t —Tj) > 0
Define a set of positive integers Z={1.2..... n), let U
and V as two subsets of Z, and satisfy the following rela-
tionship: UnV =9 and UuV =7 Define three sets of exter-
nal inputs & = {l;(t), forall i € Z}, & = {l,it), foralluelU}, A =
{fe(t), forall v e V), then we can get 2nA=¢ and QUAN =1,
1e(t) is periodical input, that is, [,(f <+ Ty = Ldc), for all w e U L(r)
is constant, i.e, lo(f) = L. for all veV.

3. Main results

This paper presents the schematic diagram of hybrid multi-
synchronization of CMMMNNs, as shown in Fig. 1. First of all, we
need to ensure that the master subnetwork of CMMMNMNs can ob-
tain (r+ 2)" hybrid stable equilibrium states with various external
inputs. It means that there are (r+ 2)" hybrid multisynchroniza-
tion manifolds. Then multiple trajectories of every slave subnet-
work can achieve synchronization with hybrid multisynchroniza-
tion manifolds of the master subnetwork via feedback controllers
and various external inputs. Therefore, every slave subnetwork can
also obtain (r+ 23" hybrid stable equilibrium states,

3.1, CMMNNs

We build delayed CMMNNs which consist of one master sub-
network without controller and N—1 identical slave subnetwaorks
with controllers, and every subnetwork has n nodes. As far as
we know, the structures of all subnetworks of coupled NNs |30
32,34,35] and coupled MNNs |26-28] are same, ie., all subnet-
works contain controllers. Obviously, the structure of CMMMNNs is
different from these coupled NNs and coupled MNNs, because the
master subnetwork in this paper does not have controller. In ad-
dition, compared with drive-response or master-slave NNs intro-
duced in | 15,17,19], delayed CMMMNNs own more subnetworks and
more complex dynamic behaviors,

We consider delayed CMMNNs with mathematical formula as
follows:
Xilt) = =Dty + Cix (0 f (20000 + Hixi(e — 1))
flxlt —TN+ ) +<500). i=1, 2, ....N=-1; (2)

At} = —Dan () + Tiay (0)) flan(e)) + Hixy(t — 7))
wflan(t — )+ Init)

where the variables and parameters are thc same as those given
by (10; <t} = (g () S (1), ....<>mm]| i=1.2.....N~-1, rep-
resent controllers; [{f) = il (e). l(f), ... ]m{f:l}r: I,-n,[t} = Iylt) for
Ei=12... . Nand k=12 ... .nxit)i=1,.. . N-1 are N-1
identical slave subnetworks; xy(t) = {xm[t}.xmit}.....xun{rnT
represents the master subnetwork, It is obvious that the structure
of master subnetwork is the same as the isolated MNN with time
delay (1)

Remark 1. Due to the simple structure of master subnetwork, it
is easy to research and analyse dynamic behaviors of CMMNMs
through master subnetwork, such as multistability. So, it can re-
duce operation time and cost,

3.2, Multistability of delayed CMMNNz

To increase the number of stable equilibrium states (equilib-
rium points or periodic orbits) of CMMMNNs, this paper considers
a class of continuous nonmonotonic PLAF as

;. se (—oc. pl
Kls+m?,  se(pl.q”
Ps+n?.  seld.pll
fils) = ! 2 (3)
kis+mj, se(pl.q)
I, 5 € |qj, +oc),
where u; v, k“ ml-‘ plf qif for j = 0.1.....r1. !I.J'. ul‘.i for j =

0.1.....r—1. are constants and u; < v;; kl'.j =10 !I.J' =0; p"j {q? =
pl = - =g min{fi(5)} = u; and max {fi(s)} = ;.

Remark 2. Obviously, continuous nonmonotonic PLAF (3); fi(s), i =
1.2,....n satisfy Lipschitz condition: |fi(~) — fi()] =[]~ — | for
any A, v e M, where |, = max {k0.kl.... kIO |1]..... |I"=]}.
Meanwhile, PLAF (2} is bounded, ie, there exist constant p; =
miax {|ug]. [¥5]). so that |[fi{a)] = ju; for any a & 9.

We denote
(=00, pP1 = (=00, p1' x (P0.q0)° x - - x [qf. +00)",
(. q") = {-x-,p?]ﬂ % [p?.q?]' x - x [gf, +00)°,

g, +ec) = (-, p‘l.’]ﬂ = (PP, ql'.:'}u %o |gl +oo).
Then W" is divided into (2r 4+ 3)" parts, that is

2 A Al
[T¢=s0. B x (). 4D x
=1

(M) A2 - A = (1.0,
ccor (0,0.--- 13}

< (g +00)

0y or (0.1,--,0) or

Let &) = max{|&j;|. |K_'u”- ey = max{|ed;|. |E’u” iy
maxln’,-_j.E,-_,-I. h-'jj =min{.lf,-_,-.ﬁ",-j}. EUU mﬂx{fﬁr EUUI {EJ,'_I'
min{e;, i), Set L; = max{o. 1], |I}]..... - Mhri=1.2.....n

For a given set XM, co[X] indicates the closure of the convex
hull for X. Therefore, h:-,r memristor model (A), we can get

1]

|xit0)] < &;.
Ky |qo] =&
@y %t — )| < &
cowy(x;(t —1yy))] = I[ﬂ’u angl.  |xpe = 1p)| =&
@y, |xjtt —1p)| = &
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According to the theory of differential inclusions, we can
rewrite the master subnetwork of CMMNNs (2) as
&ty e —Dx(t) +co[T(x(t) )] Fixe)
+colH(x(t — T J(x(t — 7)) + I(¢),
where  co[l'(x(t))] = [eolwy(()ln «n colHix(t—1)}] =
[cofej(x;(t — T W lnwn. X(8) = xu(t) = (g (E). Xz (£, ... Xpp (E 1T
So, there exist &;(x;(t)) € coluylx(th]. dxjlxjit — 1))
coewjj(x;(t — 1j;))]. such that

X() = =Dxit) + T(x()) flx(e)) + Hx( = el = ) + (1)
(4]

where Mixit)) = [ & (5060 e and Afx(t—t)) =

[('Eij_j{xj;{r = T.'j]}lrlull-

Lemma 1 [19]. For PLAF (3) and memristor model {A), if fji+&;) =
Q. j=1.2.....n we have

|m{ﬁ'i_|'{xj'[[”|ff'[-’ij (- fﬂ'lk'jj'f}'j{'”]f}(}’j(”}|
< kghlxey—yi)|. Li=1.2.....n

Theorem 1. The master subnetwork of CMMNNs (2) can have (r +
20" exponentially stable equilibrium poines in " with PLAF (3) and
memristor model (A), f L =0, A =1, fi(£E)=0and

—dipi + T+ T+ Tp+li<0.
—~diqi + Tig+ Tis + Tig + [ > 0, (3)
hold fori=1.2,....nand c=1,2.....r. where

Ti maX|r?.-.-J?{p,-‘:l.rE.-j.ﬁ{p.‘-}|.

