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Abstract Two kinds of chaotic attractors with non-
trivial topologies are found in a 4D autonomous contin-
uous dynamical system. Since the equilibria of the sys-
tem are located on both sides of the basic structures of
these attractors, and the basic structures of these attrac-
tors are bondorbits,we call thembondorbital attractors.
They have fractional dimensions and their Kaplan–
Yorke dimensions are greater than 3. The generation
mechanisms of the two types of attractors are explored
and analyzed based on the Shilnikov’s theorems. The
type I attractors generated by system with parameter
P1 possess coexistence features, and the type II attrac-
tors generated by system with parameter P2 have the
ability to realize consecutive bond orbits. Furthermore,
the type I attractors have continuous attracting basins
with diagonal distribution and can be caught by means
of a method of shorting capacitors in hardware exper-
iments, whereas the type II attractors possess discrete
basins of attraction and are difficult to be captured
in hardware experiments. The difference between the
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two types of bondorbital attractors and traditional self-
excited attractors in generationmethod is analyzed, and
we also verify that they are not hidden attractors. Based
on the step function sequence f (x, M, N ), the type II
attractors with at most (N + M + 1)-fold structures
can be generated in the system with parameter P2. Two
sets of symmetric specific initial conditions are used to
verify that the system with parameter P2 can generate
bondorbital attractors with fourfold and fivefold basic
structures based on f (x , 2, 2). Some characteristics of
the two classes of bondorbital attractors are listed in
tabular form.

Keywords Bondorbital attractors · Bond orbits ·
Attracting basins · Multi-fold structures · Self-excited
attractors · Hidden attractors

1 Introduction

Chaotic attractor, also known as strange attractor [1],
is an abstract mathematical concept corresponding to
the physical process of chaotic motion. The study for
chaotic attractors helps us to understand the regularity
of motion patterns in chaotic systems. Chaotic attrac-
tors have complex stretch and fold structures, which are
the products of the overall stability and local instability
of chaotic systems. From the topological structures they
exhibit in phase space, the chaotic attractors associated
with unstable equilibrium points can be categorized as
familiar topological type (generally, including scroll

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-019-05113-3&domain=pdf
http://orcid.org/0000-0002-6858-7835
http://orcid.org/0000-0001-6522-9795


2160 X. Zhang et al.

type, wing type, and torus type) and special topolog-
ical type. The familiar type of chaotic attractors here
refers to the chaotic attractors that have broad cognitive
bases andwere named for their topological structures in
phase space. These two types of attractors are reviewed
as follows.

(1) The type of attractors with familiar topologies
Chua’s circuit built a bridge between nonlinear cir-

cuits and chaos for the first time, and the Chua attrac-
tor generated from it is a typical double-scroll chaotic
attractor [2]. Suykens reported without precedent the
use of quasi-linear approach to generate multi-scroll
chaotic attractors based on the Chua system in [3]. In
the jerk circuit, single-scroll and double-scroll chaotic
attractors can be generated [4]. Yu proposed a nonlin-
earmodulating function approach for generatingmulti-
scroll chaotic attractors based on a general jerk cir-
cuit [5]. In addition, based on nonautonomous meth-
ods,multi-scroll andmulti-double-scroll chaotic attrac-
tors can be generated in [6,7]. A kind of multi-scroll
chaotic attractors with multi-attractor period and the
corresponding chaotic integrated circuit (IC) based on
current mode device were given in [8].

The generalize Lorenz system family is capable of
generating two-wing chaotic attractors with very sim-
ilar topologies [9–11]. The four-wing chaotic attrac-
tor was first generated based on the segmented Lorenz
system and reported by Elwakil et al. [12,13]. Based
on the generalized Lorenz system family, many ring-
shaped, nested, and grid-shaped multi-wing chaotic
attractors were generated from numerical simulations
and hardware experiments in [14–19].Moreover, a kind
of multi-double-wing chaotic attractor was generated
via a nonautonomous method in [20].

A double-folded torus chaotic attractor and its elec-
tronic circuit implementation were introduced in [21].
By expanding the double-folded torus chaotic attrac-
tor, a class of multi-folded torus chaotic attractors was
obtained in [22]. In [23], the hardware circuit and
experimental results of the single-torus and double-
torus chaotic attractors were given. A class of grid-
shapedmulti-torus chaotic attractors, including numer-
ical simulations and circuit experiments, was imple-
mented in [24].

(2) The type of attractors with special topologies
A chaotic attractor with the projection on the x − y

plane similar to the shape of “trillium” was introduced
in [25]. The literature [26] reported a number of multi-
scroll, multi-folded torus chaotic attractors and some

chaotic attractors with special topologies such as “mul-
tiplemerged basins of attraction,” “trillium,” and “four-
leaf clover.” Simultaneously, a class of hyperchaotic
attractors whose basic structures are “cluster-like” was
also introduced in [26]. The literature [27] introduced
a kind of strange attractors with toroidal topologies
(i.e., van der Pol attractor). A chaotic attractor with 3D
sphere shape was reported in [28]. A chaotic attractor
whose topology resembles a cord between two leaves
was called cord attractor [29]. By performing coor-
dinate transformations on the Sprott E system, [30]
found chaotic attractors with “petal” topologies. A
double-deck butterfly chaotic attractor whose topology
is similar but different from the nested and grid-shaped
four-wing chaotic attractors was reported in [31]. By
performing fractal process on Qi system [32], [33]
reported a class of 3D spherical multi-wing chaotic
attractors. Based on the 2D local vector field around
equilibria, [34] reported several chaotic attractors with
“nested” topologies.

