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Abstract In this paper, a combinatorial inner syn-
chronization within a sub-network, which consists of
four-wing chaotic system with unknown parameters
and external disturbances as node dynamics, and a
combinatorial outer synchronization between differ-
ent sub-networks are investigated. Based on the Lya-
punov stability theory, LaSalle’s invariance principle,
cluster analysis, and pinning control technique, some
sufficient conditions, which can ensure not only the
combinatorial inner synchronization of the nodes with
identical node dynamics in a sub-network, but also the
combinatorial outer synchronization of the sink nodes
with identical or nonidentical ones between different
sub-networks by a suitable switch control scheme, are
obtained. By using the pinning control, only the sink
node within a sub-network which has direct connec-
tions to the sink nodes in other sub-networks needs to
be controlled. Finally, some numerical simulations are
presented to demonstrate the feasibility and validity of
the obtained results by taking the star-like topological
structure as an example.
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1 Introduction

Complex networks, which consist of a large set of
highly interconnected nodes, have been widely exist
in our real world such as World Wide Web, electri-
cal power grids, metabolic networks, biological net-
works, ecological networks, and social networks [1–5].
In order to describe the real world better, a lot of net-
work models have been introduced, such as weighted
networks [6,7], directed networks [8,9], hierarchical
networks [10,11], and community networks [6,12,13].

Synchronization, as an important and interesting
collective behavior of complex networks, has drawn
more and more attention in recent years. Up to now,
various types of synchronization methods have been
widely studied, such as projective synchronization
[14], generalized projective synchronization [15], func-
tion projective synchronization [16], modified func-
tion projective synchronization [17], combined syn-
chronization [18], and cluster synchronization [19,20].
Nearly all the above studies have focused on the syn-
chronization of only one complex network, which is
named inner synchronization. Recently, the synchro-
nization between two coupled networks, which is called
outer synchronization, has been extensively investi-
gated, and some interesting and valuable results have
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been obtained. Wu et al. [21] investigated the general-
ized outer synchronization between two different com-
plex dynamical networks. Wang et al. discussed the
outer synchronization between two time-delay-coupled
complex dynamical networks with nonidentical topo-
logical structures in [22]. Wang et al. [23] investigated
the mixed outer synchronization between two complex
networks with the same topological structure and time-
varying coupling delay. In Wu and Fu [24], an outer
synchronization between drive-response networks with
nonidentical topological structure and unknown para-
meters was achieved. However, these works on the
outer synchronization are all limited to the synchro-
nization between two networks, and there are some
difficulties to extend these methods to the synchroniza-
tion between the three or more ones. More recently, a
new kind of synchronization pattern-cluster synchro-
nization, has been proposed for the synchronization of
multiple sub-networks. It means that all of the differ-
ent sub-networks, each of which consists of identical
dynamical system, achieve synchronization individu-
ally within each sub-network, but typically the synchro-
nous states of these sub-networks are mutually differ-
ent. In fact, many technological, social, and biological
networks in our daily life can be divided naturally into
multiple sub-networks, and the nodes in the same sub-
network often have the same type of system model.
Therefore, the study of the synchronization of multiple
sub-networks via cluster analysis has become partic-
ularly important. Wu and Lu [25] have investigated a
cluster synchronization in adaptive complex dynami-
cal networks with nonidentical nodes by using a local
control method and a novel adaptive strategy for the
coupling strength of the networks. In Wu and Fu [26],
a cluster projective synchronization between commu-
nity networks with nonidentical nodes has been inves-
tigated, and some sufficient conditions for the cluster
projective synchronization have been derived. Yao et al.
[27] have investigated a new cluster projective synchro-
nization scheme in time-varying delay coupled com-
munity networks with nonidentical nodes. Wu and Fu
[28] have investigated a cluster mixed synchronization
of complex networks with nondelayed coupling based
on the linear pinning control scheme and adaptive cou-
pling strength method. However, almost all of the above
works have focused on only the study of either the inner
synchronization within the same network or the outer
synchronization between different networks. To the
best of our knowledge, there are very few papers having