Tl‘.’!

]
Z max [H’,'J'I.l_j, PE,'J'I.IJ', Kiflj. f’ijl-'j I
=1
n
Th= Z max [mjjuj-. fIJ,-juj.r.u”uj.r.?.},-jpf] .
=1

Tl'-l

min Ifj.-ﬁ(qfi. é.-jmq.‘}].

n

>_ min ['&ij”.i' Rijltj. K0y, K I
i= i

Tl'S

"
Tig = Z min |.r;.}jjuj-. r}J,-juj.rFJjjuj,:D”:-J-].
i=1

meanwhile, the following inequation:

n
di—Zf'ijJ'—EffJuLj}ﬂ. [ By o RS . ('E]

Proof. See Appendix A, [

Remark 3. Paper [39] researched multistability of delayed MNNs
with PLAF. (2k)" exponentially stable equilibrium points can be ob-
tained by sufficient condition. However, each corner point of PLAF
is fixed, which can be set free in later researches, Compared with
conventional MNs used in |39], MNNs are practical and have com-
plex dynamic behaviors.

Remark 4. It is shown from | 13] that delayed MNNs with n nodes
and PLAF owning 2 corner points can get 2" exponentially stable
equilibrium points. In [ 14], Nie et al. researched that nonmonotonic

FLAF with four corner points can obtain 3" locally stable equi-
libria for delayed MNNMs. In this paper, corner points of PLAF are
extended from 2 and 4 to 2r 4+ 2. In the meanwhile, the number
of exponentially stable equilibrium points is increased o ir+ 2)",
For all we know, there is little work on multistability of delayed
CMMMNNs with continuous nonmonotonic PLAF owning 2r + 2 cor-
ner points.

When £ and A satisfy different conditions, this paper can get
corollaries 1 and 2,

Corollary 1. The master subnetwork of CMMNNs (2) can obtain (r +
2)" stable periodic orbits in M" with PLAF (3} and memristor model
(ALifQ=8. A=wn fi(xE5) =0 and

—diﬂfi— Th+ Ta+ T+t <0,

—diqf + Tig + Tis + Tig + 1) = 0. (7
di— ) &yli— Yyl > 0, (8)
=] fm1

hold force=0.1.....randi=1.....n

Proof. According to Lemma 1 in [32], the master subnetwork of
CMMMNs (2] can have (r + 2)" stable periodic orbits, O

Corollary 2. The master subnetwork of CMMNNs (2) can obtain
{r+2)" hybrid stable equilibrium states in %" with PLAF {3) and
memristor model (A), if @ £ 0, A £ 0, fi(+E) =0 and the following
conditions:

- dup:,l + TI!H + THE + Tu'i ¥ !u{r.:' =0,

— dufy + Tug + Tus + Tus + Lult) = 0. (9)

—dypl + T+ Tig+ T+ L <0,

i + T+ Tis+ T+ 1 = 0, (10)
di— 3 il = dyly = 0, (1)
i=1 =1

hold forallu e U allveV.e=0.1.....randi=1,..., n.

Proof. 2 = {[,it). for all u & U} is nonempty set, it means that
Xpu(t) for all v e U will appear stable periodic orhit as time ¢t — =
according to the Lemma 1 in [32], Similarly, A = [l for all veV)
is nonempty set, it means that xy,(t) for all ve V will appear expo-
nentially stable equilibrium point as time t — =¢ according to the
Theorem 1. Therefore, the master subnetwork of CMMMNNs (2] can
have (r+ 2)" hybrid stable equilibrium states.
By set-valued maps and memristor model (B), we can get

&, x;(t) < 0.
cof iy ()] = [ic'.-;. Ej,-] xi(t) =0,
Eu- xi(t) = 0.
€ Xt — 1) < 0,
cﬂ[ru.-j{xj{r . r,-j}j] - [c_uu. t?:u]. Xt —1;)=0.
oy xi(t — 7)) = 0.

Mow, PLAF (3] is simplified to the following form
b, 5e€(—oo. Y]
fitsi={ A%  se(p’.qh (12)

v, selgl 4o
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Obviously, f(0) =0, L;=0.i=1..... n. (G6) holds. From PLAF
(12) and memristor model (B), we can have

|co[ iy (x; () ] f0¢5(0)) = cof iy (s (0] fiy; ()]
= E,-jﬁ}’lxj{tj = _]-"j{i]l| = f’jjfj|-’i_jff} P ]l’j{”|-

whereiand j=1.....n
Then, this paper can get the following three corollaries. O

Corollary 3. The master subnetwork of CMMNNs (2) can get 2" ex-
ponenticlly stable equilibrivm poines in W® with PLAF (12} and mem-
ristor model (B), if 2 =0, A =&, and

—d|p?"'T=-1 TT,ITTH-i'L =0,
d,q‘? TI‘;- - ler,, 4 Tjﬁ o+ .F,' = [,
hold fori=1.....n, where

T, = max |E,-,-_ﬁ[p',-’}.a?,-j_ﬁ[p?}|_

(13)

T;‘ = min ku_ﬁ[_q‘r‘]} E’ll_an?}]

Corollary 4. The master subnetwork of CMMNNs (2} can ger 2" sta-
ble periodic orbirs in M® with PLAF {12) and memristor model (B), if
Q — Jj'. A= |-'1. Uﬂd

—dipl + T + T+ Tz +Li(t) < 0.
—dig? + T+ T+ Yig + () = D,
hold fori=1.....n

Corollary 5. The master subnetwork of CMMNNs (2) can ger 2" hy-
brid stable equilibrium states in %" with PLAF (12) and memristor
model (B), if 2 £ ¥, A £ ¢, and

—dupl + T3 + Tz + Tig + lu(t) <0,
—tduq) + T2y + Tis + Tug + hult) = 0.