Among the above-mentioned chaotic attractors with
familiar and special topologies, the unstable equilib-
ria (saddle-foci with index 1 or 2) of them are located
within their respective basic structures. In this paper,
we find two kinds of chaotic attractors with nontriv-
ial topologies, whose unstable equilibria lie on both
sides of the basic structures of these attractors. Theo-
retical analysis shows that the two kinds of attractors
have very fast spiral motions and slow linear motions
near their equilibrium points, resulting in the formation
of fully bond orbits. Since the basic structures of the
attractors are fully bond orbits between two adjacent
homogeneous saddle-focus equilibria with index 1, we
name the two kinds of chaotic attractors as bondorbital
attractors. The bodywidths of the type I attractors in the
x direction are smaller than the distance between the
adjacent two equilibria and therefore have coexistence
characteristics on the basis of a step function sequence.
Due to their larger maximum LEs and Kaplan–Yorke
dimensions, the type II attractors possess the ability to
realize continuous bond orbits between homogeneous
equilibria. Interestingly, the two kinds of bondorbital
attractors have Kaplan–Yorke dimensions greater than
3, one of which has uninterrupted attracting basins with
zonal distribution and the other of which possesses dis-
crete attracting basins. We also prove that the bondor-
bital attractors found in this paper are different from
existing self-excited attractors and hidden attractors.
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As far as I know, such chaotic attractors have not been
reported in available researches.

The rest of this paper is organized as follows. The
numerical model of the proposed chaotic system, the
illustration of topologies for bondorbital attractors, the
dynamical analysis for chaotic system with bondor-
bital attractors, and the study of generation mechanism
for bondorbital attractors are all included in Sect. 2.
In Sect. 3, the hardware validation for one of type I
attractors and some researches of characteristics for
the attracting basins of the two types of bondorbital
attractors are given. Section 4 demonstrates the type II
attractors have discrete basins of attraction and possess
structural repeatability. Section 5 summarizes the main
characteristics of the two types of bondorbital attrac-
tors. Finally, some conclusions of our paper are given
in Sect. 6.

2 Chaotic system with bondorbital attractors

2.1 Two types of bondorbital attractors

The state variable equationof four-dimensional dynam-
ical system is given by
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ay,
ẏ = by + cz,
ż = d [−x − y − z + f (x, M, N )] ,
ẇ = eyzw − x + f (x, M, N ),

(1)

where a, b, c, d, and e are system parameters, x, y, z,
and w are four state variables, and f (x, M, N ) is a
nonlinear function, here step function sequence (SFS),
and its expression is

f (x, M, N ) = (N − M) A2

+ A2

⎡

⎢
⎢
⎢
⎣

sgn(x) +
M∑

j=1
sgn(x + 2 j A1)

+
N∑

i=1
sgn(x − 2i A1)

⎤

⎥
⎥
⎥
⎦

,

(2)

whereM and N are nonnegative integers and the width
and height of each step are 2A1 and 2A2, respectively.
In this paper, we make A1 and A2 equal to 1 in all
numerical simulations. When M = N = 1, the numer-
ical curve of the SFS f (x , 1, 1) is shown in Fig. 1.

Based on f (x , 1, 1), and if system parameter P1 =
(a, b, c, d, e) = (− 1, 0.2, 1, 1.1, 0.001) is chosen in
system (1), the 2D views of two attractors are shown

Fig. 1 Numerical curve of the SFS f (x, M, N ), where M =
N = 1 and A1 = A2 = 1

(a)

(b)

(c)

Fig. 2 Superimposed 2D views of two symmetric bondorbital
attractors in a x − y, b x − z, and c x − w plane under two sym-
metric initial conditions [0.1, 0, 0, 0] and [− 0.1, 0, 0, 0] when
P1 is selected
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(a)

(b)

(c)

Fig. 3 Superimposed 2D views of two symmetric bondorbital
attractors in a x − y, b x − z, and c x − w plane under two sym-
metric initial conditions [0.1, 0, 0, 0] and [− 0.1, 0, 0, 0] when
P2 is set

in Fig. 2. In Fig. 2, two symmetric initial conditions
[− 0.1, 0, 0, 0] and [0.1, 0, 0, 0] are used to generate
the two symmetric (with regard to the origin) attrac-
tors. From Fig. 2, the unstable equilibria are located
on both sides of the attractors. If system parameter
P2 = (− 2.08, 0.2, 1, 1.1, 0.001) is set, the 2D views
of two symmetric attractors with initial conditions
[− 0.1, 0, 0, 0] and [0.1, 0, 0, 0] are shown in Fig. 3.
In addition, it is interesting to note that the attractors
shown in Fig. 3 are basically twice structural extension
of the attractors in Fig. 2. We take the topologies of
the attractors shown in Fig. 2 as the basic structures
(marked by dashed boxes) of the attractors shown in