investigated not only the inner synchronization but also
the outer synchronization of multiple sub-networks up
to now. As in reality, there are still some situations
that the nodes not only within the same sub-network
but also between different sub-networks need to inter-
change information with each other in a synchronous
way to accomplish a complex multifunctional task col-
lectively, and different proportionality coefficients of
the nodes in multiple sub-networks represent differ-
ent proportions in completing the complex multifunc-
tional task. Such as a synchronized multi-robot sys-
tem [29–31], in which each robot interacts with others
directly or indirectly, can accomplish a complex mul-
tifunctional task in the form of collaboration, which is
difficult to be achieved by an individual because the
collective behavior of all robots offers more flexibil-
ity and maneuverability. Therefore, it becomes partic-
ularly important and has extremely profound signifi-
cance if we can put forward a more general method to
realize the synchronization of the nodes not only within
the same sub-network but also between different sub-
networks.

On the other hand, most of the above works need too
many controllers, whose numbers are usually the same
as the nodes, how to reduce the number of controllers
for the synchronization of multiple networks is an
extremely important and meaningful task. In addition,
most of the above-mentioned works on the synchro-
nization of complex networks are considered to have
an accurate system model with ideal condition. In fact,
the ideal condition cannot be satisfied, and all the mod-
els may also be disturbed by various external factors
in many real situations, whereby it is not easy to deter-
mine all the system parameters in advance. Therefore,
estimation of unknown parameters and consideration of
external disturbance in complex networks are very nec-
essary and crucial. Motivated by these discussions, in
this paper, a combinatorial inner synchronization and
outer synchronization of complex multiple networks
with unknown parameters and external disturbances are
investigated. Based on the cluster analysis and pinning
control, a star-like topological structure that all nodes
with identical node dynamics in a sub-network connect
with each other in a certain way only leaving a sole sink
node as an interaction center to interchange information
with other sink nodes in different sub-network is pro-
posed. And only the sink node within a sub-network
that has direct connections to the others in different
sub-networks needs to be controlled. As the fact that
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every sub-network can behave independently, in the
inner synchronization phase, we only consider the syn-
chronization of the nodes within the same sub-network,
and do not consider the connections between different
sub-networks, these connections between the nodes in
different sub-networks are only considered in the outer
synchronization phase. By introducing a switch control
scheme to the sink node, we can choose different con-
nection matrices to couple the sink node and the other
nodes within the same sub-network and all the sink
nodes in different sub-networks, respectively. Some
sufficient conditions for the combinatorial inner syn-
chronization in a sub-network with unknown parame-
ters and external disturbances, and the combinatorial
outer synchronization between multiple sub-networks
with external disturbances are derived. By applying the
method to the star-like network, some numerical sim-
ulations testify the feasibility and validity of the pro-
posed method. The rest of the paper is organized as fol-
lows. The network model description and some prelim-
inaries are introduced in Sect. 2. Based on the Lyapunov
stability theory, LaSalle’s invariance principle, clus-
ter analysis and pinning control, a combinatorial inner
synchronization and outer synchronization of multiple
star-like sub-networks are discussed in Sect. 3. Several
numerical simulation results are given in Sect. 4. Some
conclusions are finally drawn in Sect. 5.

2 Model description and preliminaries

Based on the concept of birds of a feather flock
together, the nodes within the same sub-network always
have the same system model. Assume that the com-
plex network considered in this paper consists of N
nodes with m sub-networks. As the fact that the nodes
in each sub-network can perform well alone, we do
not consider the connections between different sub-
networks for the inner synchronization. Without loss
of generality, the node sets of these sub-networks are
V1 = {1, 2, . . . , r1}, V2 = {r1 + 1, . . . , r2}, . . . , Vm =
{rm−1 + 1, . . . , rm}, and we have rm = N . Let v :
{1, 2, . . . , N } → {1, 2, . . . , m}, if node i belongs to
the lth sub-network, then we have vi = l. The lth
sub-network consists of rl − rl−1 coupled identical
nodes, and we set r0 = 0, with each node being a
n-dimensional chaotic system, the corresponding node
dynamics with unknown parameters and external dis-
turbances can be described as follows:

ẋi (t) = fvi (xi (t)) + Fvi (xi (t))θi + � fi (t, xi (t))

+
rvi∑

j=rvi −1+1

ci, j x j (t), i ∈ Vvi − Ṽvi

ẋi (t) = fvi (xi (t)) + Fvi (xi (t))θi + � fi (t, xi (t))

+
rvi∑

j=rvi −1+1

ci, j x j (t) + uvi (t), i ∈ Ṽvi (1)

where xi (t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn is the
states variable, and the subscript i represents the i th
node, fvi : Rn → Rn represents a continuous nonlin-
ear function in the vi th sub-network, Fvi : Rn → Rn×p

is a vector function in the vi th sub-network, θi ∈ R p

represents the unknown parameter of node i , � fi : R×
Rn → Rn represents the external disturbances of node
i , (ci. j )(rvi −rvi−1 )×(rvi −rvi−1 ) is a zero-row-sum connec-
tion matrix, which represents the weighted strength and
the topological structure of the sub-network, in which
ci, j is defined as follows: if there is a direct connection
from node i to node j(i �= j), then ci, j �= 0, other-
wise, ci, j = 0, and the diagonal elements are given by

ci,i = −∑rvi
j=rvi −1+1, j �=i ci, j . uvi ∈ Rn is a controller

to be designed later. Vvi represents the set of nodes in
the vi th sub-network, Ṽvi denotes the set of nodes in
the vi th sub-network, in which the nodes have direct
connections with the other sink nodes in different sub-
networks.

Prior to designing the synchronizing controller
in the network, some assumptions must be noted as
follows:

A1 The unknown uncertainties� fi (xi ) are all bounded,
which means that there are some positive constants

kvi , k and αi , such that
∥∥∥
∑

i∈Vvi −Ṽvi
αi� fi (xi )

−∑
i∈Ṽvi

αi� fi (xi )

∥∥∥ ≤ kvi for the combinator-

ial inner synchronization and
∥∥∥
∑

i∈Ṽ ′
υ
αi� fi (xi )

−∑
i∈Ṽm

αi� fi (xi )

∥∥∥ ≤ k for the combinatorial

outer synchronization, where Ṽ ′
υ = {Ṽ1, Ṽ2, . . . ,

Ṽm−1}.
A2 The uncertain parameters θi are all norm-bounded,

such as ‖θi‖ ≤ δθi , where δθi are known pos-
itive constants and i = rl−1 + 1, . . . , rl; l =
1, 2, . . . , m.

A3 There is a sufficient small positive constant ε, such

that
∥∥∥θi − θ̂i

∥∥∥ ≥ ε (i = rl−1 + 1, . . . , rl; l =
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1, 2, . . . , m). Note that
∥∥∥θi − θ̂i

∥∥∥ ≥ 0, and ε is

a presupposed positive constant that can be chosen
arbitrarily small.

Remark 1 The purpose of introducing ε is to avoid the
unknown parameters from appearing in controllers and
parameters update laws.

Now, we give some definitions of the combinato-
rial synchronization of multiple sub-networks and a
lemma, which will be used later.

Definition 1 A sub-network with rl−rl−1(l = 1, 2 . . . ,

m) nodes is said to be realizing the combinato-
rial inner synchronization if there are some posi-
tive constants α j ( j = rl−1 + 1, . . . , rl), such that

lim
t→∞

∥∥∥
∑

i∈Vvi −Ṽvi
αi xi − ∑

i∈Ṽvi
αi xi

∥∥∥ = 0.

Definition 2 A large-scale complex network formed
by m sub-networks is said to be realizing the combina-
torial outer synchronization if there are some positive
constants αq(q ∈ Ṽv = {Ṽ1, Ṽ2, . . . , Ṽm}) such that

lim
t→∞

∥∥∥
∑

i∈Ṽ ′
υ
αi xi − ∑

j∈Ṽm
α j x j

∥∥∥ = 0.

Lemma 1 (Barbalat lemma) [32] If w : R+ → R+ is
a uniformly continuous function for t ≥ 0 and if the
limit of the integral lim

t→∞
∫ t

0 w(λ)dλ exists and is finite,

then lim
t→∞ w(t) = 0.