- d:-p‘: - T:.[ + T+ T+l <0,
—d@l + Ty + Tis+ T+ 1. = 0.
hold for all w e U, all vel,

3.3, Hybrid multsynchronization

First, we present two necessary definitions,

Definition 1. HMSM(r) is called hybrid multisynchronization man-
ifold of CMMNNs with time delays (2), if HMSMit) =xy(t) =
(g (0], Xpa ) ... Xy (£ & W™ and the following conditions hold.
1) xylt) = nyglt)ast - oo forany i=1.....N-1. j=1.....m
2) For xppit). k=1.....n it is either stable periodic orbit or
stable equilibrium point as @ — =o.
3) Stable periodic orbit and stable equilibrium point coexist in
ay(t) simultaneously.

Definition 2. The delayed CMMNNg (2] can be said to achieve hy-
brid multisynchronization when the following conditions hold.
1)Sets LM A £

2) Given arbit_rary initial values X(ty) =

(e ()T 2 (i) .., anitg)T. where  xjitp) e C(]—1. 0] %™)

for i=1,..., N, and ?=I _mﬂx_ Tij. then there exist hybrid
=f=n1=j=n

multisynchronization manifold  HMSM(t) = xyit) = (xy (1),
Az () o K (N7 €Yy > 0, and ¥ = O, such that

lIX(£) ~ HMSMy, ()] = [|xi(t) — xn(0)|| < Ye !

for any t = 0, i=1...., N —1, subscript w is certain positive
integer.

3) There exist at least two different hybrid multisynchronization
manifolds HMSM,, (1) and HMSM,(t) with the corresponding differ-
ent initial values x(ty) and x'(ry).

Remark 5. For x(r), it is either stable periodic orbit or sta-
ble equilibrium point related with corresponding external in-
put Iylt), k=1.2.....n. as time ¢ — oo, that is, if lylf) =
€3, xyilr) is stable periodic orbit, else lyg(r) & A, xy(r) will
be stable equilibriuvm point, It should be emphasized, xyif) =
(A (8], Xz (t), . X (£))7 are hybrid stable equilibrium states,
Therefore, hybrid multisynchronization manifolds HMSM, (1) and
HM35M(t) are also hybrid stable equilibrium states, According o
Corollary 2, the master subnetwork of CMMNNs (2) can have ir +
21" hybrid stable equilibrium states in H". It means that there are
(r+ 2" hybrid multisynchronization manifolds in CMMNNs (2).

When coupled systems have multiple stable equilibrium states,
we call the synchronization of coupled systems as multisynchro-
nization. In other word, there exist multiple trajectories for ev-
ery subnetwork of coupled systems. When there exist only mul-
tiple stable equilibrium points (or stable periodic orbits), the mul-
tisynchronization of coupled systems is static (or dynamical). Dur-
ing the last three years, dynamical and static multisynchronization
were addressed in [22-34]. When all stable equilibrium states are
hybrid (namely, the hybrid of stable equilibrium points and sta-
ble periodic orbits), the multisynchronization of coupled systems
is called hybrid multisynchronization.

To achieve hybrid multisynchronization of delayed CMMMNNs,
we design controllers of slave subnetworks as follows:

N N
0ilt) = 3 M Exi(t) + 3 B (x;(t) — xi(t)).
J=1 i=1
i=1,2.....N-1,

where coupling matrix E = digg{=,. =5, ..., Zp}=0; p; and oy
represent coupling strength. We define thar oy =0 for i = j and
oy =0 for i=f @) =X} = (@ (0) — X (€)@ xz(0 -
a0, ... @ () — x5, (0)))7 denotes nonlinear coupling func-
tion, and we set

@x ) —a(t)) = sgnix; () — x;(c))

where sgn represents sign function,
Therefore, delayed CMMNNs (2) can be written as:
X(t) = —(Ey @ D)x(t) + (Ex ® I'(x(£))) f(x(1))
+ (Ey @ Hix(t = t)D fixit = 1))
+I+(Z@ Ex(t) + 9O, (14)

where x(t) = (x ()T, x0T, ... xp (O)TT. X% () = (g (£). X2 (). ...,
X fori=1..... N RxE) = (Fixq (enT, fixa T, ..., Flan(enTHl,
fxi0) = (fixn (0 falxp(O) ... fulx @' i=1,.. N Iit) =
(T LET. .. IO, E = [nylvew. ang=0for j=1...., N,

Y, o0 Esgnix; (1) - xi(t))
O = :
S Oy Esgn(x;(8) — Xu_y (£)
0
We define synchronization error as eit) = xit) —xylt). i=
1.....N—1. Therefore, we get

ety = —Dei(t) + U0 ) fae)) — Tlan(0)) flan(t))
+ Hix(t = ) f(x(t = 7)) = Hixy(t = T))f(xpit = 7))
+(E@Zxt)+6, i=1 2 ....N=-1,

where £, = (5i1. Riz. .- -~ ind. B = X?'_.1 i SSEN(x;(E) — X;(£)).
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We define a matrix W = (wij )i 1., and
1, i=j
'I."I.-'l"j == —I. j= N

0. others

Set W=Wa@F, then e(t)=Wx(t). where e(t)=(e,(t)7.
ea(t)T.....en o (7). Let P=diag(py. pa..... P}, Q = diag{G,.

da.....4y). and denote P=Ey_,@P Ej-ﬂ‘w—zfﬁﬂiri'
1.....N=-1.0=Ey_ &4

Mow, we present main results on hybrid multisynchronization
of delayed CMMNNs as follows.

Theorem 2. The delayed CMMNNs (2) can achieve hybrid multi-
synchronization and there are (r+ 2)" hybrid multisynchronization
manifolds, if the conditions of Corollary 2 hold and there exist a
matrix § = diag{fy. fz..... fn). two positive definite matrices P =
diaglpy. fz..... pol. Q = diaglgy.dz. . ... 4} and a positive constant
&, sich that

Y 2(R 4 @) - Eeg <0 k=1...mi=1... N-1,

(15)
Peld — di — i) + 1e¥rg)® <0, k=1.2,..., n. (16)
and
WTW[EJE"‘ﬁjEH]ED._J;='|.2....,rr_ (17)

Proof. See Appendix B. O

When €2 and A satisfy different conditions, we can get different
stable equilibrium states for the master subnetwork of CMMNMNS
(2). Therefore, we can get Corollaries G and 7,

Corollary 6. The delayed CMMNNs (2) can achieve dynamical multi-
synchronization and there are (r+ 2)" dynamical multisynchroniza-
tion manifolds, if the conditions of Corollary 1 hold and there ex-
ist @ matrix § = diaglsy. fa..... fa}. two positive definite matrices
P = diag(py. pa. .... pu). G = diagldy.dy. .. ..dn) and a positive con-
stant 8, such that inequalities (15)-{ 17} hold.

