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Abstract Neural networks are favored by academia
and industry because of their diversity of dynamics.
However, it is difficult for ring neural networks to gen-
erate complex dynamical behaviors due to their spe-
cial structure. In this paper, we present a memristive
ring neural network (MRNN) with four neurons and
one non-ideal flux-controlled memristor. The memris-
tor is used to describe the effect of external electro-
magnetic radiation on neurons. The chaotic dynamics
of the MRNN is investigated in detail by employing
phase portraits, bifurcation diagrams, Lyapunov expo-
nents and attraction basins. Research results show that
the MRNN not only can generate abundant chaotic and
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hyperchaotic attractors but also exhibits complex mul-
tistability dynamics.Meanwhile, an analogMRNN cir-
cuit is experimentally implemented to verify the numer-
ical simulation results. Moreover, a medical image
encryption scheme is constructed based on the MRNN
from a perspective of practical engineering application.
Performance evaluations demonstrate that the proposed
medical image cryptosystem has several advantages in
terms of keyspace, information entropy and key sen-
sitivity, compared with cryptosystems based on other
chaotic systems. Finally, hardware experiment using
the field-programmable gate array (FPGA) is carried
out to verify the designed cryptosystem.

Keywords Hyperchaos · Ring neural network ·
Memristor ·Multistability ·Electromagnetic radiation ·
Medical image encryption

1 Introduction

Since the birth of the famous Hopfield neural net-
work (HNN) in 1984, it has been widely investigated
due to its rich brain-like chaotic dynamics [1]. As is
well known, the brain has abundant chaotic behav-
iors associated with brain information processing. The
HNN is regarded as a typical paradigm to study the
dynamics of brain activities [2]. Moreover, numerous
researchers have found that the HNN has many appli-
cations which heavily depend on its dynamical behav-
ior in different areas such as combinatorial optimiza-
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tion and secure communication [3,4]. Undoubtedly, the
study of chaotic dynamics in HNNs is beneficial to bet-
ter understand neural activities of the human brain and
is also potentially useful for developing new neuromor-
phic systems.

Over the past two decades, many important chaotic
phenomena have been revealed from different HNNs.
For example, transient chaos [5], chaos [6–8] and
hyperchaos [9] can be generated from some small
HNNs by adjusting their synaptic weights. In partic-
ular, many researchers in recent years have focused on
thememristive HNNs because of their complex chaotic
dynamics.As akindof nonlinear circuit component, the
memristor is considered as an organic link between the
magnetic field and electric field, whose resistance can
be altered by regulating the voltage or current [10]. In
view of this, the memristor is usually used to emulate
neural synapses or to describe the effect of electro-
magnetic radiation on the cell membrane of the neu-
ron [11–14]. Due to the special nonlinearity, the neural
networks with memristor, namely memristive neural
networks, have more complex chaotic dynamics like
hyperchaos [15], coexisting behaviors [16], multista-
bility [17], extreme multistability [18] and so on [19–
22]. In particular, Pham et al. [23] found the hidden
attractors in amemristiveHNNwith three neurons. Bao
et al. discovered coexisting asymmetric attractors in a
hyperbolic-type memristive HNN with three neurons
[24]. Chen et al. observed coexisting multiple attrac-
tors, namely multistability in a memristive HNN with
two neurons [25]. Lin et al. reported a multi-stable
memristive four-neuron-based HNN which can gen-
erate coexisting infinite attractors [26]. Very recently,
Zhang et al. proposed a memristive HNN with initial
boosted coexisting multi-double-scroll attractors [27].
However, these studies aremainly focusedon the neural
network with mixed structures, and there is little work
on the neural network with other structures, especially
ring structures. On the other hand, it will be useful to
investigate the chaotic dynamics of a neural network
from the structure and topology viewpoint.

In fact, ring neural networks (RNNs) have limited
biological relevance and can be seen as building blocks
for networks with more realistic connection topolo-
gies. The RNNs are also a kind of cyclic feedback
system whose stability has been studied extensively.
For example, the asymptotic stability and global sta-
bility of the RNNs with time delays were studied in
[28]. The stability of the delayed RNNs was investi-

gated in [29]. Furthermore, exponential stability was
revealed in a delayed RNN with a small-world con-
nection [30]. Specially, the chaotic dynamics of the
discrete-time-delayedRNNswere explored in [31]. But
as far as we know, no previous study has researched the
chaotic behavior of the continuous-time RNNs. There-
fore, modeling, research, simulation, circuit realization
and engineering application of RNNs to further under-
stand brain activities and develop new neuromorphic
computing systems are significant and valuable.