For the combinatorial inner synchronization within
the vi th sub-network, we can take the error vari-
able as evi = ∑

i∈Vvi −Ṽvi
αi xi− ∑

j∈Ṽvi
α j x j , and

then, the corresponding error dynamical system can be
described as

ėvi =
∑

i∈Vvi −Ṽvi

αi

(
fvi (xi ) + Fvi (xi )θi

+� fi (t, xi ) +
rvi∑

j=rvi −1+1

ci, j x j

)

−
∑

j∈Ṽvi

α j

(
fvi (x j ) + Fvi (x j )θ j

+� f j (t, x j ) +
rvi∑

k=rvi −1+1

c j,k xk + uvi

)
(2)

Thus, our objective is to design a suitable controller
uvi such that the error dynamical system (2) is asymp-
totically stable, i.e., lim

t→∞ evi = 0, vi ∈ {1, 2, . . . , m},

which implies that all the nodes within the vi th sub-
network have realized the combinatorial inner synchro-
nization.

After all the nodes within the same sub-network
have synchronized, all the unknown parameters have
been identified exactly; then, we can realize the combi-
natorial outer synchronization between different sub-
networks with exact system model, both the drive and
response networks can be described as

ẋi (t) = fvi (xi (t)) + � fi (t, xi (t))

+
∑

j∈Ṽv

c̃i, j x j (t), i ∈ Ṽ ′
υ

ẋi (t) = fvi (xi (t)) + � fi (t, xi (t))

+
∑

j∈Ṽv

c̃i, j x j (t) + ũ(t), i ∈ Ṽm (3)

where (c̃i · j )m×m is the zero-row-sum connection
matrix representing the weighted strength and the topo-
logical structure between different sub-networks, in
which c̃i, j is defined as follows: if there is a direct
connection from node i to node j (i �= j), then
c̃i, j �= 0, otherwise, c̃i, j = 0, and the diagonal ele-
ments are given by c̃i,i = −∑

j∈Ṽv, j �=i ci, j . ũ(t) ∈ Rn

is a designed controller for the outer synchronization
between different sub-networks. For the combinatorial
outer synchronization between multiple sub-networks,
we can take the error variable as e = ∑

i∈Ṽ ′
υ
αi xi −∑

l∈Ṽm
αl xl ; the error dynamical system can be writ-

ten as

ė =
∑

i∈Ṽ ′
υ

αi

⎛

⎝ fvi (xi ) + � fi (t, xi ) +
∑

j∈Ṽv

c̃i, j x j

⎞

⎠

−
∑

l∈Ṽm

αl

⎛

⎝ fvl (xl) + � fl(t, xl) +
∑

j∈Ṽv

c̃l, j x j + ũ

⎞

⎠

(4)

In order to ensure that each sink node in different
sub-network can realize the combinatorial outer syn-
chronization, suitable controller ũ should be designed
to make the error dynamical system (4) is asymptoti-
cally stable, i.e., lim

t→∞ e(t) = 0, which means that all

the nodes between different sub-networks have realized
the combinatorial outer synchronization.
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3 Main results for the combinatorial inner
synchronization and outer synchronization

In this section, some sufficient criteria for the combi-
natorial synchronization of multiple networks are pro-
posed based on the pinning control. As the fact that
the nodes within the same sub-network have the same
system model, they can synchronize to an identical
node, which is taken as a sink node by the inner syn-
chronization, so we only have to let the being syn-
chronized sink node as an interaction center to inter-
change information with other sink nodes in different
sub-networks. In fact, we can choose an arbitrary zero-
row-sum matrix as a connection matrix for the sub-
network with only one sink node in connection with
other ones in different sub-networks. For the sake of
simplicity, we take the star-like topological structure
as the network model in this paper, and every sub-
network has rl − rl−1(l = 1, 2, . . . , m) nodes. The
nodes in their subordinate lth sub-network are marked
as rl−1+1, . . . , rl in a counterclockwise direction from
outside to inside, and the last node in the lth sub-
network is remarked rl as the sink node, which is the
only node that has direct connection to the nodes in
different sub-networks.