Corollary 7. The delayed CMMNNs (2) can achieve static muolri-
synchromization and there are (r+2)" static multisynchronization
manifolds, if the conditions of Theorem | hold and there exist a
matrix j = diaglpy. fz..... fa). two positive definite matrices f =
diag(py. pz..... pu). @ = diagld,.gz.....Gs) and a positive constant
&, such that inequalities {15)-{17) hold.

Remark 6. When the master subnetwork of CMMNNs (2) adds
controller, and external inputs of all nodes are set as periodic (or
constant) signals, the resulting hybrid multisynchronization will
become the dynamical {or static) multisynchronization introduced
in [32-34].

Remark 7. In references |15-2226-31,4546], synchronization of
conventional NMs and MNMNs under a stable equilibrium state
was researched. As discussed previously, multiple stable equi-
librium states are very necessary for coupled systems includ-
ing CMMMNNs in some applications [ 12-14.2324.37-41|, Compared
with the above researches [15-2226-3145 46|, the highlight of
Wang et al. [32], Zhang [33] and Lv et al. [34] is that dynamical
multisynchronization and static multisynchronization of coupled
multistable NMs were addressed under multiple stable equilibrium
states, However, these researches [32-34] neglect that external in-
puts of each node may be various in reality. The advantages of
this paper are that hybrid multisynchronization of CMMNNs is pro-
posed under multiple stable equilibrium states and the problem
mentioned above can be solved by hybrid multisynchronization via
considering various external inputs, It is worth emphasizing that

dynamical and static multisynchronization can be seen as two par-
ticular cases of hybrid multisynchronization. Therefore, the results
of this paper are general and meaningful, and extend the existing
results.

When PLAF (3) is changed to (12) and memristor model (B) is
chosen, we can get the Theorem 3.

Theorem 3. The delayed CMMNNs (2) can achieve hybrid multi-
synchronization and there are 2" hybrid multisynchronization man-
ifolds, if the conditions of Corcllary 5 hold and there exist a
matrix j = diaglp, By ..., fa). two positive definite matrices P =
diagly. pa. .... Bul. Q = diag{d,.Gs. .. .. dn) and a positive constant
&, such that (15). (17) and

(S —di — Bi) + 1e27G(0)° <0. k=1.2.....n, (18)
hald,

Proof. From PLAF (12), we have [; = 87, the rest of proof is same
as Theorem 2. So, the detailed proof is omitted here,

When 22 and A satisfy different conditions, we can get corol-
laries 8 and 9. O

Corollary 8. The delayed CMMNNs [2) can achieve dynamical mul-
tisynchronization and there are 2" dynomical multisynchronization
manifolds, if the conditions of Corollury 4 hold and there exist a
matrix g = diagl s, fa. ... Fnl. Iwo positive definite matrices =
diag{fy. a. .... pn}. Q = diagldy.qds. .. .. dn) and a positive constant
&, such that inequalities (15), (17} and {18) hold.

Corollary 9. The delayed CMMNNs (2) con achieve static multi-
synchronization and there are 2" static multisynchronization man-
ifolds, if the conditions of Corollory 3 held ond there exist a
matrix = diag|d. fs..... Fnl. Iwo positive definite matrices P =
diag{fi. pa..... fal. Q = diagld,.a..... {n ) and a positive constant
&, such that inequalities (15), (17} and {18) hold.

Remark 8. In this paper, hybrid, dynamical and static multisyn-
chronization of CMMNNs are addressed with two classes of PLAF
and two types of simple memristor models. In practical communi-
cation networks, the external inputs of each node may be various.
Therefore, compared with dynamical and static multisynchroniza-
tion, the hybrid multisynchronization is more flexible and practical.

4. Simulation

Example 1. We consider delayed CMMNN which consist of 3 sub-

networks as follows,

) = —0xg (0 + Tl (03 f(x (6)) + Hixp(f — 1))
) fxp(E =T+ L)+ 35, 1 Sx;(e)

+ 31 01 E0x(1) — x (1)),

Ka(t) = —Daa(t) + Cx2(£)) f(x208)) + Hx2(L — 1))
X (Xt = 7)) + (0 + T 12 (1)
+Ej_] JIJ'EUH-"-’J(” —x2()).

Az(t) = —Dazit) + Dixa (03 f(xa(t)) + Hixalt — 7))
xﬂx;{t = r'” 1'!';,“]_

(19)

where X;() = (x; (1), Xz (). X3 ()7 for i=1.2.3.

Set fy(w) = 1wl then oy =1, B0=1.L;=0. j=1.2.3.
The other parameters are set as: r;=01 i=123, j=

1,2.3.
sy (g (L)) 0 0
I‘{xjff}} = 0 Kol Xpa(t)) 0 i
0 0 K33(Xll))

4.4, t)y <0,
o= (£ 0=
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20

-10
X3a =20 -20 X1

Fig. 2. The trajectorics of x4, Xy and xy3 with external input vector kir) =

{3.2sin(r), 2.4, 2.8cos(r))" and 18 random initial values in the interval [=20, 20].

Obviously, there exist 8 hybrid stable equilibrium states for the 3rd subnetwork in
3.

48. xp(t) <0,
Sl R

entio®) = {18 120 =0
Hixit —11)
{i)11fXj1EI — 1'11,” 0 0
- 0 ez (X (E— Ta2)) 0
0 ] w3 (Xt — Taz))

0.1, xu(t—1tn) <0,
@n Xt =) = |n_ns_ A kS

0.02. Xt — "
S (R

0.08, 2t — 0.
fu-g]ij';{! - 1'33” = '0[]4 i:::éf s ::::;: E 0.

for i=1.2,3, §=01. D=diagg{1.1.1}. External input vector
li(t) = (3.2sin(t).2.4.2.8¢cos(t))7. i=1.2,3, that is, R # 8, A £ &,
For the 3rd subnetwork (master subnetwork), we can get that con-
ditions of Corollary 5 are satisfied, Therefore, the 3rd subnetwork
has 8 hybrid stable equilibrium states in %2, as shown in Fig. 2.