With the rapid growth of information technology
and medicine, there are more and more digital medi-
cal images that need to use in several medical fields
such as telediagnosis, telesurgery, and so on [32]. The
extensive use and transfer of medical images have
attracted many researchers to develop various medical
image encryption schemes. Due to the feature of bulky
data size, stronger correlation and high redundancy, the
traditional encryption algorithms like AES, DES and
RSA are not suitable for encrypting medical images
[33]. Consequently, in recent years, researchers have
proposed many new medical image encryption algo-
rithms [34,35]. Among them, the chaos-based medical
image encryption schemes have attracted wide atten-
tion due to the outstanding characteristics of chaos
such as stochasticity, ergodicity and sensitivity to ini-
tial states [36–39]. So far, several researchers have
presented a great number of medical image encryp-
tion schemes based on various chaotic systems such
as edge maps [40], Lorenz system [41], sine map [42]
and logistic map [43]. Recently, some medical image
encryption schemes using chaotic neural networks have
attracted the extensive attention of academic and indus-
trial fields because of their neural and chaotic char-
acteristics. For instance, Njitacke et al. proposed a
biomedical image encryption scheme based on a sim-
ple Hopfield neural network [44]. Due to the com-
plex multistability dynamics of the neural network, the
proposed cryptosystem achieved higher information
entropy and lower correlation. Furthermore, Doubla et
al. [45] designed amedical image encryption algorithm
based on a tabu learning two-neuron network. The test
results demonstrated that the algorithm is highly secure
compared to other chaos-based encryption algorithms.
As we all know, compared with the traditional neural
networks, memristive neural networks have more com-
plex chaotic behaviors, especially hyperchaos, which
makes the encryption more secure in theory. To our
knowledge, memristive neural networks-based medi-
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cal image cryptosystems have not been reported until
now.

Motivated by the above analysis, this paper first
presents a memristive ring neural network (MRNN)
based on the HNN and a flux-controlled memristor.
Then, the complex hyperchaos and multistability are
revealed by using several numerical analysis methods.
To the best of our knowledge, this is the first time
that the chaotic dynamics of the ring neural network is
investigated. Afterward, we further design and imple-
ment an analog circuit of the MRNN based on com-
mercially available electric elements. Finally, we give a
medical image encryption scheme and explore its appli-
cation feasibility by using a hyperchaotic sequence
generated by the MRNN. Theoretical analysis and
experimental results show that the designed medical
image encryption scheme has larger keyspace, better
information entropy, higher key sensitivity and higher
NPCR and UACI compared with the cryptosystems
based on other chaotic systems.

The rest of this article is organized as follows. Sec-
tion 2 constructs an MRNN and discusses its equi-
librium point stability. Section 3 analyzes the chaotic
dynamics of the MRNN. Section 4 designs and imple-
ments an analog MRNN circuit. Section 5 presents a
medical image encryption schemebasedon theMRNN,
and its FPGA experiment is implemented. Section 6
concludes the paper.

2 Memristive ring neural network

2.1 Model description

Hopfield neural network with chaos is usually utilized
to mimic the chaotic behavior of the brain neural sys-
tems. An Hopfield neural network consisting of n neu-
rons can be expressed as follows: [1]

Ci v̇i = −vi/Ri +
n∑

j=1

wi j tanh(v j ) + Ii (i, j ∈ N∗),

(1)

where Ci , Ri and vi are, respectively, capacitance,
resistance and voltage of the cell membrane in neu-
ron i . wi j is the synaptic weight coefficient describ-
ing the connection strength from neuron j to neuron i .
Besides, tanh(.) represents the neuron activation func-
tion, and Ii denotes an external input current. It should

be noted that the chaotic dynamics of the HNN highly
depend on its wi j .

In this paper, we regard the neural network com-
posed of four neurons, and its topology structure is
shown in Fig. 1. As can be seen, N1–N4 are four neu-
rons, and the four neurons are made up of a ring neu-
ral network. Here, Ci = 1, Ri = 1, Ii = 0 (i = 1,2,3,4).
Because ofmagnetic flux characteristics, thememristor
can be used to describe the influence of electromagnetic
radiation on the neurons. When the neuron N1 is stim-
ulated by the external electromagnetic radiation [46],
the MRNN can be modeled and written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −x1 + 1.9 tanh(x1) + 0.1 tanh(x2) − 11 tanh(x4)
−ρϕ2x1

ẋ2 = −x2 − 0.1 tanh(x1) + 1.5 tanh(x2) + 7 tanh(x3)
ẋ3 = −x3 − 4 tanh(x2) + 1.8 tanh(x3) + 4 tanh(x4)
ẋ4 = −x4 + 0.81 tanh(x1) + 0.2 tanh(x3) + 2 tanh(x4)
ϕ̇ = x1 − μϕ

,

(2)

where xi stands for themembrane voltage of neuron Ni ,
and ϕ shows the magnetic flux across the membrane of
neuron N1. The system parameters ρ and μ represent
the feedback coefficient of electromagnetic radiation
and the effect of magnetic flux on the generation of
membrane voltage x1, respectively. Additionally, ϕ2

denotes memductance of a flux-controlled memristor.
Here, it is used to represent the coupling between ϕ

and x1. According to the function of flux-controlled
memristor, the influence of external electromagnetic
radiation can be considered as an additional forcing
current IEMR = ρϕ2x1.

2.2 Equilibrium Point and Stability Analysis

The equilibrium points of the MRNN and their stabil-
ities are revealed by numerical analysis methods. Set-
ting (2) equal to zero, the equilibrium points of the
MRNN can be solved. Assuming E = (x, y,m, n, z)T

is an equilibrium point of the MRNN (2). According to
equilibrium equation of the MRNN, we can get

m = atan((y + 0.1 tanh(x) − 1.5 tanh(y))/7), (3)

n = atan((−ρx3/μ2

− x + 1.9 tanh(x) + 0.1 tanh(y))/11), (4)

z = x/μ. (5)
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Fig. 1 Topological connection of the MRNN

And x , y are the intersection points of the functions h1
and h2.