3.1 Combinatorial inner synchronization
within the lth star-like sub-network

As the fact that every sub-network can behave indepen-
dently, in the inner synchronization phase, we only con-
sider the synchronization of the nodes in the same sub-
network, and do not consider the connections between
different sub-networks, these connections between the
sink nodes in different sub-networks are only consid-
ered in the outer synchronization phase. In order to real-
ize the combinatorial inner synchronization, we give
the following theorem first.

Theorem 1 For the lth star-like sub-network, if the
controller is selected as

ul = 1

αrl

⎛

⎝
rl−1∑

i=rl−1+1

αi ( fl(xi ) + Fl(xi )θ̂i

+
rl∑

q=rl−1+1

ci,q xq) − αrl fl(xrl ) − αrl Fl(xrl )θ̂rl

−
rl∑

q=rl−1+1

αrl crl ,q xq + klsign(el)

+ σl el +
rl∑

i=rl−1+1

2
(
δ2
θi

+ δθi

∥∥∥θ̂i

∥∥∥
)

ε

el

‖el‖2

⎞

⎠ (5)

where l = 1, 2, . . . , m represents the number of sub-
networks, and the corresponding parameter update
laws are selected as

˙̂
θ i = γ1

(
αi Fl

T (xi )el

+ �θi − θ̂i

ε

)
, i = rl−1 + 1, . . . , rl − 1

˙̂
θrl = γ2

(
−αrl Fl

T (xrl )el

+ �θrl − θ̂rl

ε

)
, σ̇l = γ3el

T el , (6)

where γ1, γ2, γ3 > 0, �θi = [δθi1, δθi2 , . . . δθi p ]T ∈
R p×1, δθi j is the upper bound of the j th component of
the unknown parameters θi , and δθi satisfies the con-

dition that δθi ≥
√∑p

j=1 δ2
θi j

(i = rl−1 + 1, . . . , rl).

Then, the combinatorial inner synchronization of the
nodes within the lth star-like sub-network is realized.

Proof For the lth star-like sub-network, we select the
Lyapunov function as

Vl = 1

2
eT

l el + 1

2γ1

rl−1∑

i=rl−1+1

∥∥∥θi − θ̂i

∥∥∥
2

+ 1

2γ2

∥∥∥θrl − θ̂rl

∥∥∥
2 + 1

2γ3

∥∥σl − σ ∗
l

∥∥2 (7)

where σ ∗
l is an arbitrary positive constant to be deter-

mined. Taking the derivate of Eq. (7), and substituting
Eq. (5) and Eq. (6) into Eq. (7), we can get

V̇l = el
T

⎛

⎝
rl−1∑

i=rl−1+1

αi (Fl(xi )(θi − θ̂i ) + � fi (t, xi ))

−αrl (Fl(xrl )(θrl − θ̂rl ) + � frl (t, xrl ))

−
rl∑

i=rl−1+1

2
(
δ2
θi

+ δθi

∥∥∥θ̂i

∥∥∥
)

ε

el

‖el‖2

⎞

⎠

− el
T (klsign(el) + σl el)

+ 1

γ1

rl−1∑

i=rl−1+1

(θi − θ̂i )
T
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×
(

−γ1αi Fl
T (xi )el − γ1

�θi − θ̂i

ε

)

+ 1

γ2
(θrl − θ̂rl )

T
(

γ2αrl Fl
T (xrl )el

−γ2
�θrl − θ̂rl

ε

)
+ 1

γ3
(σl − σ ∗

l )T γ3el
T el

= el
T

⎛

⎝
rl−1∑

i=rl−1+1

αi� fi (t, xi ) − αrl � frl (t, xrl )

⎞

⎠

− el
T
(

klsign(el)

+σl el +
rl∑

i=rl−1+1

2
(
δ2
θi

+ δθi

∥∥∥θ̂i

∥∥∥
)

ε

el

‖el‖2

)

