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Abstract— Nowadays, research, modeling, simulation and real-
ization of brain-like systems to reproduce brain behaviors have
become urgent requirements. In this paper, neural bursting and
synchronization are imitated by modeling two neural network
models based on the Hopfield neural network (HNN). The first
neural network model consists of four neurons, which correspond
to realizing neural bursting firings. Theoretical analysis and
numerical simulation show that the simple neural network
can generate abundant bursting dynamics including multiple
periodic bursting firings with different spikes per burst, multiple
coexisting bursting firings, as well as multiple chaotic bursting
firings with different amplitudes. The second neural network
model simulates neural synchronization using a coupling neural
network composed of two above small neural networks. The
synchronization dynamics of the coupling neural network is theo-
retically proved based on the Lyapunov stability theory. Extensive
simulation results show that the coupling neural network can
produce different types of synchronous behaviors dependent on
synaptic coupling strength, such as anti-phase bursting syn-
chronization, anti-phase spiking synchronization, and complete
bursting synchronization. Finally, two neural network circuits are
designed and implemented to show the effectiveness and potential
of the constructed neural networks.

Index Terms— Bursting firing, synchronization, neural
network, bifurcation, circuit implementation.

I. INTRODUCTION

THE human brain is a complex biological nerve network
composed of a great number of interactive neurons.

Based on the brain nervous topology, a simplified brain
neural network, namely Hopfield neural network (HNN), was
constructed by Hopfield in 1982 [1]. Owing to its brain-like
dynamics, the investigation of HNN is vital in understanding
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the electrical activities of the brain [2]. It provides insights into
the qualitative behaviors of state trajectories for the variation
of the network parameters, which is conducive to better under-
stand the dynamical behaviors in the human brain. Further-
more, such a neural network with abundant dynamics is also
potentially useful for developing future brain-like computing
systems [3]. Recent studies have shown that the HNN can be
extensively applied in various artificial intelligence scenarios,
such as associative memory [4], machine learning [5], image
processing [6]. Hence, the HNNs with complex dynamical
behaviors have attracted increasing attention because of its
potential significance and wide applications.

In the early days, the dynamics analyses of HNN focused
mainly on a complete HNN model with infinite neurons.
Since the discovery of brain-like chaos in an HNN with six
neurons [7], small HNN models have attracted considerable
attention due to their abundant dynamical behaviors. Over
the past decades, various chaotic behaviors including chaos
[8]–[11] and hyperchaos [12]–[14] have been revealed based
on different HNN models. Especially, in recent years, great
progress in neuroscience and nonlinear theory has inspired an
increasing enthusiasm in research on the complex dynamical
behaviors in HNNs. For example, in 2016, Pham et al. [15]
discovered hidden chaotic attractors in a three-neuron-based
HNN by introducing a memristor synapse to replace a resistor
synapse. In 2017, Bao et al. [16] revealed a complicated phe-
nomenon of coexisting chaotic attractors in a hyperbolic-type
memristor synapse based HNN. Similarly, in 2019, coexisting
multiple patterns including chaotic spiking, periodic spiking,
and stable resting were detected in a memristive two-neuron-
based HNN [17]. And in this year, infinitely many coexisting
chaotic attractors were observed in a multi-stable memristor-
based HNN with four neurons [18]. Moreover, to obtain more
complex chaotic dynamics, the dynamical behaviors of the
HNNs under various external stimuli have been investigated.
For instance, Hu et al. [19] studied an HNN with three neurons
by injecting electromagnetic radiation into its one neuron.
Their research results show that the complex phenomenon of
coexistence of different types of attractors can be observed
under electromagnetic radiation. Inspired by their research,
Lin et al. [20]–[22] deeply researched the influence of various
external stimuli on chaotic dynamics in the HNNs. Some
more intricate chaotic behaviors like attractor transition [20],
extreme multistability [21], and multi-scroll attractors [22] are
discovered from the HNNs.
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As we all know, neural bursting is an important phenomenon
in the human brain. The bursting firing universally exists in
endocrine cells and the central nervous system [23], which
appears when oscillation alternates between the quiescent state
and the repetitive spiking firings. It is also regarded as a kind
of key firing activity in keeping the normal function of the ner-
vous system [24]. In the past decades, the bursting dynamics
like periodic bursting, stochastic bursting, and chaotic bursting
has been widely investigated in various single neuron models,
such as Hindmarsh-Rose (HR) model [25], [26], Morris-Lecar
(ML) model [27], [28], FitzHugh-Nagumo (FHN) model [29],
and Chay model [30]. Nevertheless, due to the influence
between neurons, the bursting firing is rarely observed in the
neural networks with multiple neurons. Recently, Xu et al. [31]
found the periodic bursting firing in a two-neuron-based
non-autonomous memristive HNN by introducing an exter-
nal sinusoidal input current. Additionally, Njitacke and his
team [32], [33] also observed periodic and chaotic bursting
firings in a three-neuron-based HNN and a four-neuron-based
HNN, respectively. However, more complex bursting dynamics
including multiple burstings, coexisting multiple burstings,
stochastic bursting, coexisting stochastic burstings, and coex-
isting chaotic burstings have not been reported in the previous
researches for the Hopfield-type neural networks.

Synchronization means that two or more systems adjust to
each other to lead to a common dynamic behavior, which
widely exists in biological neural systems [34]. There is
evidence that brain activities including sleep, thinking, and
memory, are associated with synchronization at the neural
level [35]. On the contrary, abnormal neural synchronization
plays a crucial role in certain brain disorders like schizophre-
nia, epilepsy, and Parkinson’s [36]. Besides, the neural net-
work models with a synchronization phenomenon are of
great importance for their potential applications. Therefore,
the study on the synchronization of neural networks can
not only promote the understanding of brain dynamics but
also help to provide technical support for practical applica-
tions of neural network models. Indeed, during the past few
decades, many investigations have been devoted to achieving
the synchronization of neural networks by using various
control approaches [37]–[41]. There are also some works
investigating the phenomenon of firing synchronization in
coupled bi-neuron networks in recent years [42]–[45]. For
example, in [46], bursting synchronization of two coupled
ML neurons under electromagnetic radiation was studied.
Chaotic firing synchronization and synchronization transition
of memristor-based coupled HR neurons was investigated
in [47]. However, to the best of our knowledge, up to now,
there are few results on the firing synchronization of two
coupled neural networks with multiple neurons.