{
h1(x, y) = −m − 4 tanh(y) + 1.8 tanh(m) + 4 tanh(n)

h2(x, y) = −n + 0.81 tanh(x) + 0.2 tanh(m) + 2 tanh(n)
.

(6)

Extensive numerical simulation results show that
there is only one zero intersection point (x , y) = (0,
0). That is to say, the MRNN has only one zero equi-
librium point E0(0, 0, 0, 0, 0). The Jacobian matrix at
the zero equilibria can be obtained by

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0.9 0.1 0 −11 0

−0.1 0.5 7 0 0

0 −4 0.8 4 0

0.81 0 0.2 1 0

1 0 0 0 −μ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

For the zero equilibrium point E0(0, 0, 0, 0, 0), the
characteristic polynomial equation is reduced as

P(λ) = det |λE1 − J |
= (λ + μ)(λ4 − 3.2λ3 + 3.77λ2 − 1.93λ − 250.2276)
= 0

,

(8)

where E1 is a fourth-order unit matrix. MATLAB
numerical calculations show that there are one real root

λ1 = -μ and four complex roots λ2 = 0.6337± 5.1863 j
and λ3 = 0.9663 ± 3.0345 j . Therefore, the zero equi-
librium point is an unstable saddle-focus point, which
is considered as a necessary condition for the genera-
tion of chaos. That is to say, the attractors generated by
the MRNN are self-excited attractors.

3 Dynamical analysis of the MRNN

In this part, the complicated dynamics of the presented
MRNN is investigated by adopting basic dynamic anal-
ysis methods such as phase plots, bifurcation dia-
grams, Lyapunov exponents and basins of attraction.
The MATLAB R2017a with the ODE45 algorithm is
employed in numerical simulation. Besides, the start
time 500, time step 0.01 and time length 2000 are
adopted.

3.1 Hyperchaotic Dynamics

Firstly, fix the parameter ρ=0.4 and the initial states are
set to (0.1, 0.1, 0.1, 0.1, 0.1). When varying μ in the
region of [0, 1.4], the bifurcation diagram of the state
variable x1 and the corresponding first five Lyapunov
exponents are shown in Fig. 2a and b, respectively. It
can be seen from Fig. 2 that the MRNN can generate
complex dynamical behaviors including period, quasi-
period, chaos and hyperchaos. For example, with μ

increasing from 0 to 1.4, the dynamical trajectory of
the MRNN starting from period enters into chaos at
μ = 0.15 by the forward period-doubling bifurcation
(FPDB) route, and then the chaotic behavior degrades
into periodic behavior atμ= 0.21 by the reverse period-
doubling bifurcation (RPDB) route. Afterward, the
periodic behavior changes to chaotic behavior again
at μ = 0.27. Interestingly, with μ increasing to 0.38,
the MRNN enters into hyperchaos with two positive
Lyapunov exponents from chaotic behaviors by a short
FPDB route again. It can be seen that the MRNN
exhibits a wide range of hyperchaos until μ = 1. Then
hyperchaotic behavior again turns into chaotic behav-
ior. It is noted that this chaos has a different topol-
ogy from foregoing chaos. Finally, chaos settles into a
period state at μ = 1.3. It can also be seen that the Lya-
punov exponents and the bifurcation diagram matches
well with each other. The phase portraits of the MRNN
with different values of μ are given to illustrate its
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withμ = 0.1. cQuasiperiodic attractor withμ = 0.14. d Chaotic
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dynamical evolution with the parameter μ, as shown
in Fig. 3. Results show that when the parameter μ are
set to 0.05, 0.1, 0.14, 0.16, 0.6 and 1.1, we can get limit
ring attractor, periodic attractor, quasiperiodic attrac-
tor, chaotic attractor, hyperchaotic attractor and chaotic
attractor with different topologies, respectively.

Additionally, by calculating Lyapunov exponents,
it will be shown in this work that the MRNN has a
hyperchaotic attractor for the value of parameters and
initial values as ρ=0.4 and μ=0.6 and (0.1, 0.1, 0.1,
0.1, 0.1). The Lyapunov exponents for the MRNN are
computed for t=1e5 seconds as follows:

LE1 = 0.1611, LE2 = 0.0512,
LE3 = 0, LE4 = −0.9991, LE5 = −1.223

(9)

The existence of two positive Lyapunov exponents in
(9) makes it clear that the MRNN is hyperchaotic. Fur-
thermore, the Kaplan–Yorke dimension of the hyper-
chaotic MRNN is calculated by the following formula:

DKY = 3 + LE1 + LE2 + LE3

|LE4| = 3.2125 (10)

The MRNN has high complexity because it has a large
value of DKY .