Let Q = diag{0.01, 0.01.0.01}. ZE =diag{10,10.10). jg=
diag{1.1.1}, PF=diag{1.1.1}, oz =053=1 and ;=0 for
i.j=1.2 then g=03-Y5.,0i=1.i=12 We can get that
the conditions (15) and (18) are satisfied.

Ser

-2 0 2
E-[mha=|0 2 2|

o o

then

-19 0 19
WTW[EJE+,EUE;]= 0 -19 19 :

19 19 38
j=1,2.3.

The eigenvalues of WIW(Z;E + ;) are nonpositive: —57,
—19, 0. The condition (17) holds. Thus, CMMNN {19) can achieve
hybrid multisynchronization according to the Theorem 3. As
shown in Fig. 3, there are 18 random initial values for every

=123

Xily FF

I’x

01 2 3 4 % ¢ 7T & o010
I's

Fig. 3. Hybrid multisynchronization of delayed CMMNN (19) with external input
veotor §jir) = {3.25in(r), 2.4. 2.8cesit ))7 and 18 random initial values in the interval
[—20, 20).

nerve cell to be tracked., For every nerve cell of the 3rd sub-
network, ie. Xy, j=1.2.3. there exist 2 trajectories because
of 2 corner points of the PLAF Therefore, there exist 8 hybrid
multisynchronization manifolds for the 3rd subnetwork. The hy-
brid multisynchronization manifolds are  HMSMy(t))w=12. 58
= ((1% 3% 59T (1# 3% 6%)7, (1% 4% 5T (1% 4% gF)T,
(2% 3% SHE (b ak gAyT. (o8 g8 ST (o8 g g0
According to the result of Fiz. 3, hybrid multisynchroniza-
tion of CMMNNs may be applied in some complex areas such
as secure communication in multiple networks, obstacle avoid-
ance for robots, formation flying of unmanned air vehicles and so
on. For instance, hybrid multisynchronization of CMMNNs is ap-
plied in formation flying of unmanned air vehicles. The leaders
and the followers of unmanned air vehicles can be simulated by
the master subnetwork and the N — 1 slave subnetworks, respec-
tively. The leaders can be tracked and synchronized by the fol-
lowers via feedback controllers. For security reason, the leaders
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(4]
el
T
0 -
' 12
sy l
004 0.08 0.12
.10 ; ; . . i
¢ 2 4 6 ® 10 12
s
14
12
10}

6l U 04 08

]
= -]

7 3 : 3 i 12
s

Fig. 4. Exponential synchronization of delayed CMMNN (19) under a stable equi-
librium state with external input vector [ = (3.2sinir), 2.4, 2. 8ce(0))" and single
imitial value in the interval [-10, 15].

usually need to generate multiple flight trajectories according
to different initial states (such as fuel loads and device perfor-
mances) and different external inputs {(such as meteoralogical con-
ditions, human factors). When unmanned air vehicles simulated
by CMMNN (19), multiple flight trajectories generated by the lead-
ers can be (1%, 3% sMT (1% 3% 6%)T, (1% 4% 5%)7 (1% 4% 6" )T,
(2*,3%.5%)7, (2%, 3%, 6%, (2% 4%, 5%)7, (2%, 4%,6%)", as shown
in Fig. 3. In this case, we call the synchronization between
the leaders and the followers as hybrid multisynchronization of
ChIMNNs.

When single initial value is given, delayed CMMNN (19) can
achieve exponential synchronization under a stable equilibrium
state, as shown in Fig. 4. The hybrid synchronization manifold is
“”.4”.5”!]-.

Example 2. We consider another delayed CMMNN which consist
of 3 subnetworks as follows.

25
20F
15
10

i

5
=0 —_— —

sl ]
o X =
=20

225 20 <15 -10 -‘5Jr 0 5 10 15 20
31

Fig. 5. The trajectories of xu and xyz with external input vector f3(t) = (2sinir), 2)7
and 30 random initial values in the interval [=20, 20]. There exist 9 hybrid stable
equilibrium states for the 3rd subnetwork in %7

gp(t) = =Dy (e) & Uiz (e fixg (1) + Hixgt = 20 f (gt = 7))
+h (L) + Z}ﬂ mjEx;(L) + Z_:L! i Eix;r) = x (L)),

o) = =Daie) & Tixa(0) 1 fixa(t)) + Hixplt = 7)) f (a0t = 7))
+]1[I] - Z?:'I Maj EXJ'U} + E}:! 03j EW(XJ'“] = Xz (L))

K3(t) = —Dxy(t) + Fixa ()} f(x3(00) + Hixa(t — 7)) f(x3(0 — 7))

+i4(r).
(20)
where x;(t) = (xp(t). x(t))7 fori=1,2,3,
Set PLAF as
-, (—oc, —4]
10w + 36, (-4, -3.6)
fiwy={-iw-£. [-36.34] .
10w — 36, (34.4)
4, [4, +00)

then ;=4 1; =10, L; = 2/7, and [;(£3.6)=0. j=1,2.
The parameters are set as: 1; =01, i=1.2.3, j=1.2

ey |l ()] 0
Fixde)) = [ 0 K’zz[:{jz(t}j]‘

) 44, ()] <38,
k(X (L)) = |4.5. I (1)] = 3.6,

K}}[ij{t}j = |::g: |xF2:r}| = 3.6.

|t} = 3.6,
: _ | enlxp e = tud) 0
Hixilt — 1)) = |: I 0 ey (X (L — T:!J:”:IL

)03, [xait =) =36
ik Iﬂ-ﬂi |J:fr1(r —m)| = 3.6

0.02,

e (Xg(l = Tw)) = IU-UE. [%ia it = T2} = 3.6,

[xm(t — 122} = 3.6,

i=1.2.3.86=0.1.D=diag(1.1}.

External input vector (t) = (2sin(t).2)", i=1.2.3. that is, £
# #, A # i For the 3rd subnetwork, we can get that conditions
of Corollary 2 are satisfied, Therefore, the 3rd subnetwork has 9
hybrid stable equilibrium states in %2, as shown in Fig 5.