Motivated by the above discussions, this paper studies the
dynamics of neural bursting and synchronization based on
two neural network models with multiple neurons. Firstly,
we construct a small neural network model with four neurons.
The bursting dynamics is revealed by using standard nonlinear
theory and numerical analysis methods. Then, we further
model a coupling neural network based on two small neural
networks. The synchronous behavior of the coupling neural

network is theoretically proved using the Lyapunov stability
theory and numerically simulated by the MATLAB tool.
Finally, the phenomena of bursting and synchronization are
demonstrated on the designed neural network circuits.

The rest of this paper is organized as follows. In Section II,
the small neural network model is proposed, and some basic
dynamical features are analyzed. In Section III, the burst-
ing dynamics of the small neural network is revealed.
In Section IV, a coupling neural network is presented based on
two small neural networks, and its synchronization dynamics
is discussed. In Section V, two neural network circuits are
implemented physically. Section VI summarizes the full text.

II. SMALL NEURAL NETWORK WITH FOUR NEURONS

A. Model Construction

Hopfield neural network is usually used to describe and
imitate the dynamical behavior of the brain nervous system.
An original Hopfield neural network which is made up of n
neurons can be described by [1]

Ci
.

xi = −xi/Ri +
n�

j=1

wi j tanh(x j ) + Ii (i, j ∈ N∗), (1)

where Ci , Ri , and xi are considered as the membrane capac-
itance, membrane resistance, and membrane voltage of the
neuron i , respectively. tanh(.) stands for the neuron activation
function, and wi j denotes the synaptic weight coefficient
characterizing the connection strength between neuron i and
neuron j . Additionally, Ii represents an external input current.
It should be pointed out that the dynamical behavior of the
HNN heavily depends on its synaptic weight values, and the
research of dynamics on a neural network with different synap-
tic weight coefficients is significant and valuable. For example,
the HNN with four neurons in [12] generates hyperchaotic
behavior, whereas the same four-neuron-based HNN with the
different synaptic weights in [33] exhibits coexisting chaotic
behaviors. These different dynamical behaviors are crucial for
emulating the different neural dynamics of biological nervous
systems. Now, we use the trial and error method to derive
some appropriate synaptic weight coefficients, and a small
neural network with four neurons can be constructed, as shown
in Fig. 1, where N1, N2, N3, and N4 are four neurons.

Assuming Ci = 1, Ri = 1, Ii = 0, the presented neural
network can be mathematically modeled as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x1 =−x1+0.5 tanh(x1)+w12 tanh(x2)+2 tanh(x3)

− 11 tanh(x4)
.

x2 =−x2−tanh(x1)+1.5 tanh(x2)+7 tanh(x3)

− 0.5 tanh(x4)
.

x3 =−x3+w31 tanh(x1)−4 tanh(x2)+1.8 tanh(x3)

+ 4 tanh(x4)
.

x4 =−x4+0.6 tanh(x1)+w43 tanh(x3)+2 tanh(x4),

(2)

where the synaptic weight coefficients w12, w31, and w43 are
regarded as three adjustable system parameters.
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TABLE I

ADJUSTABLE PARAMETERS, EIGENVALUES OF ZERO EQUILIBRIUM POINTS, CORRESPONDING STABILITIES, AND BURSTING DYNAMICS

Fig. 1. Connection topology of the small neural network with four neurons.

B. Equilibria and Stability Analysis

The equilibria of the small neural network and their sta-
bilities are discussed by theoretical and numerical analysis
methods. Define E = (x, y, z, u) is an equilibrium point of
small neural network (2). Letting the left side of Equation (2)
to 0, the equilibrium point can be solved from the following
equation as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + 0.5 tanh(x) + w12 tanh(y) + 2 tanh(z) − 11 tanh(u)

= 0

−y − tanh(x) + 1.5 tanh(y) + 7 tanh(z) − 0.5 tanh(u)

= 0

−z + w31 tanh(x) − 4 tanh(y) + 1.8 tanh(z)

+ 4 tanh(u) = 0

−u + 0.6 tanh(x) + w43 tanh(z) + 2 tanh(u)

= 0
(3)

MATLAB numerical calculations show that there is only
a zero solution in Equation (3). That is to say, the neural
network (2) has a zero equilibrium point E0 = (0, 0, 0, 0). The
Jacobian matrix at the zero equilibrium point can be derived
by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
.
x

∂x

∂
.
x

∂y

∂
.
x

∂z

∂
.
x

∂u
∂

.
y

∂x

∂
.
y

∂y

∂
.
y

∂z

∂
.
y

∂u
∂

.
z

∂x

∂
.
z

∂y

∂
.
z

∂z

∂
.
z

∂u
∂

.
u

∂x

∂
.
u

∂y

∂
.
u

∂z

∂
.
u

∂u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

=

⎡
⎢⎢⎣

−1 + 0.5sx w12sy 2sz −11su

−sx −1 + 1.5sy 7sz −0.5su

w31sx −4sy −1 + 1.8sz 4su

0.6sx 0 w43sz −1 + 2su

⎤
⎥⎥⎦ (4)

where sx = sech2(x), sy = sech2(y), sz = sech2(z), and su

= sech2(u). For the zero equilibrium point E0 = (0, 0, 0, 0),
the characteristic polynomial equation is educed as

P(λ) = det(λIE − J )