3.2 Multistability dynamics

Multistability is a complex dynamical phenomenon
that there are coexisting multiple different attractors
in the chaotic system under different initial states [47–
50]. In this subsection, the multistability with coex-
isting four different attractors is discovered from the
MRNN. Similarly, fix the parameter ρ = 4 and the ini-
tial states are set to (0.1, 0.1, 0.1, 0.1, 0.1) colored in
wathet blue, (−0.1,−0.1,−0.1,−0.1,−0.1) colored in
pink, (0.1, 0.1, 0.1, 1, 1) colored in blue green, and
(−0.1, −0.1, −0.1, −1, −1) colored yellow. When
varying μ in the region of [0, 1], four bifurcation dia-
grams of the state variable x1 are shown in Fig. 4a.
As can be seen in Fig.4a, the MRNN has different
bifurcation diagrams under different initial states. In
other words, the MRNN generates coexisting behav-
iors. For instance, for the wathet blue bifurcation route,
the dynamical state starting from period enters into
chaos at μ = 0.12 by the FPDB route. Thereafter, the
chaotic behavior degrades into periodic behavior at μ

= 0.78 by the RPDB route. Note that there are several
periodic windows in the chaotic region. Similarly, the
pink bifurcation route is the same as the wathet blue
bifurcation route. But their phase positions are dif-
ferent. Furthermore, for the yellow bifurcation route,
the dynamical state exhibits a wide range of period
behavior in the region μ ∈(0, 0.55). After that, the
periodic behavior becomes chaotic behavior until μ =
0.78. Similarly, the blue green bifurcation route is the
same as the yellow bifurcation route except for phase-
amplitude. Evidently, when μ ∈(0, 0.55) the MRNN
has four different bifurcation routes under four differ-
ent initial states. That is to say, the MRNN exhibits
complex multistability. Fig. 4b gives the correspond-
ing first five Lyapunov exponents. To further verify the
multistability, we have given a set of phase plots with
different initial states, as shown in Fig. 5. As can be
seen from Fig. 5, the MRNN generates four attractors
including two symmetry period attractors and two sym-
metry chaos attractors under four sets of different initial
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states. Consequently, the MRNN exhibits a complex
multi-stable phenomenon.

Further, the basin stability analysis reveals the mul-
tistability dynamics of the MRNN. Here, when μ =
0.2, ρ = 4 and x10 = x20 = x30 = 0.1 are kept, the local
attraction basin in the x40-ϕ0 plane is drawn as shown
in Fig. 6. As can be observed, the local attraction basin
displays interesting manifold structures and clear basin
boundaries, and the specified initial value regions are
made up of different colored zones labeled by r0–r4,
among which the colored zones are labeled by r1–r4
correspond to the attractors with different positions in
Fig. 6. Furthermore, the blue green region represents
stable point attractors. The numerical results in Figs. 5
and 6 show that the dynamic behaviors in the MRNN
strongly depend on its initial states. That is to say, the
MRNN exhibits sensitive multistability.
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Fig. 6 For ρ = 4, μ = 0.2, chaotic basin of attraction in the x40-
ϕ0 plane, and the colorbar shows the coexistence of two chaotic
attractors and two periodic attractors

4 Validation by Hardware experiments

In fact, the physical realization of neural network mod-
els is significant to exploit neuromorphic hardware sys-
tems. Generally speaking, nonlinear systems can be
physically implemented by using FPGA [51] or ana-
log circuits [52]. It is well known that an analog neural
network circuit is able to get real-time calculation and
can copy the behavior of a real neural system. Con-
sequently, the proposed MRNN is successful imple-
mented through take advantage of basic electronic cir-
cuit elements such as transistors, resistors, capacitors,
operational amplifiers and analog multipliers.

4.1 Design of the MRNN circuit

Before realizing theMRNNcircuit, we firstly introduce
two circuit units: memristor circuit [12] and hyperbolic
tangent function circuit [8], as shown in Fig. 7. In Fig.
7a, the circuit equation can be written as

{
i = g2vϕ

2vi/RL

Cdvϕ/dt = vi/Ra − vϕ/Rb
, (11)

where g = 1 expresses the gain of the multiplier M .
Moreover, for the hyperbolic tangent function circuit
in Fig. 7b, the resistance of resistors are set as RA =
1.5 k�, RB = 0.5 k�, RC = 1 k�, and RD = 1.5 k�.
According to (2), the circuit structure of MRNN can
be designed in Fig. 8. In the circuit, four out-voltages
v1, v2, v3, v4 represent four membrane voltages x1, x2,
x3, x4, respectively. The synaptic weight coefficients in
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(a)

(b)

Fig. 7 Circuit units. a Memristor circuit b Hyperbolic tangent
function circuit

MRNN are replaced by the resistors R1–R12. Based on
the circuit in Fig. 8, the circuit state equations can be
written by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

RC dv1
dt = −v1 + R

R1
tanh(v1) + R

R2
tanh(v2) − R

R3
tanh(v4)

− R
RL

g2vϕ
2v1

RC dv2
dt = −v2 − R

R4
tanh(v1) + R

R5
tanh(v2) + R

R6
tanh(v3)

RC dv3
dt = −v3 − R

R7
tanh(v2) + R

R8
tanh(v3) + R

R9
tanh(v4)

RC dv4
dt = −v4 + R

R10
tanh(v1) + R

R11
tanh(v3) + R

R12
tanh(v4)

RC dvϕ

dt = Rv1
Ra

− Rvϕ

Rb

,

(12)

Assuming that C1 = C2 = C3 = C4 = C , RC = 10 us,
and R =10 k�, thenC can be chosen as 1 nF. Regarding
the constant synaptic weight coefficients, resistors can
be calculated as Ra = 10 k�, R1 = 5.263 k�, R2 = 100
k�, R3 = 0.909 k�, R4 = 100 k�, R5 = 6.667 k�, R6

= 1.428 k�, R7 = 2.5 k�, R8 = 5.556 k�, R9 = 2.5 k�,
R10 = 12.346 k�, R11 = 50 k�, R12 = 5 k�. Besides,
Rb = R/μ and RL = R/ρ are adjustable resistors.