(a)

(b)

Fig. 4 a 2D x − y plane view of Chua double-scroll attractor
under initial condition [0.2, 0.2, 0.2]; b 2D x − y plane views of
hidden and point attractors in SE9 system under initial conditions
[0, 0.8,− 0.2] and [0, 0.5,− 0.2], respectively

Fig. 3. Obviously, the unstable equilibria are located
on both sides of the basic structures of the attractors. In
Figs. 2 and 3, we mark the unstable equilibrium points
of the system by magenta points or lines within the
simulated coordinate region.

According to available researches, chaotic attractors
associated with unstable equilibria, such as traditional
scroll, wing, and torus attractors, have basic structures
generated around a single unstable equilibrium point
[2–34]. As an example, we simulate the dimensionless
Chua system in [35] for parameters (α, β,m0,m1) =
(10, 15,− 1/7, 2/7) under initial condition [0.2, 0.2,
0.2] and then obtain the 2D x − y plane view of Chua
double-scroll attractor shown in Fig. 4a. As can be
clearly seen from Fig. 4a, the two saddle-focus equi-
libria with index 2 are located within the basic struc-
tures (scrolls) of the attractor, respectively. However,
the unstable equilibria of the bondorbital attractors are
located on both sides of their basic structures, as shown
in Figs. 2 and 3.

An attractor is called a hidden attractor if its basin
of attraction does not intersect with any open neighbor-
hoodof equilibria, or otherwise it is called a self-excited
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Table 1 The distribution of x E under different parameters of (2)

Nonlinear function Number of equilibria Parameters of (2) Numeric values of x E Distribution rule

SFS f (x, M, N ) Infinite equilibrium points M = N = 0 − 1, 1 − 2M− 1, − 2M + 1, …,

M = N = 1 − 3,− 1, 1, 3 − 1, 1, …,

(x E , 0, 0, l) M = 2, N = 3 − 5,− 3,− 1, 1, 3, 5, 7 2N − 1, 2N + 1

attractor [36–38]. According to the definition of hidden
attractors, chaotic attractors in systemswith no equilib-
rium [39,40] or only stable equilibriums [41] are deter-
ministic hidden attractors, whereas chaotic attractors
in systems with infinite equilibriums do not fully sat-
isfy the definition of hidden attractors (whose basins of
attraction may intersect with some equilibria) [42,43].
We simulate the SE9 systemwith hidden attractors pro-
posed in [41], as shown in Fig. 4b, where the equilib-
rium is marked by blue point. In Fig. 4b, initial con-
dition [0, 0.8,− 0.2] leads to hidden attractor, whereas
initial condition [0, 0.5,− 0.2] leads to point attractor.
It should be noted that the attractors in Figs. 2 and 3
are related to system equilibria (the attracting basins
of our discovered attractors intersect with system equi-
libria, see Fig. 12 and the corresponding illustrations
in Sect. 3), which are different from hidden attractors
(see Fig. 13, in which the attracting basin of the hidden
attractor does not intersect with system equilibrium).

2.2 Equilibrium calculation and stability analysis

Let ẋ = ẏ = ż = ẇ = 0, the equilibrium points of
system (1) can be derived by solving
⎧
⎪⎪⎨

⎪⎪⎩

ay = 0,
by + cz = 0,
d [−x − y − z + f (x, M, N )] = 0,
eyzw − x + f (x, M, N ) = 0.

(3)

From (3), it can be concluded that as long as all sys-
tem parameters are nonzero, the corresponding solu-
tion is EQ = (x E , 0, 0, l), in which we use a line l
to indicate that the state variable w can take any con-
stant value, and the value of x E depends on the form
and parameters of the nonlinear function f (x , M, N).
The calculation result shows that the system has infinite
equilibria.

We use (2) as an example to analyze the distribu-
tion of equilibrium points in x direction. For different
parameters of (2), Table 1 shows several specific values
and the overall distribution law of x E .

The Jacobian matrix of system (1) combining (2)
at the equilibrium point EQ = (x E , 0, 0, l) can be
expressed as

J
(
EQ

)
=

⎡

⎢
⎢
⎣

0 a 0 0
0 b c 0

−d + d f ′(x, M, N ) −d −d 0
−1 + f ′(x, M, N ) ezw eyw eyz

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
EQ

=

⎡

⎢
⎢
⎣

0 a 0 0
0 b c 0

−d −d −d 0
−1 0 0 0

⎤

⎥
⎥
⎦ . (4)

An interesting phenomenon can be drawn from (4)
that although the systemhas infinite equilibriumpoints,
the Jacobian matrix at the equilibria of this system is
independent of the positions of state variablew in these
equilibrium points. This is different from many of the
chaotic systems with infinite equilibria that have been
reported [42,43].