= λ4 − 1.8λ3 + (w12 − 2w31 + 4w43 + 21.95)λ2

+ (3w31 − 2.1w12 + 2w43 − 7w12w31 − 11w31w43

− 8.17)λ + 17.84w12 − w31 − 44w43 + 7w12w31

+ 4w12w43 + 5.5w31w43 − 0.5w12w31w43 − 193.64

= 0, (5)

where IE is a four-order unit matrix. According to
Routh-Hurwitz criteria, the zero equilibrium point is always
unstable. With help of MATLAB numerical calculation for
different parameters w12, w31, and w43, the type of zero
equilibrium points, and the generating firing patterns in neural
network (2) are further studied. Extensive numerical sim-
ulations show that when w12 = 7, w31 = 3, the zero
equilibrium point is an unstable saddle-focus for −0.7 ≤
w43 ≤ 0.21, and while the zero equilibrium point is translated
to unstable focus for 0.22 ≤ w43 ≤ 1.5. Under this condition,
the neural network generates periodic bursting behavior. When
w12 = 4, w43 = −0.4, for −0.5 ≤ w31 ≤ 5 the zero
equilibrium point is always an unstable focus leading to the
emergence of stochastic bursting. And when w31 = −0.1,
w43 = 0.15, the type of the zero equilibrium point include
three cases, namely unstable focus (−10 ≤ w12 ≤ −130),
unstable saddle-focus (−131 ≤ w12 ≤ −139), and unstable
saddle-node (−139 ≤ w12 ≤ −1000). Although there are
three different types of zero equilibrium points the small neural
network always generates chaotic bursting in this case.

Table I gives some typical values of parameters, eigenvalues
of zero equilibrium points, corresponding stabilities, and the
generating bursting dynamics of the small neural network. The
results in Table I demonstrate that the neural network has
multiple different types of unstable zero equilibrium points.
Furthermore, the neural network generates three types of burst-
ing dynamics including periodic bursting, stochastic bursting,
and chaotic bursting under different values of parameters w12,
w31, and w43. Thus the bursting dynamics can be further
studied by selecting these three parameters as adjustable
parameters.
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Fig. 2. The w43-dependent bifurcation diagram with w12 = 7, w31 = 3 and
initial states (0.1, 0, 0, 0.1).

III. BURSTING DYNAMICS IN THE SMALL

NEURAL NETWORK

In this section, the bursting dynamics of the proposed
neural network with four neurons are revealed by using basic
dynamic analysis methods including bifurcation diagrams,
Lyapunov exponents, time series, and phase plots. And all the
numerical simulations are done in MATLAB R2017a with the
ODE45 algorithm. Additionally, the start time, the time step,
and the time length are set as 500, 0.01, and 3000, respectively.

Before researching the bursting dynamics of the neural
network, it is necessary to introduce the basic definition of
various bursting patterns [24], [25]. In general, in neurons or
neural networks, if the trajectory of the membrane potential
alternates between a quiescent state and repetitive spiking,
such behavior is considered as a bursting pattern. Meanwhile,
the bursting pattern can be divided into periodic bursting, sto-
chastic bursting, and chaotic bursting. Among them, periodic
bursting including m (m ∈ N∗) spikes per burst is said to
be period-m bursting. If the trajectory of bursting firing is a
stochastic transition between bursting and spiking, the bursting
pattern is called stochastic bursting. For the chaotic bursting,
except for the period-m bursting, there exist other kinds
of bursting with different numbers or amplitudes of spikes.
Additionally, from the point of view of chaos [48], [49],
both stochastic bursting and chaotic bursting are also chaotic
behaviors, but they are different from chaos firing that is a
completely chaotic oscillation [50].

A. Multiple Periodic Bursting Firings

Setting the adjustable parameters w12 = 7 and w31 = 3,
the w43-based bifurcation diagram is plotted in Fig. 2 under
initial states (x1(0), x2(0), x3(0), x4(0)) = (0.1, 0, 0, 0.1),
where x1 peak is the peaks of the membrane potential x1. It can
be seen from Fig. 2 that the neural network can generate abun-
dant periodic behaviors with different periods in a wide region
w43 ∈ (−0.71, 1.2). And when w43 ≥ 1.2, the neuarl network
exhibits periodic spiking firing. More importantly, simulation
results show that these periodic behaviors are periodic bursting
firings with different spikes per burst. Also, the number of
spikes per burst is gradually increased with the decrease of
w43. That is, multiple periodic bursting patterns with different
spikes per burst can be observed under different intensity of
synaptic weight w43. As shown in Fig. 3, by selecting different
w43, period-m (m = 4, 5, 6, 7, 9, 10) bursting patterns can be
generated from the presented neural network. And we have

Fig. 3. Multiple periodic burstings with different spikes per burst in the
neural network with w12 = 7, w31 = 3, and initial states (0.1, 0, 0, 0.1).
(a) period-4 bursting with w43 = 0.18. (b) period-5 bursting with w43 = 0.
(c) period-6 bursting with w43 = −0.15. (d) period-7 bursting with w43 =
−0.25. (e) period-9 bursting with w43 = −0.4. (f) period-10 bursting with
w43 = −0.45.

Fig. 4. Synchronous bursting firings of neurons in the small neural network.
(a) membrane potential x1 colored in yellow, and membrane potential x2
colored in blue. (b) membrane potential x3 colored in yellow, and membrane
potential x4 colored in orange.

confirmed that more bursting patterns with different spikes per
burst can be found via selecting more w43. Besides, the time
series of four membrane potentials x1 − x4 are given in Fig. 4.
It can be seen that the four neurons simultaneously produce
bursting firings, which means that the presented small neural
network really generates bursting behavior.

B. Multiple Sets of Coexisting Bursting Firings

Coexisting behaviors in neural systems have become a
significant research topic and received wide attention. Particu-
larly, the phenomenon of coexisting bursting firings means that
there are two different bursting behaviors in the same neural
system under two different initial conditions. In this subsec-
tion, the phenomenon of multiple sets of coexisting bursting
firings is discovered by investigating the adjustable parameter
w31. When the synaptic weight coefficients w12 = 4, w43 =
−0.4, initial states (x1(0), x2(0), x3(0), x4(0)) = (0.1, 0, 0,
0.1), and w31 is increased from −0.5 to 5, the bifurcation dia-
gram of the w31 on the x1-plane are depicted in Fig. 5(a). And
the corresponding first four Lyapunov exponents are shown
in Fig. 5(b). In Fig. 5(a), when the w31 increases from −0.5,
the dynamical orbit of the neural network begins with periodic
spiking firing and evolves to the quasi-period oscillation at
w31 = −0.2. Thereafter, the orbits break into chaos firing
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Fig. 5. The w31-dependent dynamics with w12 = 4, w43 = −0.4 and
initial states (0.1, 0, 0, 0.1). (a) bifurcation diagram. (b) First four Lyapunov
exponents.