−
rl∑

i=rl−1+1

(θi −θ̂i )
T �θi − θ̂i

ε
+(σl −σ ∗

l )T el
T el

= el
T

⎛

⎝
rl−1∑

i=rl−1+1

αi� fi (t, xi ) − αrl � frl (t, xrl )

⎞

⎠

− el
T
(

klsign(el) + σl el

+
rl∑

i=rl−1+1

2
(
δ2
θi

+ δθi

∥∥∥θ̂i

∥∥∥
)

ε

el

‖el‖2

)

−
rl∑

i=rl−1+1

∥∥∥θi − θ̂i

∥∥∥
2

ε

+
rl∑

i=rl−1+1

(θi − θ̂i )
T

(θi − �θi )

ε

+ (σl − σ ∗
l )T el

T el (8)

According to A2, we can easily get the following
inequalities:

(θi − θ̂i )
T (θi − �θi )

= θi
T θi − θi

T �θi − θ̂T
i θi + θ̂T

i �θi

≤ 2
(
δ2
θi

+ δθi

∥∥∥θ̂i

∥∥∥
)

, i = rl−1 + 1, . . . , rl (9)

In view of A1 and the inequalities (9), one obtains

V̇l ≤ −el
T σl el −

rl∑

i=rl−1+1

∥∥∥θi − θ̂i

∥∥∥
2

ε

+ (σl − σ ∗
l )T el

T el

≤ −
rl∑

i=rl−1+1

∥∥∥θi − θ̂i

∥∥∥
2

ε
− σ ∗

l el
T el < 0 (10)

Thus, from the inequalities (10), we have V̇l < 0.
According to the Barbalat lemma and LaSalle’s invari-
ance principle, we can easily get the largest invari-
ant set E = {el → 0, θi → θ̂i , σl → σ ∗

l , l =
1, 2, . . . , m, i = rl−1 + 1, . . . , rl} as t → ∞. ��

3.2 Combinatorial outer synchronization between
multiple star-like sub-networks

As all the unknown parameters have been exactly iden-
tified with the inner synchronization, all of the nodes
in the same or different sub-networks have exact sys-
tem models at present, but these systems may also be
disturbed by some external factors, in order to real-
ize the combinatorial outer synchronization between
different star-like sub-networks with external distur-
bances, a theorem is given at first.

Theorem 2 For multiple star-like sub-networks, the
controller can be designed as

ũ = 1

αrm

⎛

⎝
∑

i∈Z

αi

(
fvi (xi ) +

∑

j∈Ṽv

ci, j x j

)

−αrm fm(xrm )

− αrm

∑

j∈Ṽv

crm , j x j + ksign(e) + σe

⎞

⎠ (11)

where Z = {r1, r2, . . . , rm−1}, and the corresponding
parameter update law can be selected as

σ̇ = γ4eT e (12)

where γ4 > 0, then the combinatorial outer synchro-
nization of all the sink nodes between multiple star-like
sub-networks is realized. The proof is similar to the the-
orem 1, which is omitted here.

4 Numerical simulations for the combinatorial
synchronization of multiple sub-networks

In this section, we will give several numerical examples
to demonstrate the effectiveness of the theoretic results
for the combinatorial inner synchronization within the
same sub-network and outer synchronization between
different sub-networks. As the fact that not all the nodes
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Fig. 1 The topological
structure of multiple
star-like sub-networks

Fig. 2 The phase diagram
of the four-wing Yu system
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are identical since some complex networks may con-
sist of different types of nodes [33] in reality, such as a
synchronized multi-robot system, in which each robot
with different node dynamics is assigned to accom-
plish a part of the complex task with each other syn-
ergistically, and different weighting coefficients of the
robot represent different proportions in completing the
complex task, which leads to the combinatorial syn-
chronization of multiple sub-networks with identical
or nonidentical node dynamics. In the following sim-
ulations, star-like topological structure is taken as an
example, and we may as well set the network size
as N = 16. Suppose the complex network consists of
four sub-networks with identical or nonidentical node
dynamics, and every sub-network has four nodes. The
topological structure is shown in Fig. 1.