Solving
∣
∣λE − J

(
EQ

)∣
∣ = 0, where E is an iden-

tity matrix, one can get that the characteristic roots of
system (1) at EQ satisfy

λ
[
λ3 + (d − b) λ2 + (c − b) dλ + acd

]
= 0, (5)

where one of the solutions is zero, and the other three
satisfy

λ3 + (d − b) λ2 + (c − b) dλ + acd = 0. (6)

The algebraic solutions of (6) can be obtained as per
the extract roots formula of the generalized unary cubic
equation, but the result is too complicated to win effec-
tive information for analysis. Therefore, we utilize the
relationship between roots and coefficients (Cardano’s
formula [44]) to analyze the stability of the system. For
(6), one have
⎧
⎨

⎩

λ1 + λ2 + λ3 = b − d,

λ1λ2 + λ2λ3 + λ1λ3 = (c − b)d,

λ1λ2λ3 = −acd.

(7)

Assume that all roots of (6) are in the left half plane
of the complex plane (stable solution), and the follow-
ing relationship can be obtained [38].
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Table 2 The corresponding eigenvalues and stabilities when a takes several typical values (b = 0.2, c = 1, d = 1.1, e = 0.001)

Typical values of a Eigenvalues Stabilities

1 − 1.055, 0.077 ± 1.018 j, 0 Saddle-foci with index 2 (unstable)

0.72 − 0.9,±0.938 j, 0 Hopf bifurcation (nonhyperbolic equilibrium)

0.5 − 0.728,− 0.086 ± 0.865 j, 0 Stable focus

0 0 − 0.450 ± 0.823 j, 0 Critical stable

− 1 (P1) 0.610,− 0.755 ± 1.110 j, 0 Saddle-foci with index 1 (unstable)

− 2.08 (P2) 0.908,− 0.904 ± 1.305 j, 0

⎧
⎨

⎩

b − d < 0,
(c − b)d > 0,
−acd < 0.

(8)

If a is uncertain and other parameters are respec-
tively b = 0.2, c = 1, d = 1.1, and e = 0.001,
then b − d = − 0.9 < 0, (c − b)d = 0.88 > 0, and
−acd = − 1.1a. This shows that system (6) is stable
as long as a > 0. However, after substituting specific
values for calculation, it is found that this method is
not completely feasible. A more appropriate way to
judge the stability of a system is the Routh–Hurwitz
criterion [45]. To determine a, the Routh table of (6) is
given by
〈
λ3

λ2

λ1

λ0

∣
∣
∣
∣
∣
∣
∣
∣

1 0.88

0.9 1.1a
0.792−1.1a

0.9 0

1.1a 0

〉

. (9)

Therefore, if there is no sign change in the second
column of (9), namely 0 < a < 0.72, the system is
stable. If a < 0, only one of the three roots of (6) has
a positive real part. If a > 0.72, two of the three roots
of (6) have positive real parts. We list the characteristic
roots corresponding to (5) when a takes several typical
values, as given in Table 2.

2.3 Lyapunov exponent spectrum with respect to
parameter a

The Lyapunov exponent spectrum of system (1) with
respect to a (with other system parameters b =
0.2, c = 1, d = 1.1, e = 0.001) is shown in
Fig. 5. In the simulation of the Lyapunov exponents
(LEs), the continuous differentiable arc-tangent func-
tion atan(B(x)/(π/2)) is used to approximate the
discontinuous differentiable sign function sgn(x), in

Fig. 5 Lyapunov exponent spectrum of system (1) for a ∈
(− 4, 3) under initial conditions [± 0.1, 0, 0, 0]

which we set B = 1000 to obtain good approximation.
The famous Wolf algorithm is adopted in the simula-
tion [46]. There are three main regions in Fig. 5:

Region 1 for − 4 < a < 0, LE1 > 0, LE2 = 0,
LE3 < 0, and LE4 < 0.

Region 2 for 0 < a < 0.72, LE1 = 0, LE2 ≤ 0,
LE3 ≤ 0, and LE4 < 0.

Region 3 for 0.72 < a < 3, LE1 ≥ 0, LE2 ≥ 0,
LE3 ≤ 0, and LE4 < 0.

Therefore, the motion trajectories of the system
successively appear as chaotic attractors, point attrac-
tors, quasi-period attractors, limit cycles, hyperchaotic
attractors, and so on, with the increase in a. Therefore,
the two kinds of bondorbital attractors found in this
paper are indeed chaotic according to the definition of
chaos.