4.2 Measurement of the MRNN Circuit

The designed MRNN circuit is physically constructed
on the experimental breadboard via adopting com-

Fig. 8 Memristive ring neural network circuit

mercially available circuit elements including R/metal
resistors andprecisionpotentiometers,C /ceramic capac-
itors,D/1N4007,M /AD633JN,U /TL082CPand±15V
DC voltage supplies. Numerous experiments indicate
that the designed MRNN circuit can realize results
agreewith the numerical simulation results in section 3.
For example,whenρ =0.4 andwith differentμ, namely
RL = 25 k� and different Rb varies, the experimental
results are given in Fig. 9a–f, respectively. The experi-
mental results in Fig. 9 verify the numerical results in
Fig. 3. It is remarked that because there are parasitic
parameters in the practical neural network circuit, the
values of resistors have some difference, which can be
remedied by fine-tuning the adjustable resistors.

5 Application in Medical Image Encryption

In recent years, chaos-based image encryption schemes
have attractedwide attention [53,54].Generally, hyper-
chaos with at least two positive Lyapunov exponents
has more complicated dynamics than the ordinary
chaos with only one positive Lyapunov exponent and
it is more applicable for a lot of chaos-based secu-
rity applications [55]. In addition, chaotic systems with
multistability dynamics have become potential candi-
dates for chaos-based image encryption applications
compared to normal chaotic systems due to their high
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Fig. 9 Hardware experiment results. a Limit ring attractor with
Rb = 200 k�. b Period-2 attractor with Rb = 100 k�. c
Quasiperiodic attractor with Rb = 70 k�. d Chaotic attractor
with Rb = 62 k�. e Hyperchaotic attractor with Rb = 16.5 k�.
f Chaotic attractor Rb = 9 k�

initial sensitivity [56]. In this section, a medical image
encryption scheme based on the MRNN with hyper-
chaos and multistability is designed.

5.1 Design of Medical Image Encryption Scheme

As shown in Fig.10, the entire structure of the MRNN-
based medical image encryption scheme is mainly
composed of four parts: chaotic sequence generator,
secret key generator, image encryption module and
decryption module. Assuming that a gray-scale plain
image P is used as the encryption object, those mod-
ules can be briefly described as follows.

(1) Chaotic sequence generator: Install system param-
eters and initial states, then iterate the memris-
tive ring neural network (2) with the fourth-order
Runge–Kutta algorithm from initial states (x10, x20,
x30, x40, ϕ0). The MRNN is iterated continuously.
We can get five chaotic sequences (x1i , x2i , x3i , x4i ,
ϕi ) kept the same length as the plain image.

(2) Key generator: These sequences are reprocessed as
follows:

K1(i) = |x1i | + |x2i | + |x3i | + |x4i | + |ϕi | , (13)

K2(i) =mod(floor((|x1i | + |x2i | + |x3i | + |x4i |
+ |ϕi |) ∗ 1015), 256)

,

(14)

where the floor(x) means the values of x to the
nearest integers less than or equal to x .

(3) Encryption module: This module contains two
parts, namely permutation and substitution. First,

Fig. 10 The structure of the medical image encryption scheme
based on the MRNN

the secret key K1 is used to permutate original
image. The plain image is permutated as

P1(i) = P(index(K1(i))) (15)

Then the permutation image P1 is further encrypted
as

C(i) = P1(i) ⊕ K2(i), (16)

where the symbol⊕ express the special XOR oper-
ation bit-by-bit. The MRNN is operated until all
the elements are encrypted. Then each element in
the encrypted set is turned into decimal numbers.
Finally, the cipher image can be generated.

(4) Decryption module: The cipher image is decrypted
by a reverse process.

In our experiments, setting the secret key (ρ, μ,
x10, x20, x30, x40, ϕ0) = (0.4, 0.6, 0.1, 0.1, 0.1, 0.1,
0.1), a hyperchaotic pseudorandom sequence (Lya-
punov exponents: L1, L2, L3, L4, L5) = (0.1611,
0.0512, 0, −0.9991, −1.223) generated by (13) is used
for image encryption. In experiment, the pre-iterate
number N0 of the chaotic system is set as 500, and
the time step is chosen as 0.005. Before image encryp-
tion, the hyperchaotic sequence is tested by using the
NIST SP800-22 test suite. Table 1 gives the test results
of the hyperchaotic sequence generated by theMRNN.
From the results, it is clear that they can successfully
pass all the sub-tests of the test suite. This suggests that
the MRNN enjoys complicated chaotic dynamics and
can generate random numbers with high randomness.