Fig. 6. Firing patterns of the neural network for different values of w31.
(a) periodic spiking firing with w31 = −0.5. (b) quasi-periodic spiking firing
with w31 = −0.1. (c) chaos firing with w31 = 0.1. (d) stochastic bursting
firing with w31 = 0.4. (e) chaotic bursting firing with w31 = 1.5. (f) periodic
bursting firing with w31 = 4.

pattern at w31 = 0 until w31 = 0.3. Interestingly, as w31
increases further, the chaos firing is gradually transformed into
stochastic bursting firing until w31 = 1.2. Then the stochastic
bursting firing enters into chaotic bursting firing and finally
ends at w31 = 2.6. What follows is periodic bursting firing in
the interval w31 ∈ (2.7, 4.5). The corresponding Lyapunov
exponents in Fig. 5(b) are consistent with the dynamical
behaviors on the bifurcation diagram in Fig. 5(a). For different
strengths of the synaptic weight w31, the phenomena of peri-
odic spiking, chaos firing, stochastic bursting, chaotic bursting,
and periodic bursting can be obtained in the presented small
neural network, as shown in Fig. 6. What is more important,
under these parameters, for different initial states (0,1, 0,
0, 0.1) and (−0.1, 0, 0, −0.1), the neural network exhibits
coexisting stochastic bursting firings, coexisting chaotic burst-
ing firings, and coexisting periodic bursting firings, as shown
in Fig. 7. Such complex bursting dynamics means the neural
network can generate multiple sets of coexisting bursting
firings.

C. Multiple Bursting Firings With Different Amplitudes

The amplitude control plays an important role in dynamical
systems and has valuable applications [51], [52]. But such
a phenomenon has not been observed in neural networks.
It is wonderful that the presented neural network can generate
periodic and chaotic bursting firings with different amplitudes
under different strengths of parameter w12. That is to say,

Fig. 7. Multiple sets of coexisting bursting firings in the HNN with initial
states (0.1, 0, 0, 0.1) colored in red and (−0.1, 0, 0, −0.1) colored in blue.
(a) coexisting stochastic bursting firings with w31 = 0.4. (b) coexisting chaotic
bursting firings with w31 = 1.5. (c) coexisting periodic bursting firings with
w31 = 4.

Fig. 8. Periodic bursting firings with different amplitudes in the neural
network with w31 = −0.23, w43 = 0.15, and different w12. (a) Time series
(b) phase portrait.

Fig. 9. Chaotic bursting firings with different amplitudes in the neural
network w31 = −0.1, w43 = 0.15, and different w12. (a) Time series
(b) phase portrait.

the amplitude of the generated neural signals is freely con-
trolled without using amplifiers, which undoubtedly extends
its range of application. In the following analyses, the synaptic
weight coefficients w43 = 0.15, and initial states (0.1, 0, 0,
0.1) are fixed, and when w31 = −0.23 or −0.1, the adjustable
parameter w12 is used to realize amplitude control. First,
for w31 = −0.23, extensive numerical simulations show
that infinitely many periodic bursting patterns with different
amplitudes can be generated from the neural network under
different w12. For example, when the adjustable parameter
w12 = −10,−40,−80,−120,−160, and −200, respectively,
six periodic bursting firings with different amplitudes and cor-
responding periodic attractors with different phase-amplitudes
on the x-axis can be observed as shown in Fig. 8(a) and (b).

Moreover, for w31 = −0.1, when six different values of w12
are selected, six chaotic bursting firings with different ampli-
tudes can be observed from the neural network. And the time
series of the six chaotic bursting firings and corresponding
chaotic attractors are given in Fig. 9(a) and (b). We can see
from Fig. 8 and Fig. 9 that the amplitude of the membrane
potential x1 is more and more larger with the decrease of the
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Fig. 10. The w12-dependent bifurcation diagrams with w43 = 0.15 and
initial states (0.1, 0, 0, 0.1). (a) w31 = −0.23. (b) w31 = −0.1.

w12. To further confirm this feature, for w12 ∈ (−1000,−10),
when w31 = −0.23 and −0.1, two bifurcation diagrams about
the w12 are respectively plotted in Fig. 10(a) and Fig. 10(b).
Fig. 10 directly illustrates two important phenomena: (i) the
small neural network generates periodic bursting firing and
chaotic bursting firing; (ii) the amplitude of the bursting firing
can be freely adjusted by the synaptic weight coefficient w12.

IV. SYNCHRONOUS DYNAMICS IN THE COUPLING

NEURAL NETWORK

The electrical activity for synchronization widely exists in
many specific areas of the brain, which plays crucial roles
in the information processing and transmission between two
neural networks [36]. Based on this physiological mecha-
nism, a synaptic coupling neural network model is, thereby,
constructed and the complex synchronization phenomenon of
bursting firing is simulated. Fig. 11 gives a concept map of
the coupling neural network, in which the two sub-networks
represent two different nervous areas in the brain. And the
two sub-networks are realized using the small neural network
in Equation (2). Considering that the first sub-network has a
state variable (x1, x2, x3, x4) and the second sub-network has
a state variable (y1, y2, y3, y4), the synaptic coupling neural
network model is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x1 = −x1 + 0.5 tanh(x1) + w12 tanh(x2) + 2 tanh(x3)

− 11 tanh(x4) + ρ(x1 − y1)
.

x2 = −x2 − tanh(x1) + 1.5 tanh(x2) + 7 tanh(x3)

− 0.5 tanh(x4)
.

x3 = −x3 + w31 tanh(x1) − 4 tanh(x2) + 1.8 tanh(x3)

+ 4 tanh(x4)
.

x4 = −x4 + 0.6 tanh(x1) + w43 tanh(x3)

+ 2 tanh(x4)
.

y1 = −y1 + 0.5 tanh(y1) + w12 tanh(y2) + 2 tanh(y3)

− 11 tanh(y4) − ρ(x1 − y1)
.

y2 = −y2 − tanh(y1) + 1.5 tanh(y2) + 7 tanh(y3)

− 0.5 tanh(y4)
.

y3 = −y3 + w31 tanh(y1) − 4 tanh(y2) + 1.8 tanh(y3)

+ 4 tanh(y4)
.

y4 = −y4 + 0.6 tanh(y1) + w43 tanh(y3) + 2 tanh(y4),

(6)

where ρ denotes the synaptic coupling strength between two
sub-networks.