For convenience, we refer to the chaotic attractors
in Figs. 2 and 3 as type I and II attractors, respectively.
With the initial conditions [± 0.1, 0, 0, 0], the type
I attractors have LEs = (0.466, 0,− 0.430,− 0.935)
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with Kaplan–Yorke dimensions DKY = 3.038 and
the type II attractors possess LEs = (0.774, 0,− 605,
− 1.068) with DKY = 3.158. (DKY = j + 1

|LE j+1|
∑ j

i=1 LEi , where j is the largest integer which satis-

fies
∑ j

i=1 LEi ≥ 0 and
∑ j+1

i=1 LEi < 0, and LEi for
i = 1, 2, . . . , 4 are Lyapunov exponents that are sorted
from largest to smallest [47].) The four-dimensional
chaotic attractors are not hyperchaotic, whereas they
have Kaplan–Yorke dimensions greater than 3, which
indicates that the bondorbital attractors possess unusual
dynamical behaviors. It is worth noting that the system
has a largest positive LE1 when a = − 2.08, which
means that the local instability of the system is the
largest.

2.4 Generation mechanisms of the two classes of
bondorbital chaotic attractors

Further exploration of the generation mechanisms
about the two kinds of bondorbital attractors is needed.
When the system with parameter P1 is tested by a loop
test algorithm (iteration of initial conditions), attrac-
tors with multi-fold structures (like in Fig. 3) cannot be
generated, no matter how many tests are performed. In
order to understand the generation mechanisms of the
bondorbital attractors, we try to start the analysis from
the Shilnikovs theorems. The following are two state-
ments about the Shilnikovs theorems [48] (applicable
to the saddle-foci with index 1 or 2):

Theorem 1 (Shilnikov Theorem 2.1) [49] When a
third-order autonomous dynamical system satisfies the
following two conditions simultaneously, there exist
chaos in the sense of Smale horseshoe: (i) The lin-
earized coefficient matrix of an orbit at its equilibrium
point O has a pair of complex conjugate eigenvalues
(CCEs) σ ± jω and a real eigenvalue γ and satisfies
|σ/γ | < 1; (ii) there exists a homoclinic orbit that
starts from the equilibrium point O and finally returns
to this equilibrium point.

Theorem 2 (Shilnikov Theorem 2.2) [49] When a
third-order autonomous dynamical system satisfies the
following two conditions simultaneously, there exist
chaos in the sense of Smale horseshoe: (i) The lin-
earized coefficient matrixes of two different orbits at
their corresponding equilibrium points Oi (i = 1, 2)
have respective a pair of CCEs σi ± jωi (i = 1, 2)
and a real eigenvalue γi (i = 1, 2), and satisfy γ1γ2 >

(a)

(b)

Fig. 6 Saddle-foci with index 1 and its a homoclinic and b het-
eroclinic orbits

0, σ1σ2 > 0, and |σi/γi | < 1(i = 1, 2); (ii) there
exists a heteroclinic orbit connecting two equilibrium
points O1 and O2.

The inequalities |σ/γ | < 1 and |σi/γi | < 1(i =
1, 2) in the two theorems are both called Shilnikov
inequalities, which correspond to the judgment of
the homoclinic and heteroclinic orbits. According to
Table 2, the equilibria of the system with parameter P1
and P2 are saddle-foci with index 1. Therefore, for the
sake of simplicity, only graphical descriptions for the
homoclinic and heteroclinic orbits of the saddle-foci
with index 1 are given, as shown in Fig. 6.

We use λi (i = 1, 2, 3) to indicate the eigen-
values of systems at their equilibrium points, where
λ1 = γ, λ2,3 = σ ± jω. In Fig. 6a, b, associated with
the saddle-fociwith index 1 are a 2Deigenplane ES(O)

corresponding to the CCEs σ ± jω with negative real
part and a 1D eigenline EU (O) corresponding to the
positive real eigenvalue γ. Therefore, this type of equi-
librium points presents a stable manifold MS = span
{Vλ2, Vλ3} and an unstable manifold MU = span {Vλ1},
in which Vλi corresponds to the eigenvector of the lin-
earized coefficient matrixes of systems regarding the
eigenvalue λi .
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(a)

(b)

Fig. 7 2D x − y plane views of motion diagrams of the a type I
and b type II attractors within a very short simulation time under
initial condition [0.1, 0, 0, 0]

It should be noted that in order to make the state-
ments of these two theorems concise and easy to under-
stand, the two theorems are aimed at 3D autonomous
dynamical system (the minimum requirements of
dimensions on generating chaos in autonomous sys-
tems). However, these results have proven to be
equally applicable to higher-dimensional dynamical
systems [50]. Furthermore, our proposed 4D system
has a zero eigenvalue at all equilibria, which means
that the overall trajectory would not be affected from
the incidental eigenline.

For a better presentation, Fig. 7 shows the 2D x − y
plane views of the type I and type II attractors within
a very short simulation time under initial condition
[0.1, 0, 0, 0]. From Table 2, the CCEs of the system

Fig. 8 Coexisting type I attractors in x − y plane, where
[− 1.7, 0.1, 0, 0] leads to blue orbits, [0.5,− 0.3, 0, 0] leads to
green orbits, and [1.4, 0.3, 0, 0] leads to red orbits. (Color figure
online)

at their equilibria (under parameters P1 and P2) pos-
sess relatively large absolute values of real parts (can
be denoted by

∣
∣Re

{
λ2,3

}∣
∣) and |σ/γ |, which are big-

ger than the counterparts in most of available chaotic
systems [51,52]. Moreover, based on prior knowledge,
the motion trails in 2D eigenplane near the equilibria
are governed by the real parts of the CCEs at these
equilibrium points. Therefore, the stable manifolds
MS = span {Vλ2, Vλ3} of the type I and type II attrac-
tors near the equilibria have fast spiral motions, or even
fleetingmotions in their eigenplanes. Finally, 2D stable
manifolds MS = span {Vλ2, Vλ3} with very fast spiral
motions and 1D unstable manifolds MU = span {Vλ1}
with slow linear motions synthesize the attractors with
nontrivial shapes shown in Figs. 2 and 3.