5.2 Experimental Results and Analysis

In this subsection, the efficiency of the presented med-
ical image cryptosystem is evaluated. Some classic
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Table 1 NIST statistical test results of the proposed MRNN

No. Test index Prop. P-value

01 Frequency 0.992 0.699313

02 Block Frequency 0.990 0.494392

Cum. Sums (F) 0.992 0.249284

03 Cum. Sums (R) 0.98 0.494392

04 Runs 0.985 0.657933

05 Longest Runs 0.992 0.574903

06 Rank 0.991 0.739918

07 FFT 0.987 0.383827

08 NOT* 0.992 0.816537

09 OT 0.990 0.534146

10 Universal 0.990 0.474986

11 Approx. Entropy 0.992 0.455937

12 Random Exc.* 0.989 0.867692

13 Random Exc. Var.* 0.985 0.834308

Serial (1st sub-test) 0.987 0.474986

14 Serial (2nd sub-test) 0.992 0.911413

15 Linear complexity 0.990 0.834308

metrics like keyspace, histogram, correlation coeffi-
cient, entropy, secret key sensitivity, NPCR, UACI,
noise attacks and SSIM aremeasured [44,54]. In whole
experiments, onemedical image Lung of size 256×256
is employed as the test image, as shown in Fig. 11a1).

(1) Keyspace compute: A large keyspace shows that
the image encryption algorithm possesses ability to
oppose the exhaustive attack. The presented encryption
scheme adopts two parameters and five initial values as
its key, which can ensure that unauthorized decryption
becomes difficult. In our experiments, all bites adopt
double-precision data, so the keyspace of the encryp-
tion scheme is (1016)7=10112 ≈ 2336. It is obvious that
the encryption schemehasmore than 2100 keyspace and
can resist all types of violent attacks. The keyspace
is much larger than the latest similar medical image
encryption schemes, such as [44,45]. From this, we can
conclude that the new encryption scheme has a greater
keyspace.

(2) Histogram test: The histogram denotes the fre-
quency distribution of pixel values in the image. Usu-
ally, a well-designed image encryption scheme can
ensure the histogram of the encrypted image has a
even distribution to withstand any statistical attacks.
Figure 11 a1–a3 and b1–b3 shows the original medical
image, encrypted medical image, and decrypted med-
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Fig. 11 Simulation results of the proposed medical image
encryption scheme: (a1) Original medical image. (b1) Histogram
of the original medical image. (a2) Encrypted medical image.
(b2) Histogram of the encrypted medical image. (a3) Decrypted
medical image. (b3) Histogram of the decrypted medical image

ical image, as well as their histograms, respectively.
Clearly, the encryptedmedical image has a uniformhis-
togram. Figure 11 visually illustrates that the designed
medical image encryption scheme is able to overcome
statistical attacks well.

(3) Correlation analysis: As we all know, the orig-
inal image own a large correlation coefficient in the
horizontal, vertical and diagonal directions. However,
from the view of security, the correlation coefficients
of the encrypted image are wish to be close to zero in
the each directions. The correlation coefficients of each
pair of pixels in image can be derived as [44]

ρxy =

N∑
i=1

(xi − E(x))(yi − E(y))

√
N∑
i=1

(xi − E(x))2
√

N∑
i=1

(yi − E(y))2

, (17)

where

⎧
⎪⎪⎨

⎪⎪⎩

E(x) = 1
N

N∑
i=1

xi

E(y) = 1
N

N∑
i=1

yi

, (18)

where the values of two adjacent pixels can be rep-
resented by x and y. The total number of pixels can
be denoted by N . Therefore, to calculate the corre-
lation coefficient in every directions, 10000 pairs of
adjacent pixels are randomly chosen from the origi-
nal and encrypted image. Figure 12 shows the results
of correlation coefficients of the original and encrypted
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Fig. 12 Distribution of correlation for original medical image
and encrypted medical image. (c1, d1) Horizontal. (c2, d2) Ver-
tical. (c3, d3) Diagonal

images. The resultsmanifest that the original image has
a higher correlation value, nevertheless the encrypted
image has a lower correlation value. From the outcomes
stated about correlation coefficient, the proposed image
encryption scheme can efficiently improve the correla-
tion between adjacent pixels of the original image.

(4) Entropy analysis: The information entropy is an
crucial index to evaluate the randomness of encrypted
images. Generally, the information entropy can be
expressed mathematically by following equations [44]

H(P) =
2N−1∑

i=0

P(xi )log2
1

P(xi )
, (19)

where P(xi ) indicates the probability of the existence
of the symbol xi , and N represents the bit depth of
the image P . The ideal value for a greyscale image
is 8. Here, the derived entropy value of the encrypted
image is 7.9978, which is close to the ideal value of 8.
In other words, the designed image encryption scheme
has a good information entropy.

(5) Sensitivity discussion: The key sensitivity is a
vital indicator for evaluating the accuracy of a cryp-
tosystem. A good image encryption algorithm should
be sensitive to the security keys. In this image encryp-
tion algorithm, the system parameters and initial values
(ρ,μ, x10, x20, x30, x40, ϕ0) are regarded as secret keys.
We use the correct secret key to decrypt the encrypted
medical image shown in Fig. 11(a2) and to produce the
corresponding decrypted medical image shown in Fig.
13a. A minor modification is carried out in the correct

Fig. 13 Key sensitivity analysis. a The decrypted image with
the correct secret key. b The decrypted image with the wrong
secret key ρ = 0.4 + 10−14. c The decrypted image with the
wrong secret key x40 = 0.1 + 10−14

secret key to check the sensitiveness of the keys. For
instance, the decrypted image with the wrong secret
key ρ = 0.4 + 10−14, and the decrypted image with
the wrong secret key x40 = 0.1 + 10−14 are demon-
strated in Fig. 13b and c, respectively. The results show
that the designedmedical image encryptionmethod has
good key sensitivity to small key changes.