Fig. 11. Concept map of the coupling neural network.

A. Stability of Synchronous States and Lyapunov Function

The complete synchronization of the coupling neural net-
work in Equation (6) occurs when the two sub-networks
asymptotically exhibit identical behavior, that is, as t → ∞,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�x1 − y1� → 0

�x2 − y2� → 0

�x3 − y3� → 0

�x4 − y4� → 0.

(7)

Generally, this synchronization solution might be stable only
under some conditions. To investigate the stability of synchro-
nized states of the coupling neural network, the Lyapunov
function approach is adopted. We define the synchronization
error e(e1, e2, e3, e4) in the following way:

e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e1 = x1 − y1

e2 = x2 − y2

e3 = x3 − y3

e4 = x4 − y4.

(8)

Then, we can easily deduce the system below, which makes
it possible to describe the dynamics of the synchronization
error:

.
e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
e1 = −e1 + 0.5(tanh(x1) − tanh(y1))

+ w12(tanh(x2) − tanh(y2))

+ 2(tanh(x3) − tanh(y3))

− 11(tanh(x4) − tanh(y4)) + 2ρe1
.

e2 = −e2 − (tanh(x1) − tanh(y1))

+ 1.5(tanh(x2) − tanh(y2))

+ 7(tanh(x3) − tanh(y3))

− 0.5(tanh(x4) − tanh(y4))
.

e3 = −e3 + w31(tanh(x1) − tanh(y1))

− 4(tanh(x2) − tanh(y2))

+ 1.8(tanh(x3) − tanh(y3))

+ 4(tanh(x4) − tanh(y4))
.

e4 = −e4 + 0.6(tanh(x1) − tanh(y1))

+ w43(tanh(x3) − tanh(y3))

+ 2(tanh(x4) − tanh(y4)).

(9)

It is easy to obtain that the origin of e = 0 is the equilibrium
point for the error system (9). The problem of synchronization
between the two sub-networks now amounts to ensuring that
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the error dynamics described by Equation (9) are asymptoti-
cally stable. The following theorem can be obtained

Theorem 1: The coupling neural network in (6) completely
synchronizes if the error dynamical system in Equation (9)
is asymptotically stable. That is, to ensure that the error
dynamical system in Equation (9) is stable, in the Lyapunov
sense, the time derivative of the Lyapunov function must be
negative semi-definite.

Proof: We construct a continuous positive-definite Lya-
punov function of the form

V (e1, e2, e3, e4) = 1

2


e1

2 + e2
2 + e3

2 + e4
2
�

. (10)

The time derivative of the Lyapunov function V along with
trajectories of the error dynamical system in Equation (9)
yields

dV

dt
= �

e1
.

e1 +e2
.

e2 +e3
.

e3 +e4
.

e4
�

= (2ρ − 1) e1
2 + 0.5e1(tanh(x1) − tanh(y1))

+ w12e1(tanh(x2) − tanh(y2))

+ 2e1(tanh(x3) − tanh(y3))

− 11e1(tanh(x4) − tanh(y4))

− e2
2 − e2(tanh(x1) − tanh(y1))

+ 1.5e2(tanh(x2) − tanh(y2))

+ 7e2(tanh(x3) − tanh(y3))

− 0.5e2(tanh(x4) − tanh(y4))

− e3
2 + w31e3(tanh(x1) − tanh(y1))

− 4e3(tanh(x2) − tanh(y2))

+ 1.8e3(tanh(x3) − tanh(y3))

+ 4e3(tanh(x4) − tanh(y4))

− e4
2 + 0.6e4(tanh(x1) − tanh(y1))

+ w43e4(tanh(x3) − tanh(y3))

+ 2e4(tanh(x4) − tanh(y4)). (11)

To simplify the calculation process, let us define that

h(x1, x2, x3, x4, y1, y2, y3, y4)

= (0.5e1 − e2 + w31e3 + 0.6e4) (tanh(x1) − tanh(y1))

+ (w12e1 + 1.5e2 − 4e3) (tanh(x2) − tanh(y2))

+ (2e1 + 7e2 + 1.8e3 + w43e4) (tanh(x3) − tanh(y3))

− (11e1 + 0.5e2 − 4e3 − 2e4) (tanh(x4) − tanh(y4)).

(12)

For xi ∈ R, tanh(xi) < 1 (i = 1, 2, 3, . . .), thus Equa-
tion (12) can be simplified by

h ≤ 2 (0.5e1 − e2 + w31e3 + 0.6e4)

+ 2 (w12e1 + 1.5e2 − 4e3)

+ 2 (2e1 + 7e2 + 1.8e3 + w43e4)

+ 2 (11e1 + 0.5e2 − 4e3 − 2e4)

≤ 2 (13.5 + w12) e1 + 16e2 + 2 (6.2 + w31) e3

+ 2 (w43 − 1.4) e4. (13)

Then using Equation (13) put into Equation (11)

dV

dt
= (2ρ − 1) e1

2 − e2
2 − e3

2 − e4
2 + h

≤ (2ρ − 1) e1
2 + e2

2 + e3
2 + e4

2

+ 2 (13.5 + w12) e1 + 16e2

+ 2 (6.2 + w31) e3 + 2 (w43 − 1.4) e4

≤ (2ρ − 1)


e1
2 + 2s1e1 + s1

2
�

+ e2
2

+ 2s2e2 + s2
2 + e3

2 + 2s3e3 + s3
2

+ e4
2 + 2s4e4 + s4

2

≤ (2ρ − 1) (e1 + s1)
2 + (e2 + s2)

2

+ (e3 + s3)
2 + (e4 + s4)

2, (14)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 = (13.5 + w12) / (1 − 2ρ)

s2 = 8

s3 = 6.2 + w31

s4 = w43 − 1.4.