The four eigenvalues of the system with parame-
ter P1 at all equilibrium points are λ1 = γ = 0.610,
λ2,3 = σ ± jω = − 0.755 ± 1.110 j , and λ4 = 0.
Although the system has motion trajectories with plau-
sible heteroclinic loop in this case, whereas |σ/γ | > 1
does not satisfy the Shilnikov inequality, the type I
attractors are not the chaos in the sense of Smale horse-
shoe.We again analyze and compare Fig. 7a, b and find
that the plausible heteroclinic loops of the bondorbital
attractors in Fig. 7a cannot reach the adjacent two equi-
libria completely (−1 and +1 in x-direction). There-
fore, it is difficult to copy or expand the structures of
the type I attractors by changing the initial values. On
the contrary, we naturally think that the system with
parameter P1 can generate coexisting attractors under
different initial conditions, as shown in Fig. 8.

The four eigenvalues of the system with parame-
ter P2 at all equilibria are λ1 = γ = 0.908, λ2,3 =
σ ± jω = − 0.904± 1.305 j , and λ4 = 0. Apparently,
due to |σ/γ | < 1 and the existed heteroclinic loops
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Fig. 9 Circuit schematic diagram

(bond orbits), the system has the chaotic behaviors
explained from Smale horseshoe theory. From Fig. 5,
the maximum LE and Kaplan–Yorke dimension of the
system with parameter P2 are obviously larger than
those of the systemwith parameter P1. Due to its larger
local instability and higher fractional dimensions, it can
be inferred that the motion trajectories of the system
with parameter P2 have the ability to realize continuous
bond orbits between homogeneous equilibrium points.
Since we used a four-step SFS f (x , 1, 1) in previous
simulations, we suspect whether different initial condi-
tions will generate bondorbital attractors with different
shapes in the system with parameter P2. Inspired by
the subsequent hardware experiments, we find that this
is indeed the case and get more conclusions.

3 Validate attractors by constructing hardware
circuits

It is necessary to perform physical verification for the
attractors of the foregoing simulations, and the hard-
ware experiment reproduces the attractors is a credi-
ble method. Op-amp TL082CP, multiplier AD633JN,
resistor, and monolithic ceramic capacitor are com-
bined on breadboard for capturing the attractors. The
schematic diagram of the designed circuit is shown
in Fig. 9, where x, y, z, and w represent the voltages
across capacitorsC1,C2,C3, andC4, respectively. The
circuit equations according to the circuit schematic dia-
gram are given by

⎧
⎪⎪⎨

⎪⎪⎩

C1 · dx/dt = −y
/
R1,

C2 · dy/dt = y
/
R2 + z

/
R3,

C3 · dz/dt = [−x − y − z + f (x, 1, 1)]
/
R4,

C4 · dw/
dt = 0.01 · yzw/

R5 − [x − f (x, 1, 1)]
/
R6.

(10)

If we introduce a time factor 1/R0C0 in system (1),
its form will be transformed into
⎧
⎪⎪⎨

⎪⎪⎩

C0 · dx/dt = ay
/
R0,

C0 · dy/dt = by
/
R0 + cz

/
R0,

C0 · dz/dt = d [−x − y − z + f (x, M, N )]
/
R0,

C0 · dw/
dt = eyzw

/
R0 − [x − f (x, M, N )]

/
R0.

(11)

For system with parameter P1, we set R0 = 20K	

and C1 = C2 = C3 = C4 = C0 = 10 nF; the resis-
tance values of the other resistors can be obtained by
comparing (10) and (11)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1
/
R1 = a

/
R0 → R1 = −R0

/
a = 20K	,

1
/
R2 = b

/
R0 → R2 = R0

/
b = 100K	,

1
/
R3 = c

/
R0 → R3 = R0

/
c = 20K	,

1
/
R4 = d

/
R0 → R4 = R0

/
d = 18.18K	,

0.01
/
R5 = e

/
R0 → R5 = 0.01 · R0

/
e = 200K	,

1
/
R6 = 1

/
R0 → R6 = R0= 20K	.

(12)

Based on the circuit schematic diagram and the
calculated component values in (12), we perform the
wiring of the discrete components on breadboard and
first observe the experimental result of f (x , 1, 1), as
shown in Fig. 10. In Fig. 10, except for the two analog
multipliers labeled with AD633JN, all other chips are
TL082CP.Thenumber of steps of theSFScircuitwithin
the blue dashed box can be adjusted by increasing or
decreasing the number of comparators (also composed
of op-amps, like in Fig. 9). In this experiment, a clear
four-step waveform can be observed from the oscillo-
scope in Fig. 10.