4.1 Combinatorial inner synchronization in a star-like
sub-network with unknown parameters
and external disturbances

In this paper, for convenience, we only take two differ-
ent types of four-wing chaotic systems as the local node
dynamics for different star-like sub-networks, which
are proposed by Yu et al. in [34] and Li et al. in [35],
respectively. The Yu system can be described as follows
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = yz − ax
ẏ = by − xz
ż = xy − cz + dw

ẇ = xz − f w

(13)

where a = 10, b = 12, c = 50, d = 2, f = 4, the
four-wing chaotic attractor can be shown as in Fig. 2.
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Fig. 3 The phase diagram
of the four-wing Li systems
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The other four-wing hyper-chaotic Li system can be
described as:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ax − yz + f w

ẏ = −by + xz
ż = −cz + xy + dx
ẇ = −mx

(14)

where a = 4, b = 12, c = 5.5, d = 1, f = 2.5, m =
1, the dynamical behavior of the system (14) is hyper-
chaotic, and its phase diagram is shown in Fig. 3.

For the combinatorial inner synchronization within
the same sub-network, we label the nodes from out-
side to inside, and all the nodes within a sub-network
have the same node dynamics; the star-like connection
matrix can be chosen as

C =

⎛

⎜⎜⎝

1 0 0 −1
0 1 0 −1
0 0 1 −1

−1 −1 −1 3

⎞

⎟⎟⎠ (15)

For the Yu system, the combined driver systems and
response system can be described as

ẋ1 =

⎛

⎜⎜⎝

ẋ1

ẏ1

ż1

ẇ1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y1z1 − ax1

−x1z1

x1 y1 + dw1

x1z1 − f w1

⎞

⎟⎟⎠

︸ ︷︷ ︸
f1(x1)

+

⎛

⎜⎜⎝

0 0
y1 0
0 −z1

0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F1(x1)

(
b1

c1

)

︸ ︷︷ ︸
θ1

+

⎛

⎜⎜⎝

0.1 sin(x1)

0.2 sin(y1)

0.3 sin(z1)

0.4 sin(w1)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f1(x1)

+

⎛

⎜⎜⎝

x1 − x4

y1 − y4

z1 − z4

w1 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

q=1 c1,q xq

ẋ2 =

⎛

⎜⎜⎝

ẋ2

ẏ2

ż2

ẇ2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y2z2 − ax2

−x2z2

x2 y2 + dw2

x2z2 − f w2

⎞

⎟⎟⎠

︸ ︷︷ ︸
f2(x2)

+

⎛

⎜⎜⎝

0 0
y2 0
0 −z2

0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F2(x2)

(
b2

c2

)

︸ ︷︷ ︸
θ2

+

⎛

⎜⎜⎝

0.1 cos(πx2)

−0.2 cos(π y2)

0.3 cos(π z2)

−0.4 cos(πw2)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f2(x2)

+

⎛

⎜⎜⎝

x2 − x4

y2 − y4

z2 − z4

w2 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

q=1 c2,q xq

ẋ3 =

⎛

⎜⎜⎝

ẋ3

ẏ3

ż3

ẇ3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y3z3 − ax3

−x3z3

x3 y3 + dw3

x3z3 − f w3

⎞

⎟⎟⎠

︸ ︷︷ ︸
f3(x3)

+

⎛

⎜⎜⎝

0 0
y3 0
0 −z3

0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F3(x3)

(
b3

c3

)

︸ ︷︷ ︸
θ3

+

⎛

⎜⎜⎝

0.1 sin(2πx3)

−0.2 cos(2π y3)

0.3 cos(2π z3)

−0.4 sin(2πw3)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f3(x3)

+

⎛

⎜⎜⎝

x3 − x4

y3 − y4

z3 − z4

w3 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

q=1 c3,q xq

(16)
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ẋ4 =

⎛

⎜⎜⎝

ẋ4

ẏ4

ż4

ẇ4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

y4z4 − ax4

−x4z4

x4 y4 + dw4

x4z4 − f w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
f4(x4)

+

⎛

⎜⎜⎝

0 0
y4 0
0 −z4

0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F4(x4)

(
b4

c4

)