(15)

To ensure that the origin of the error dynamical system
in Equation (9) is stable, in the Lyapunov sense, dV /dt in
Equation (14) should be negative semi-definite. Since two
sub-neural networks have bounded trajectories, there exists a
sufficiently large constant c. For all state variables satisfying
x1−y1 = e1 < c, x2−y2 = e2 < c, x3−y3 = e3 < c, x4−y4 =
e4 < c, thus there exists

(c + s2)
2 + (c + s3)

2 + (c + s4)
2 < (1 − 2ρ) (c + s1)

2.

(16)

As a result, there is

dV

dt
≤ (2ρ − 1) (e1 + s1)

2 + (e2 + s2)
2

+ (e3 + s3)
2 + (e4 + s4)

2

< (2ρ − 1) (c + s1)
2 + (c + s2)

2

+ (c + s3)
2 + (c + s4)

2

< 0. (17)

Therefore, according to Lyapunov stability theory and
Barbalat’s lemma, all the transverse perturbations decay to
the synchronization manifold without any transient growth,
i.e., one obtains ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

e1 (t) → 0

e2 (t) → 0

e3 (t) → 0

e4 (t) → 0.

(18)

as t → ∞. It follows that the coupling neural network in Equa-
tion (6) synchronizes when the inequalities in Equation (16)
are satisfied. This completes the proof.

B. Numerical Validations

In this subsection, synchronization firings in the coupling
neural network in Equation (6) is numerically confirmed
by using the four-order Runge-Kutta algorithm with fixed
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Fig. 12. Dependence of the mean synchronized error em on the coupling
strength ρ, where the parameters and initial conditions are w12 = 7, w31 = 3,
w43 = −0.45, and (0.1, 0, 0, 0.1, 0, 0.1, 0.1, 0).

time-step 0.01. The adjustable parameters and initial states
of two sub-networks are fixed as w12 = 7, w31 = 3,
w43 = −0.45, (x1(0), x2(0), x3(0), x4(0)) = (0.1, 0, 0, 0.1)
and (y1(0), y2(0), y3(0), y4(0)) = (0, 0.1, 0.1, 0), respectively.
Before exploring the phenomenon of synchronization in the
coupling neural network, it is necessary to introduce the basic
definition of various types of synchrony such as complete
synchronization and anti-phase synchronization [53]. Com-
plete synchronization is defined as a form of synchronization
where the distance between the states of two coupled systems
approaches zero for t → ∞, i.e, the synchronization error e →
0. If the state variables of two coupled systems have the same
amplitude but different signs, the form of synchronization is
called anti-phase synchronization.

To quantitatively depict the error of two coupled neural
networks, a normalized mean synchronization error em can
be defined as [45]:

em = 1

N

N�
n=1

�
4�

i=1
(|xi (n)| − |yi (n)|)2

�
4�

i=1

�
xi (n)2 + yi(n)2� , (19)

where xi (n) and yi (n) are the nth sampling values with N
samples during a time sequence interval. Here, em can be
used as an index to describe synchronization behavior. With
Equation (19), normalized mean synchronization error of the
coupling neural network can be calculated, so that em → 0
is relative to the synchronous state. For the time sequence
interval [500, 1000] with time-step 0.01 and sampled size
N = 10000, the normalized mean synchronization error for
different coupling strength ρ is plotted in the em − ρ plane,
as shown in Fig. 12. It can be seen from Fig. 12 that the mean
synchronization error em is always equal to zero when the
coupling strength ρ ≤ −0.1. That is to say, in this case, the two
coupled neural networks have a complete synchronization (CS)
state. However, as ρ further increases, the two coupled neural
networks exhibit an asynchronous state (AS) due to em > 0.
Interestingly, when ρ = 0.1, the two coupled neural networks
enter into an anti-phase synchronization (APS) state until

ρ = 0.5. Finally, the dynamical states of the two coupled
neural networks enter into an unbounded (UB) state.

Meanwhile, the time sequences and corresponding phase
diagrams in the coupling neural network with different cou-
pling strengths are plotted in Fig. 13. In Fig. 13(a1), when
the coupling strength is very small (ρ = −2), the two cou-
pled sub-networks present complete bursting synchronization.
As ρ increases to 0, the two coupled sub-networks show
an asynchronous bursting state, as shown in Fig. 13(a2).
As ρ further increases, such as ρ = 0.2 and ρ = 0.4, two
anti-phase bursting synchronizations with different amplitudes
can be observed in the two coupled sub-networks, as shown
in Fig. 13(a3) and (a4), respectively. And for ρ = 0.5, the two
coupled sub-networks show anti-phase spiking synchroniza-
tion, as shown in Fig. 13(a5). But, when ρ further increases
to 0.51, the two sub-networks enter into an unbounded state,
as shown in Fig. 13(a6).

Furthermore, the synchronization errors of different types of
synchronization are given in Fig. 14. It should be noted that
to better compare different types of synchronization behaviors,
the synchronization error in Fig. 14 is defined as the difference
of the absolute value of state variables. We can see from
Fig. 14(a, c, d, e) that the synchronization errors of various
types of synchronization states gradually trend to zero with
the evolution of time. While the synchronization error of
asynchronous state with ρ = 0 is always greater than zero.
Obviously, the results in Fig. 14 are consistent with the results
in Fig. 13, which further shows that there exist synchronization
transitions, i.e., synchronized dynamics can be switched from
complete synchronization to anti-phase synchronization just
by the increase of the coupling strength.