In general, the visual presentation of type I attractors
can be implemented with hardware experiments. At
the beginning, the expected attractor image does not
appear. Therefore, we use the instantaneous shorting
of the two pins of C1 to approximate the initial values
listed in Fig. 2 (means draw near the attracting basins
of the type I attractors), thus obtaining the one of type
I attractors shown in Fig. 11.

We change the value of R1 to 9.62K	 (i.e., system
with parameter P2) to exhibit the type II attractors by
hardware experiment, but find that the same method of
shorting capacitors does not work. A seemingly correct
attractor image appears only when one or several of the
capacitors are shorted and then released, but it cannot
be stabilized in the motion state of the type II attrac-
tors. Therefore, it is necessary to compare the basins of

123



2168 X. Zhang et al.

Fig. 10 Wire diagram of the hardware circuit on breadboard and
experimental result of f (x , 1, 1) on site (where CH1 and CH2
are 1V/div)

attraction of the type I and type II attractors to see why
we cannot use hardware to achieve the type II attractors
in steady state, as shown in Fig. 12. In Fig. 12a, b, the
initial values x(0) and y(0) have an iteration point of
401, so the step sizes are 0.05.

It can be seen from Fig. 12a that the three colored
attracting basins of the type I attractors are diagonally
distributed, which are larger near the origin and grad-
ually narrower toward the two diagonal positions. So
we can use a method of shorting capacitors to make
the initial state approaching the basins of attraction to
obtain the type I attractors in hardware experiments.
However, some sporadic discrete points with various
colors (basins of attraction) are scattered in Fig. 12b,
which occupy a smaller areas and are included in the
white dashed box.A portion of the basins of unbounded
motions are located between these discrete attracting
basins.When these discrete basins of attraction are val-
idated by choosing several specific initial conditions,
they are found to be incomplete basins of attraction. (It
is difficult to simulate the completed basins of attrac-
tion, as will be explained in the next section.) The dis-
crete basins of attraction are sufficient to show that the
initial conditions are too harsh in this case. In conse-

(a)

(b)

(c)

Fig. 11 One of type I attractors in a x − y, b x − z, and c x −w

plane (where x, y, and z are 1V/div)

quence, it is difficult to implement the type II attractors
based on hardware experiments.

For comparison, we simulate the attracting basins of
the SE9 systemwith hidden attractors proposed in [41],
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(a)

(b)

Fig. 12 Cross sections of attracting basins at z(0) = w(0) = 0
in x(0) − y(0) plane for system with parameters a P1 and b P2,
where x(0), y(0) ∈ (−10, 10)

Fig. 13 Cross section of the basins of attraction of the SE9 sys-
tem in [41] at z(0) = 0 in x(0)− y(0) plane, where x(0), y(0) ∈
(−4, 2)

as shown in Fig. 13, in which the attracting basins
of point attractors, hidden attractors, and unbounded
motion are marked. Obviously, the basin of attraction
of the hidden attractor does not intersect with the sta-
ble focus. Conversely, the basins of attraction of the
discovered type I attractors in Fig. 12a intersect with

Fig. 14 Superimposed 2D x− y plane views of type II attractors
under initial conditions PU and I1,2

the system equilibria. However, the cross section of
attracting basins in Fig. 12b is not enough to judge
whether the discovered type II attractors are hidden
attractors or self-excited attractors. Therefore, we use
another method derived from the definition of hidden
attractors for analysis. Selecting an unstable equilib-
rium point as the initial value of the systemwith param-
eter P2, such as initial point PU = [1, 0, 0, 0], one can
obtain a fixed point with magenta shown in Fig. 14.
It is clear that the point attractor in Fig. 14 is a self-
excited attractor. Inspired by [38], one can set up a
small enough epsilon neighborhood Or (PU ), where r
is the radius of a four-dimensional geometric structure
centered at PU . Obviously, when r = 10−9, the points
I1,2 = PU ± (10−10, 0, 0, 0) are all within Or (PU ).
If I1,2 are chosen as the initial values, the system will
generate two type II attractors, as shown in Fig. 14. So
this is sufficient to prove that the basins of attraction of
the discovered type II attractors intersect with an equi-
librium point, and in this sense, the type II attractors
are not hidden. Therefore, the two types of bondorbital
attractors in our paper are not hidden attractors.

In short, the bondorbital attractors in this paper are
a new type of attractors, whose basic structures are
generated differently from the traditional self-excited
attractors (whose basic structures are generated around
a single unstable equilibrium), and they are not in the
category of hidden attractors.