(6) NPCR and UACI analysis: The number of pixel
change rates (NPCR) and unified average change inten-
sity (UACI) are used to evaluate the change in the
encrypted images after changing a single-pixel value
of the plain image. Usually, NPCR and UACI can be
expressed by [44]

N PCR(C1,C2) =
M∑

i=1

N∑

j=1

D(i, j)

M.N
× 100%, (20)

D(i, j) =
{
0, i f C1(i, j) = C2(i, j)
1, i f C1(i, j) �= C2(i, j)

, (21)

U AC I (C1,C2)

= 1

M.N

M∑

i=1

N∑

j=1

|C1(i, j) − C2(i, j)|
255

× 100%,

(22)

where C1 and C2 are two different encrypted images
with both sizes equal to MN , whose corresponding
original images only have a single-pixel difference.
C1(i, j) and C2(i, j) represent the gray values of
the pixels in position (i, j). The outcomes of NPCR
and UACI for the experimented images are given in
Table 3.Asweall know, for a robust encryption scheme,
the ideal values of NPCR and UACI are 99.6094%
and 33.4635%, respectively. The presented encryption
scheme can generate the values of NPCR and UACI
above the ideal values. Therefore, the proposed encryp-
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Fig. 14 The robustness of the proposed encryption scheme to
partial data loss and noise attacks. a1–a3 The encrypted image
with 1/32, 1/16, and 1/4 loss, respectively. (b1–b3) Correspond-
ing decryption images. (c1–c3) The encrypted image with 0.01,
0.03 and 0.05Gaussian noise, respectively. d1–d3 Corresponding
decryption images

tion scheme has a high sensitivity to tiny pixel changes
in the original image.

(7) Data loss and noise attacks: Generally, the
images are easy to suffer fromnoise andpartial data loss
in the encryption system. Thus, the data loss attack and
the noise attack can be used to evaluate the robustness
of the proposed image encryption scheme. First, we cut
off some parts of the encrypted image and then decrypt
it. The results of data loss attacks for the different lost
areas are given in Fig. 14a1–a3 and b1–b3. Interest-
ingly, themain information in the original image can be
recovered with the decryption. Then, we added Gaus-
sian noise to the encrypted imagewith different propor-
tions. Figure14c1–c3 and d1–d3 shows the outcomes
of the noise attacks. Although some data in decrypted
images are changed, the original information still can
be displayed. This means that the encrypted scheme
has strong robustness.

(8) SSIM analysis: The structural similarity (SSIM)
is a measure of similarity between two images. For two

Table 2 Thevalues ofSSIMbetweendifferent decrypted images
and the original image

Images SSIM

Figure 11a2 −0.0013

Figure 11a3 1

Figure 13b 0.0062

Figure 13c 0.0044

Figure 14b1 0.9837

Figure 14b2 0.9388

Figure 14b3 0.7594

Figure 14d1 0.7611

Figure 14d2 0.6293

Figure 14d3 0.5536

images x and y, SSIMcan be calculated as follows [57]:

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μx
2 + μy

2 + c1)(σx 2 + σy
2 + c2)

,

(23)

whereμx andμy are average values of x and y, respec-
tively. σx

2 and σy
2 are a variance of x and y, respec-

tively.σxy is the covariancebetween x and y. c1=(k1L)2

and c2 = (k2L)2 are two constants, where k1=0.01,
k2=0.03, and L is the dynamic range of pixel values.
Table 2 gives the calculation results of SSIM for all the
decrypted images compared with the original image.
It can be seen from Table 2 that the encrypted image
Fig. 11a2 and the correct decrypted image Fig. 11(a3)
have ideal SSIM values of 0 and 1, respectively. Fur-
thermore, the incorrect decrypted images Fig. 13b and
c exhibit very low values of SSIM, which means that
the encryption scheme has a high key sensitivity. On the
contrary, the decrypted images Fig. 14(b1–b3) and Fig.
14(d1–d3) exhibit high values of SSIM, which means
that the main image information can be well recovered
when the original images suffered from data loss and
noise attacks.

Meanwhile, based on different chaotic systems,
Table 3 provides the performance comparison of
encryption results between different image encryption
schemes. Apparently, compared with the recent results
of [44,45,53,54,56], it shows that the proposed medi-
cal image encryption scheme has a larger keyspace and
more sensitive secret keys. Consequently, these results
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Table 3 Performance comparison of various encryption schemes

Refs Image type System type Dynamical
property

Keyspace Entropy
Original
Encrypted

Key sensi-
tivity

NPCR(%)
UACI(%)