Let Q =diag{0.1,0.1}, E = diag{10.10}. j = diag{0.1,0.1}, P=
diagf15.15}. oz =4 and o;=0 for i.j=1,2, then & =05 -
EL, oy = 4. i = 1, 2, Therefore, we can get that inequalities (15)
and (16) hold.
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f ] 0 12
s

Fig. 6. Hybrid multisynchronization of delayed CMMNN (20) with extermal input
vector Kirh = i2sin(r), 217 and 30 random initial values in the interval =20, 20].

Set

-1 0 1
E i [ujj]'jx'i - D -'l l 3
0 0 0

then

99 9.9

99 0 99
~198]

wfw[sjz-q-ﬁje-j}:[n -99 99

Fi=rl; 2

The eigenvalues of WIW(E;Z + 5;E3) are nonpositive: —29.7,
—9.9, 0. The condition (17) holds. Thus, delayed CMMNN (20] can
achieve hybrid multisynchronization according to the Theorem 2,

As shown in Fig. 6, CMMNN (20) can achieve hybrid multi-
synchronization with 30 random initial conditions in the inter-
val [—20, 20]. Fiz. 7 shows the local magnification in the interval
[0, 0.1] and [0, 0.25] with 27 random initial conditions. Red, blue
and black lines represent xy; Xy; X35, j= 1. 2. respectively. For ev-
ery nerve cell of the 3rd subnetwork, i.e. X3, j=1.2, there ex-
ist 3 trajectories because of 4 corner points of the PLAF. There-
fore, there exist 9 hybrid multisynchronization manifolds for the
3rd subnetwork. The hybrid multisynchronization manifolds are
HMSMy(t} w2 0 = ((1F 457, (1%, 5% )T (1* 6*)T, (2% 4%)T,
¥ 58, (%60, (3 Y, 38 5N 3N BT,

When single initial value is given, delayed CMMNN (20} can
achieve exponential synchronization under a stable equilibrium
state, as shown in Fig. 8. The hybrid synchronization manifold is
(3% 6¥)T,

5. Conclusion

This paper builds delayed CMMMNNs and investigates multista-
bility of delayed CMMNMNs with continuous PLAF owning 2r + 2

25

200 .f
15 / .\\!
10
~ 3 7
¥ N

)
10— N

. 7
=15} 3
.20 \\ h

2 A . PR S
'5!] 0.02 0. 006 008 ikl

o Xl F

xa, i=1,2.3

:
05 o1 015 0I 035

Fig. 7. The local magnification in the interval [0, 0.0] and |0, 0.25] with 27 random
initial conditions,

|

4 T T T T T
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-2 [ 4
o -4 -10
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12 !
147"
i L .
o0 1 2 3 4 5 6 7 H 9% 10

s

Fig. 8. Expoenential synchronization of delayed CMMNN (20) under a stable equilib-
rium state with external input vector §(t) = (2sin(t). 2)7 and single initial value in
the interval [=25, 20].

corner points, Sufficient conditions certify that there exist (r +2)"
exponentially stable equilibrium points, stable periodic orbits or
hybrid stable equilibrium states. Then, we propose hybrid multi-
synchronization based on the structure of delayed CMMMNNs for
the first time and can obtain (r+ 2)" hybrid multisynchroniza-
tion manifolds, Hybrid multisynchronization can solve the prob-
lem that dynamical and static multisynchronization [32-34) cannot
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take into consideration various external inpurs. Moreover, hybrid,
dynamical and static multisynchronization of CMMNNs are ad-
dressed with two classes of PLAF and two types of simple memris-
tor madels. Compared with dynamical and static multisynchroniza-
tion, the hybrid multisynchronization is more flexible and practical.
Therefore, the results of this paper are general and meaningful, and
extend the existing results,

In the future research, hybrid multisynchronization of CMMNNS
can be achieved via different feedback control schemes, such as
pinning control, adaptive control and so on. Moreover, further in-
vestigation can focus on the robust hybrid multisynchronization of
CMMNNs with parameter perturbations.
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Appendix A. Proof of Theorem 1

First, denote

] . .
& = {TT (~oo. 1 x (2. 40)° x 10 p! 1
i=1
x e (5. QD)0 x [gf. +oo )™,
(A1 A2, AP) = (1.0.--....0)0r(0. 1....,0)
or-..or(0.0..... 13).

We will prove that (r+2)" exponentially stable equilibrium
points locate in < in three steps.

Step 1: We will prove that there exist (r+ 2)" equilibrium
points located in &,

From A = @, we can get that every element in set § is constant,
50, by isolated MMM (1), the master subnetwork of CMMNNs (2)
can be rewritten as:

2(t) = —Dxit) + Tix(e)) fe(e)) + Atxtt — T fxit — 1))+ 1,

where I = (I b, ... 0 ).

Take an arbitrary region & from set &, for arbitrary
(%1 %z ... %) e AR Xy X1 K. ... Xy eXcept x(6), and
define

Gilxg () = —dxg () + By (i (0 ) filx(e))

Ll
+ Z f?u[xjﬂ}_}f‘j{x.[[r}}

j=1, j#i
4 Z:?),-J-{xj{r — T ) filxi(t — 7)) + k.
j=1

Then, there exist three cases that will be discussed.
Case 1, When x;(t) € (—oc, p]. we can have

(A1)

Gj'[P?}= ~'-de? + fj.-fp?}.l"jip?]' ¥ Z Kilx;(e))

j=V g

n
= fila(e)) + ECEJ‘jj{Xjff - T D — Ty + 0
=1

< —d;p] + max |-'Eii.|ri(p?]~ r?.-imp?}|

n
e maxI.-E,Juj.E,;l:j.E,JﬂJ.E}-f!Jj]
e i

n
+ 3 max |(I:”uj. &.JUIII.(EJ,-HFJ:.(EJ,'JIFJI +1 <0.
j=1
MNoticing the continuity of function G;{x) and lim,_. _..G{x) =
+o0, 50 there exists a point % & (=nc. pj‘l such that G;(%;) = 0.
Case 2. When x;(t) € (g5. p{*']. € =0.1.....7r — 1. we can have

Gilgf) = —dyqf + min [""'riﬁ'[‘i‘f}-i?ifﬁ'f*??)]