V. CIRCUIT IMPLEMENTATION AND DEMONSTRATION

The physical implementation of neural network models
is vital and necessary to develop neuromorphic hardware
systems. Up to now, many neural networks have been phys-
ically realized by using analog circuits [54], digital cir-
cuits [55], [56], or field-programmable gate array [57]. Gen-
erally, analog neural network circuit can realize the real-time
calculation and is able to reproduce the behavior of a real
neural system. In this section, the proposed two neural net-
work models are completely implemented by using basic
electronic circuit elements such as diodes, resistors, capacitors,
and operational amplifiers. We firstly design the circuit of
the small neural network model, and its bursting behavior
is demonstrated on an experimental hardware circuit. Then,
the circuit of the coupling neural network model is designed
and simulated in the PSPICE circuit simulation tool.

A. Design and Measurement of the Small Neural Network
Circuit

Before realizing the neural network circuit, we first design
an approximate hyperbolic tangent exciting function cir-
cuit [58], as shown in Fig. 15(a). The hyperbolic tangent
function circuit is composed of two operation amplifiers, two
diodes, and four resistors, which enjoys a more simple circuit
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Fig. 13. Synchronous firing activities of the coupling neural network with different coupling strengths, where w12 = 7, w31 = 3, w43 = −0.45, the tops
are time series of firing behaviors, and the bottoms are synchronization transition state. (a1, b1) complete bursting synchronization with ρ = −2. (a2, b2)
asynchronous bursting with ρ = 0. (a3, b3) anti-phase bursting synchronization with ρ = 0.2. (a4, b4) anti-phase bursting synchronization with ρ = 0.4. (a5,
b5) anti-phase spiking synchronization with ρ = 0.5. (a6, b6) unbounded state with ρ = 0.51.

Fig. 14. Time evolution of the synchronization errors e1, e2, e3, and e4 between two coupled neural networks with different coupling strengths. (a) complete
synchronization ρ = −2. (b) asynochronization ρ = 0. (c) anti-phase synchronization ρ = 0.2. (d) anti-phase synchronization ρ = 0.4. (e) anti-phase
synchronization ρ = 0.5.

structure compared with the hyperbolic tangent circuit in tra-
ditional HNNs [16]–[22]. When RA = 1.5 k�, RB = 0.5 k�,
RC = 1 k�, and RD = 1.5 k�, the input-output relationship
of the hyperbolic tangent circuit can be described by vo =
tanh(vi ). An analog circuit implementing neural network (2)
is designed for measuring neural bursting dynamics. To avoid
circuit saturations, the amplitude of the membrane potential
(x1 and x2) are reduced by two times through taking the
following transformations

(x1, x2, x3, x4) → (2x1, 2x2, x3, x4). (20)

Equation (2) is then rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −x1 + 0.25 tanh(2x1) + 0.5w12 tanh(2x2)

+ tanh(x3) − 5.5 tanh(x4)

ẋ2 = −x2 − 0.5 tanh(2x1) + 0.75 tanh(2x2)

+ 3.5 tanh(x3) − 0.25 tanh(x4)

ẋ3 = −x3 + w31 tanh(2x1) − 4 tanh(2x2)

+ 1.8 tanh(x3) + 4 tanh(x4)

ẋ4 = −x4 + 0.6 tanh(2x1) + w43 tanh(x3)

+ 2 tanh(x4).

(21)

According to Equation (21), the small neural network circuit
structure is designed in Fig. 15(b). Four membrane potentials
x1, x2, x3, x4 are emulated by four output voltages v1, v2, v3,
v4, respectively. All synaptic weight coefficients are simulated

by the resistors R1 − R15. Based on the circuit in Fig. 15(b),
the circuit state equations can be described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RCdv1

dt
= −v1 + R

R1
tanh(v1) + R

R2
tanh(v2)

+ R

R3
tanh(v3) − R

R4
tanh(v4)

RCdv2

dt
= −v2 − R

R5
tanh(v1) + R

R6
tanh(v2)

+ R

R7
tanh(v3) − R

R8
tanh(v4)

RCdv3

dt
= −v3 + R

R9
tanh(v1) − R

R10
tanh(v2)

+ R

R11
tanh(v3) + R

R12
tanh(v4)

RCdv4

dt
= −v4 + R

R13
tanh(v1) + R

R14
tanh(v3)

+ R

R15
tanh(v4).

(22)

Assume that C1 = C2 = C3 = C4 = C , RC = 10 us,
the resistance R = 10 k�, then the C can be chosen as 1 nF.
Considering the fixed synaptic weight coefficients, relevant
resistances can be calculated as R1 = 40 k�, R3 = 10 k�, R4
= 1.818 k�, R5 = 20 k�, R6 = 13.333 k�, R7 = 2.857 k�,
R8 = 40 k�, R10 = 2.5 k�, R11 = 5.556 k�, R12 = 2.5 k�,
R13 = 16.667 k�, R15 = 5 k�. Besides, R2 = R/0.5w12,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 17,2022 at 04:48:13 UTC from IEEE Xplore.  Restrictions apply. 



3406 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 8, AUGUST 2021

Fig. 15. Circuit structure. (a) the hyperbolic tangent function circuit. (b) the
small neural network circuit.

Fig. 16. Experimentally captured bursting firings from the neural network
circuit. (a) period-4 bursting with R14 = 54.825 k�. (b) period-5 bursting
with R14 = 1 M�. (c) period-7 bursting with R14 = 39.274 k�. (d) stochastic
bursting with R9 = 24.342 k�. (e) chaotic bursting with R9 = 6.665 k�.
(f) hardware breadboard prototype for the small neural network.

R9 = R/w31, and R14 = R/w43 are used to replace adjustable
synaptic weight coefficients w12, w31, and w43, respectively.