4 Bondorbital attractors with discrete basins of
attraction (type II attractors)

To demonstrate that the discrete basins of attraction in
Fig. 12b are incomplete, we further simulate basins of
attraction within a smaller range of initial condition
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Fig. 15 Cross section at z(0) = w(0) = 0 in x(0) − y(0) plane
for system with parameter P2, where x(0), y(0) ∈ (−2, 2)

(a)

(b)

Fig. 16 Superposed 2D views of type II attractors in x− y plane
under some specific initial conditions

space, as shown in Fig. 15, in which the initial values
x(0) and y(0) have an iteration point of 201, so the
step size is 0.02. Due to smaller step size, much more
discrete attracting basins of type II attractors are scat-
tered in Fig. 15. This shows that because there are too
many motion states simultaneously, it is impossible to
carry out numerical simulation exactly, and the basins
of attraction in Fig. 12b and even in Fig. 15 are incom-
plete. We present the phase portraits in x − y plane
under some specific initial conditions to explore more
features, as shown in Fig. 16.

As per Fig. 15 and the coexistence of three type
II attractors under the initial conditions of different
orders of magnitude shown in Fig. 16a, it can be
boldly inferred that the basin of attraction of each
bondorbital attractor can be infinitely small and dis-
cretely distributed. It can also be explained from these
that the system with parameter P2 has infinitely many
motion states in this case, that is, it has extreme multi-
stability [53,54].

A comparative analysis of Figs. 2a, 3a, and 16a
reveals that the type II attractors perform a kind of spe-
cial motion, in which the central points and connection
points of the ring structures are included in sets {0,±2}
and {±1,±3}. However, these two sets correspond to
the turning point values and the step values of the SFS
f (x , 1, 1) shown in Fig. 1, respectively. Table 2 shows
that all the equilibria in these cases are the saddle-foci
with index 1. These results are consistent with the the-
oretical analysis of the generation mechanisms for the
bondorbital attractors in Sect. 2.4.

On account of the theoretical and experimental anal-
yses, it can be inferred that the system with parameter
P2 based on SFS f (x , 1, 1) can generate a bondorbital
attractor having a threefold basic structures by finding a
suitable initial condition. As expected, Fig. 16b shows
the x − y plane phase portraits of the type II attrac-
tors having triple-ring structure, the initial conditions
of which are obtained by a loop test algorithm. There-
fore, we are convinced that this kind of attractors is a
new form that canbe expandedbasedon every twoadja-
cent homogeneous saddle-focus equilibria with index
1 but demand on initial conditions.

The bondorbital attractors shown in Figs. 17 and 18
can be obtained by choosing appropriate initial con-
ditions if the SFS becomes f (x , 2, 2). Figures 17
and 18 show the type II attractors with fourfold and
fivefold structures, respectively, which prove our pre-
vious assumptions. These is a new type of exten-
sible chaotic attractors that are different from the
knownmulti-scroll, multi-wing, andmulti-folded torus
chaotic attractors [26]. Therefore, combining with the
SFS f (x, M, N ) in this paper, the system with param-
eter P2 can generate bondorbital attractors with at most
(N + M + 1)-fold structures.
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(a) (b) (c)

Fig. 17 Type II attractors with fourfold structures in a x − y, b x − z, and c x − w plane

(a) (b) (c)

Fig. 18 Type II attractors with fivefold structures in a x − y, b x − z, and c x − w plane

5 Summary of two classes of bondorbital
attractors

In order to summarize the main characteristics of the
two types of bondorbital attractors discovered in our
chaotic system, a tabular form is adopted to compare
the similarities and differences between them, as given
in Table 3. From Table 3, we can see that the two kinds
of bondorbital attractors have many interesting char-
acteristics or complex dynamical behaviors, some of
which are rarely found or possessed in available chaotic
systems, such as large

∣
∣σ

/
γ
∣
∣, discrete basins of attrac-

tion, nonhyperchaotic but with Kaplan–Yorke dimen-
sion greater than 3. Maybe their strict requirements
on initial conditions or system coefficients, these new
types of attractors have not been reported.

6 Conclusions

Setting the system parameters P1 = (− 1, 0.2, 1, 1.1,
0.001) and P2 = (− 2.08, 0.2, 1, 1.1, 0.001), we find
two kinds of unusual attractors in a 4D autonomous

chaotic systemwith infinite equilibria, which are called
bondorbital attractors in this article. In this paper, the
numerical model of the system is given and its graph
simulations aswell as dynamics analysis are carried out
based on a SFS f (x , 1, 1). According to the eigenval-
ues at equilibrium points, the unstable equilibria of the
system with parameters P1 and P2 are saddle-foci with
index 1. The primary goal of this paper is to explore and
analyze the generation mechanisms of the two kinds of
unusual attractors as well as discover their unique fea-
tures. Through comparative analysis, we prove that the
basic structures of the discovered bondorbital attractors
are different from the traditional self-excited attractors
(whose basic structures are generated around a single
unstable equilibrium), and they are not in the category
of hidden attractors. The basic structures of the bon-
dorbital attractors are bond orbits between two adja-
cent homogeneous saddle-focus equilibria with index
1. In this paper, the exploration and analysis of the bon-
dorbital chaotic attractors in the proposed system may
help to deepen the understanding of chaotic systems
and enrich the types of chaotic attractors.
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