)
+ 3 ITliI'I[!Euuj.E,'JUJ.E,-JIFJ.E'“;I-'J:]
=1 j#i

+ % ‘min |(E,r.;juj-.eb,-juj.tb”uj.fb,-j::j] +1=0.
=1

and

GUpEt") = —dipt*' + max|fr'.-,-,|".-{pf."}.:?,-,-_mpf"}]
n
+ Z madax IPE'”HJ-. E’jjllj. E’jj!-‘_j. i?,-jvj-l
=1
n
+ 3 max Ifb,-juj.:D,-J-uj, WiV rh”vjl +§<0.
=1

Therefore, there exists a point % < (g5, pi*'| such that G(%) =
0 c=01.....r=1.
Case 3. When x;it) € (g]. +=c], we can have

Gi(qf) = —d;g] + min lh.-ﬁ-iq.f}.fn-ﬁm{l]
] 3 _
+ 3 min|x,-ju,-_fjju,-_x..juj_;?.-J.uj]
Jm1, i

n
+% " min ‘&:!J-uJ.cb,jliJ-. . EEJUIJ'JI +1 > 0.
jut

Combining limy_. . Gix) = —sc. we can find a point %«
(gF. +=<| such that G;i%) =0.

As set & consists of (r+ 2" parts, we can get that there exist
(r+ 27" equilibrium points for the master subnetwork of CMMNNs
(2} in %" with PLAF (3) and memristor model (A) by Brouwer’s
fixed point theorem.

Step 2: Ser x;(t) is the solution for the ith node of the mas-
ter subnetwork of CMMMNNs (2) with respect to initial condition
%(0) € @, Then, for all t = 0, we assert that x;(t) will stay in . 1T
this is false, then there exist three cases to be discussed.

Case 1. When x;(0) € {—=c. p?]. then there exists (')
that x;(t'") = p?, %(t'") >0, and x;(t) < p? for 0 =
Actually,

) = —dx(t) + Ry (M Flg (e ))

=
L

0 such
= Y,

mn
+ 3 Rylx e (e

Sl fl

n
+ 3 g (ke — 1)) f (e — 1)) +
j=1

< —d;p] + max [#ﬁmp‘f}. Zifitpl)
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L
+ Z ITIEIK|r-c-.-jll_,-.E',-J;u_,-.fr',-jllj,i',-jujl
Je, el

+ 3 max [-f;!uu,‘..rFJiJ'u_j1f;)jjvj.ﬁ)ijl-'j] +hi <0,
j=1

so, it is contradictory.

Case 2. When x;(0) & [qf.p:.'"]. c=01..... r=1, then there
exists t'%) = 0 such that

(1) %02y = gf, &(t'2)) < 0. x(t) e [q5. p5*1). 0 = ¢ = £2); or
(2) x(t ) = p*Y £ 2 = 0, () e [¢5. P4 0 = 1 < 2,

For case (1), we have

%(6'2) = —digf + min [kﬁ.ﬁf*?f}.f?ii.ﬂ(fiﬁl
n B _
+ 3 min|k”uJ..E',Juj.x,-,u,-..i?“ig]
J=1, jisi
" N .
+ Z min [ﬂ.ljj”j.&Jl-J'I!j.&J]jlfj_djijl‘j] + =0,
=1
this is contradictory. Similarly, the case (2) can be overturned.
Case 3. When x(0) « [g[. +oc), then there exist £*) = 0 such
that x;(t'*') = qf. %(t'*} = 0, and x;(t) = q[. 0 = ¢ < t'3), Bu,

x(t"?) = —dygf + min I:’c’.-,-}'.-{q{}. rE.-.-j}{q{:]
+ Z min [f'c-,-_,-uj, E.-_,-uj, Eijuj- !Z'jjl)j]
=1 jsl
n
+ Z min [rIJ”uJ-. fﬁ,‘_j"j.{?}jj!-‘j.ﬁaﬂ'ﬂlj] + =0,
J=1
which is a contradiction.

Through the above analysis, we can get that for all ¢ = 0, x,{6)
will stay in &,

Step 3: we will prove that the (r+ 2)" equilibrium points are
exponentially stable.

Denote a function Uy(¢) =d; — ¢ — X1, Ryl — X5 e iyl
then W(0) = 0, and there exists a sufficiently small positive con-
stant &, such that U(d) = O for any i(i = 1.2, ..., n). Taking an ar-
bitrary region & from the set &, we can find an equilibrium point
% in region &, Set wi(t) =500 =X, i=1..... . In terms of theory
of differential inclusion, we can get

n
yitt) € —diyi(t) + 3 {cof i (x; ()] f(x;(6))

i=1
]
~cofky (D] fED ) + ¥ {eofey;(x;(e — 1))
i=1
x [j(x;(t — 1)) — cof ey (%)) (%)}
M i=1.2...., n stay in &, which means that Lipschitz con-
dition for fi(s) in Bemark 2 can be rewritten as
|filrd = filte) = Lla—wv]. i=1.2...., n,

for any »~, v € M.
Therefore, from Lemma 1, we can get

|cal ki (0] fi(x3(0)) — cof iy (K] £ ()| = &gl |vyin)].
and
|cofan;(x;(t = T ] Fi6x;t — 7)) — cof ey (X ] f50%))|

= @yl |.}'_|'“ o= T,-_,-J|.

Hence,

d e
g WO < ~dilyi©)] + 3 &y |y 0)|
J=1

n
DI TA RIS
=1
Set ze(r) = ™ |ye(0)]. £ = 1,2, ....n and Maxy cjcg {|X(0) — K|} =

0. We can get z;(0) = maXy i |50 = 5|} i =1.2..... ]
Then, we will prove the following inequality by contradiction:

z.msp‘lax“x,-m;—fin, t=00=1.2..... n (A2)
=f=n

Let O = max;_i., {|x;(0) —%|}. Suppose (A2) is invalid, then
we can find a ke (1..... n} and & for the first time z,(ty) =0,
) =0,z =0 te [0y ity =0.te[0, ) i=1.2.....n
i # k. Actually,

, il
Z,(t) = Be™ |y(ty)] + ™ g el
i

= 8z{ty) = dpz () ) + Z'Eh'szJ‘ﬂ”
J=1

n
+ 3 e maylizi(t — )
j=1
a n

0—d, + Z"EJULJ' + ZE"“’”‘:‘}*‘JLf

i=1 J=1
= maxf|x(0} — %}
I=t=n

1A

= ~Uk(@ymax{|x(0) - %1} <0

Thus, this is contradictory, namely, (A.2) holds., Therefore,
we can have that |x (£) — %] = e " max) o[ |40(0) = %]} ¢ =
1.2.....n In other words, equilibrium point % in & is exponen-
tially stable, Further, the master subnetwork of CMMNNs (2] can
find {r+2)" exponentially stable equilibrium points in H" with
PLAF (2) and memristor model (A). The proof is finished.