The designed small neural network circuit in Fig. 15(b) is
physically implemented on the experimental breadboard by
using commercially available electronic elements including
R/metal resistors and precision potentiometers, C/ceramic
capacitors, D/1N4007, U/TL082CP, and ±15V DC voltage
supplies, as shown in Fig. 16(f). Experimental results show
that the designed neural network circuit can generate the
results consistent with the numerical simulation results in
Section III. For example, period-4 bursting in Fig. 3(a), period-
5 bursting in Fig. 3(b), period-7 bursting in Fig. 3(d), sto-
chastic bursting in Fig. 6(d), and chaotic bursting in Fig. 6(e)
are given in Fig. 16(a)-(e), respectively. It is remarked that

since there are parasitic parameters in the practical circuit,
the resistances of resistors have some difference, which can
be solved by fine-tuning the adjustable resistors.

B. Realization and Simulation of the Coupling Neural
Network Circuit

Based on the small neural network circuit in Fig. 15(b),
the circuit of the coupling neural network is designed as shown
in Fig. 17. It is noted that the coupling neural network circuit
is composed of four parts: the first sub-network circuit in the
yellow area, the second sub-network circuit in the blue area,
the coupling circuit in the dark red area, and a controllable
switch S. According to Equation (6), the circuit state equations
of the coupling neural network circuit are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RCdvx1

dt
= −vx1 + R

R1
tanh(vx1) + R

R2
tanh(vx2)

+ R

R3
tanh(vx3) − R

R4
tanh(vx4) + R

RL
(vx1 − vy1)

RCdvx2

dt
= −vx2 − R

R5
tanh(vx1) + R

R6
tanh(vx2)

+ R

R7
tanh(vx3) − R

R8
tanh(vx4)

RCdvx3

dt
= −vx3 + R

R9
tanh(vx1) − R

R10
tanh(vx2)

+ R

R11
tanh(vx3) + R

R12
tanh(vx4)

RCdvx4

dt
= −vx4 + R

R13
tanh(vx1) − R

R14
tanh(vx3)

+ R

R15
tanh(vx4)

RCdvy1

dt
= −vy1 + R

R1
tanh(vy1) + R

R2
tanh(vy2)

+ R

R3
tanh(vy3) − R

R4
tanh(vy4) − R

RL
(vx1 − vy1)

RCdvy2

dt
= −vy2 − R

R5
tanh(vy1) + R

R6
tanh(vy2)

+ R

R7
tanh(vy3) − R

R8
tanh(vy4)

RCdvy3

dt
= −vy3 + R

R9
tanh(vy1) − R

R10
tanh(vy2)

+ R

R11
tanh(vy3) + R

R12
tanh(vy4)

RCdvy4

dt
= −vy4 + R

R13
tanh(vy1) − R

R14
tanh(vy3)

+ R

R15
tanh(vy4),

(23)

where capacitor voltages vx1, vx2, vx3, vx4, vy1, vy2, vy3, and
vy4 simulate membrane potentials x1, x2, x3, x4, y1, y2, y3,
and y4, respectively. RL denotes the coupling strength, and it
can be calculated as RL = R/ρ.

Due to complex circuit structure, strong temperature drifts
effect of circuit components, and large parameter difference
between the same diode, it is difficult to physically imple-
ment the synchronization circuit. Therefore, to verify the
availability of the coupling neural network circuit, the circuit
in Fig. 17 is realized and simulated in PSPICE. In the simu-
lation process, the DC voltages of the operational amplifiers
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Fig. 17. The coupling neural network circuit.

Fig. 18. PSPICE simulation results of the coupling neural network circuit. (a) complete bursting synchronization with RL = 5 k�. (b) asynchronous bursting
with RL = 1000 k�. (c) anti-phase bursting synchronization with RL = 50 k�. (d) anti-phase bursting synchronization with RL = 25 k� (e) anti-phase
spiking synchronization with RL = 20 k�. (f) unbounded state with RL = 19.5 k�.

are set as ±200V, and the controllable switch has two states:
when ρ < 0, 1 and 2 connect to 4 and 3, respectively, and
when ρ > 0, 1 and 2 connect to 3 and 4, respectively.
Extensive circuit simulation results show that the realized
coupling neural network circuit can obtain the results con-
sistent with the numerical simulation results in Section IV.
For instance, complete bursting synchronization in Fig. 13(a1),
asynchronous bursting in Fig. 13(a2), anti-phase bursting
synchronization in Fig. 13(a3), anti-phase bursting synchro-
nization in Fig. 13(a4), anti-phase spiking synchronization
in Fig. 13(a5), and unbounded state in Fig. 13(a6) are given

in Fig. 18(a)-(f), respectively. It should be noted that the circuit
simulation results are slightly different from the numerical
results because of the computing errors between two different
tools.

VI. CONCLUSION

In this paper, we presented two neural network models
that are capable of reproducing biological neural behaviors
including bursting and synchronization. First, based on the
original Hopfield neural network, a small neural network
model with four neurons is established to generate various
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types of bursting firings such as periodic bursting with dif-
ferent spikes per burst, stochastic bursting, chaotic bursting,
coexisting stochastic and chaotic burstings, as well as peri-
odic and chaotic burstings with different amplitudes. Next,
by emulating the synaptic coupled mechanism between two
biological neural systems, we constructed a synaptic coupling
neural network model using two coupled samll neural net-
works. By using Lyapunov stability theory and constructing
a proper Lyapunov function, a set of sufficient conditions
are derived to prove the synchronization ability of the two
coupled neural networks. In particular, the numerical simu-
lation results show that this coupling neural network model
can exhibit abundant synchronization phenomena including
complete bursting synchronization, anti-phase bursting syn-
chronization, and anti-phase spiking synchronization. Finally,
we designed and implemented two neural network circuits
by using commercially available electric elements. And some
experimental results have been given to verify the effectiveness
of the theoretical analyses and numerical results.

Although there are conflicting views about the role of
dynamical behaviors in the functioning of the brain, mod-
eling, analysis, simulation, and implementation of the brain
neural system as attempted in this work will be helpful in
clinical aspects and artificial intelligence applications. In future
work, we will devote to study the brain-like dynamics of the
large-scale neural networks which are more similar to the real
biological neural systems. We will also explore the practical
applications of the brain-like neural network developed here.
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