Hardware ver-
ification

2019[53] Lena (256×256) 3D Chaotic
system

Chaotic
Multi-scroll

2144 7.3740 7.9898 – – No

2020[54] Lena (256×256) 3D Chaotic
system

Chaotic
Multi-wing

2288 7.3740 7.9976 10−9 – Yes

2021[56] Lena (256×256) 4D Chaotic
system

Chaotic mul-
tistability

– 7.4699 7.9979 10−12 – No

2020[44] Chest (256×256) 3D HNN Chaotic mul-
tistability

2288 7.3110 7.9992 – 99.6175 – No

2021[45] Cell (256×256) 4D tabu
learning
two-neuron

Chaotic mul-
tistability

– 7.9059 7.9989 10−10 99.6200 33.6512 No

This work Lung (256×256) 5D MRNN Hyperchaotic
multistabil-
ity

2336 6.8961 7.9978 10−14 99.6299 33.6548 Yes

suggest that the designed medical image encryption
scheme can effectively resist statistical attacks. Mean-
while, the proposed encryption scheme has a larger
information entropy difference, which means that it
can more effectively resist entropy attacks. Further-
more, the designed medical image encryption scheme
has higher NPCR and UACI and good experimental
results, which indicates that it can be applied to protect
medical image data in practical information communi-
cation.

5.3 FPGA Demonstration

The field-programmable gate array (FPGA) is widely
used in industrial electronics because of its features
such as ultra-low power, programmable reusability and
strong controllability [58]. Here an FPGA-based hard-
ware test platform is implemented to test the proposed
MRNN-based medical image encryption scheme. The
hardware devices contain one Xilinx Virtex-6 FPGA
development board and one monitor. The hardware
structure of the cryptosystem consists of five parts:
medical imageRAM (random accessmemory), chaotic
sequence controller,medical image encryptionmodule,
medical image decryption module and VGA display
controller. It can be seen in Fig. 15 that the image RMA
is used to store and output the original medical image
from medical image acquisition devices. And the gen-

eration and buffering of chaotic sequences generated
by the memristive ring neural network can be realized
in chaotic sequence controller. In the process of med-
ical image encryption, the image encryption module
synchronously receive the chaos sequences and origi-
nal medical images. The image encryption module is
used to complete image encryption.Hereafter, theVGA
display controller receive the encrypted image. In the
end, the original and encrypted medical images can
be displayed on the monitor. On the other hand, for
the process of image decryption, the decryption mod-
ule synchronously receives the chaos sequences and
the encrypted image.Meanwhile, the image decryption
module completes the function of decryption. Eventu-
ally, the decrypted image can be output on the computer
via using the VGA display controller.

Based on FPGA technology, hardware experiments
are carried out on the medical image cryptography sys-
tem with a fixed-point number. Using Xilinx ZYNQ-
7000 series XC7Z020 FPGA chip, the hardware struc-
ture of the biomedical image cryptosystem in Fig.
15 is implemented. The functions of the five mod-
ules are completed through adopting Verilog HDL pro-
gramming, and the realization process of the chaos
sequences can refer to work in [54]. In the hardware
experiment, medical images are stored in the RAM of
the ZYNQ-XC7Z020 chip. The experimental results
are shown in Fig. 16, where the original image and
the encrypted image are shown in Fig. 16a with the
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Fig. 15 Block diagram of FPGA-based image encryption and
decryption

Fig. 16 FPGA-based implementation results of the MRNN-
based image cryptosystem. a Original and encrypted image. b
Encrypted and correctly decrypted image.dEncrypted and incor-
rectly decrypted image

secret key (ρ, μ, x10, x20, x30, x40, ϕ0)=(0.4, 0.6,
0.1, 0.1, 0.1, 0.1, 0.1). Fig. 16b shows the encrypted
image and correct decrypted image with the correct
secret key. And the encrypted image and the wrong
decrypted image are shown in Fig. 16c under incor-
rect secret key (0.4+10−14, 0.6, 0.1, 0.1, 0.1, 0.1, 0.1).
Evidently, the experimental results based on FPGA
are consistent with the simulation results based on
MATLAB. Besides, the time for image encryption and
image decryption on the FPGA platform is 0.214238
s and 0.209756 s, respectively. These times are much
lower than the corresponding times of 0.689214 s and
0.657105 s in the MATLAB numerical simulations. In
other words, based on the FPGA, the medical image
cryptosystem can greatly promote the speed of data
treating and the time of algorithm operation. Undoubt-
edly, the hardware experiment results verify the effec-
tiveness and availability of the presentedmedical image
scheme based on the memristive ring neural network.

6 Conclusion

In this paper, a MRNN with four neurons has been
proposed. Research results show that the MRNN

can generate abundant chaotic dynamics including
FPDB, RPDB, chaotic attractors, hyperchaotic attrac-
tors, coexisting attractors andmultistability. All numer-
ical results were experimentally verified by an analog
MRNN circuit. Moreover, a medical image encryption
scheme based on the proposed MRNN is designed.
Simulation results including keyspace analysis, his-
togram analysis, correlation analysis, entropy analy-
sis, key sensitivity analysis, NPCR and UACI analysis,
data loss and noise attacks analysis and SSIM analysis
demonstrate that the designed medical image encryp-
tion scheme has good security. The effectiveness of
the medical image cryptosystem was testified by the
FPGA hardware platform. The obtained results have
demonstrated that the presented MRNN-based medi-
cal image encryption can be useful in several practical
medical applications such as mobile health care ser-
vices and wireless medical networking for protecting
medical images.
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