Appendix B. Proof of Theorem 2

We consider a Lyapunov functional as
r
Vit) = e(t) Pe(t)e?™ 4+ Fixts))TWTOW f(xis))e2 5+ ds
=T
Calculating the derivative of Wi), we get

DV it) = 28e™ et )T Pe(r) + 202 et )T Pe(t)
F e Fe(e) ) TWT QW fix(t))
— e flx(t — 7)) WTQW f(x(t — 1))
= 28" x(0)"WT PWx(t)
b 202 0x(0)WTPW | (Ey @ D)x(t)
+(Eya Cixit)))fixit))
F(Ey @ Hix(t — 1)) fix(t — t)) + 1K)
+(Z @ E)x(t) + O + (Ey @ p)x(t) — (En @ p)x(0)}
" e””“’frx{t)}rWTQWﬂx{t)}
—e® fix(t — T TWTQW fixit — 1))
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Mow, we analyze each item of DHVir).

ze”“"'x{r]TWrPWH
=1

2% E E P S (x5 (0)

i=] Pchl

—Xn (L)) % Zr?jjsgll{xjk - Xi)
=1
N=1 n :

2eit 33 b Ek{ | (8) — 2pge (0] (=00

iml k=1
N=1

(X0 =X (0) Y aysgnixg — xi)
J=1

N-1 n N=1
< 2eM ZZﬁkEk X (L) — 2y (2] { —Ojy + Eﬂij }

i=1 kml j=1
N-1 n

= 22 E Zﬁ‘k Eksileik“}l-

=1 k=1

and
28 x(t )" WTPWx(t) + 2 x(t) WT PW

w | —(Ex @ Dxlt) + (Ex @ Tx(t) ) fx())

+ (Ev @ Hix(t — T ) fix(t — 7)) — (Ex @ p)x(0))

= 28 () TWTPWx(t) — 22 TWTP(Ey_y & DYWxit)
— 26 x()WTP(Ey_, @ p)Wx(t)

+ 2% ()W P(Ey_y @ Dix(0))W fix(t))

+ 262 () WTP(Ey_y @ Hix(t — T))W fixit - 1))

= 26 x(O)TWTP[(8Ex_1 ® En)—(En_1 ® D) — (En-1 ® 5)]

x Wx(t) + 262 x(t)"WTP(Ex_y @ T(x(t))W f(x(t))

+ 22 x(0)'WTB(Ey_y @ Hix(t — )W fix(t — 1))

Combining Remark 2, we can get
28 x ()T WTPWx(t) + 2 x(t)"WT PW
x {—(Ex @ D)x(t) + (Ev @ I'(x(t))) f(x(t))

+ (Ey @ Hix(t — 1)) f(x(t — 1)) — (Ex @ p)x(1))
N-1 n

= 2% Z Eﬁ‘k{-’iﬁ: (1) = xyi(0))* (8 = dy = py)
i=1 k=1
N-1 n

+26M0Y 7N (X (t) — xuilt)) E [Fews ()

i=1 k=1
([ x(0) = fixi(0)
+ﬁ)*-_|'|:xj“ = Tkj]','l[fj{xu(f - T|'_j,:|} - L-[xh-j{r — TNJ.:I}]]

N-1 n
27 3" ele (0))* (8 — dy — )
fml k=1
N=1 n
+ 22 Ezpklflk{r” Ez{’ﬂ:y o wk_j)lu
fml k=1 Jml

Obviously, Wi(t) =0, and

— e f(x(t — T))WTQW f(x(t — 7))
N-1 n

g2t E Z (Si (£ = )

i=1 k=1
— feXlt — Tig))) i = 0.

Therefore,
e Fla(e ) TWT QW fix(r))

— e fixi — T WTQW fix(t — 7))
N=1 n

< @M NS (felxal)) = filkne (O NG i ())
i=1 kwl

— filamE)))
N-1n

< EZMJ-H EE&F{”H:{X“‘{[] - Xm{f”z
i=1 k=1
N=1 &

= p2bit4T) E Zq*“* }I[E,u‘f”jl

=1 k=1
Moreover,
27 x(O)'WPW {(Z @ 2(0) + (Ev @ p)x(D)}

= gt z ﬁJjj.[”.TWTW[EJI + piEn)E;it) = 0

where Z;(t) = (3 (t). xa(C). ... Xy (017,
Therefore,

N=1 &

D*V(t) = 2e*™ E E ﬁi.-'[fft{f}']'l(‘ﬁ ~ty — ﬁk}
iml k=1
N=1 &

2e?h E E Prleg ()] E 2(#y +{ko}_{£_,

w1 k=1
N-1 n N-1 n

-2e% %% B Ereiden(t)] + P 3" % g,

i=1 k=1 i=1 k=1

x (1) (e())* + 262 Zpr (' WTw

=1
* (S5 + ﬂJ'EN}fj[f}

N<1 n

2e™M E E Eﬂ'k“”z[ﬁfr(ﬁ =ty = ﬁk}
i=1 k=1
N-1 n

+;~?M*q () ]+ 2e¥0% Y prle(o)]
=] k=1

® [iz{hy + 5-’:;_1)#; = EkEl]

fe1
+2eM 3"
=1

From Lyapunov functional, we can get

FO WIW(E/E + piEn)%(1) <0

N1 &

Vi) = Prine™ EZ {E”(H}

Iml Jml

where prin = minlsislr‘.ﬁii-
Then,

llx:(t) = xp(0)|| = |les(e )|

<\ Prin€ V() = itV (0)e ™,

fori=1,....N-1, j=1,...,n

Therefore, as time [ — +oo. x;(t) — xy(t) for any given initial
values, where i=1.... N-1. j=1.....n.

For the master subnetwork of CMMNNs (2), the conditions of
Corollary 2 hold, that means master subnetwork of CMMNNs (2)
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can own {1+ 2)" hybrid stable equilibrium states in ®" with PLAF
(3) and memristor model {A). Therefore, there are {r+ 2)" hybrid
multisynchronization manifolds. The proof is completed.
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