︸ ︷︷ ︸
θ4

+

⎛

⎜⎜⎝

0.1 cos(3πx4)

0.2 sin(3π y4)

−0.3 sin(3π z4)

0.4 cos(3πw4)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f4(x4)

+

⎛

⎜⎜⎝

−x1 − x2 − x3 + 3x4

−y1 − y2 − y3 + 3y4

−z1 − z2 − z3 + 3z4

−w1 − w2 − w3 + 3w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

q=1 c4,q xq

+

⎛

⎜⎜⎝

u1

u2

u3

u4

⎞

⎟⎟⎠

︸ ︷︷ ︸
u

(17)

where the superscript i represents the i th node, the para-
meters are selected as a = 10, d = 2, f = 4, and
bi , ci (i = 1, 2, 3, 4) are unknown. The error system
can be described

e = Ax1 + Bx2 + Cx3 − Dx4

=

⎛

⎜⎜⎝

α1x1 + β1x2 + γ1x3 − m1x4

α2 y1 + β2 y2 + γ2 y3 − m2 y4

α3z1 + β3z2 + γ3z3 − m3z4

α4w1 + β4w2 + γ4w3 − m4w4

⎞

⎟⎟⎠ (18)

where A = diag(α1, α2, α3, α4),B = diag(β1, β2, β3,

β4),C = diag(γ1, γ2, γ3, γ4), D = diag(m1, m2, m3,

m4), and according to the detailed theory analysis pre-
sented in Sect. 3, we can easily realize the combi-
natorial inner synchronization within a sub-network.
In the simulation process, we take the matrices as
A = diag(3, 2, 1, 4), B = diag(2, 4, 3, 2), C =
diag(3, 2, 4, 3), D = diag(2, 3, 2, 4). The choice of
initial conditions for the drive systems and response
system is arbitrarily, which can be taken as (x10,
y10, z10, w10) = (3, −5, 6, 8), (x20, y20, z20, w20)

= (5, 7,−2, 9), (x30, y30, z30, w30) = (6,−4, 8, 10)

and (x40, y40, z40, w40) = (5, 6, 10,−6). The ini-
tial values of estimated parameters are chosen as
(b̂1, ĉ1) = (1, 1), (b̂2, ĉ2) = (1, 1), (b̂3, ĉ3) = (1, 1)

and (b̂4, ĉ4) = (1, 1). Meanwhile, we assume k1 =
2, k2 = 3, k3 = 2, k4 = 3, γ1 = 1, γ2 = 2, γ3 = 0.01,
ε = 0.1, and the initial values of the feedback factors
are selected as δ10 = 2, δ20 = 2, δ30 = 2, δ40 = 2. The
time responses of error variables and adaptive parame-
ters b̂1, ĉ1, b̂2, ĉ2, b̂3, ĉ3, b̂4, ĉ4 are shown in Figs. 4,
5 and 6, respectively. It can be seen that the syn-
chronization errors e1, e2, e3, e4 converge to zero very
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Fig. 4 Time responses of the error variables in Yu system

fast, which means that the combinatorial inner syn-
chronization of Yu system with unknown parameters
and external disturbances in the same star-like sub-
network is realized. Furthermore, the unknown para-
meters bi , ci (i = 1, 2, 3, 4) all tend to the expected
values, respectively.

For the Li system, the combined driver systems and
the corresponding response system can be described as

ẋ1 =

⎛

⎜⎜⎝

ẋ1
ẏ1
ż1
ẇ1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

ax1 − y1z1
−by1 + x1z1
−cz1 + x1 y1

−mx1

⎞

⎟⎟⎠

︸ ︷︷ ︸
f1(x1)

+

⎛

⎜⎜⎝

w1 0
0 0
0 x1
0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F1(x1)

(
f1
d1

)

︸ ︷︷ ︸
θ1

+

⎛

⎜⎜⎝

0.1 sin(x1)

0.2 sin(y1)

0.3 sin(z1)

0.4 sin(w1)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f1(x1)

+

⎛

⎜⎜⎝

x1 − x4
y1 − y4
z1 − z4
w1 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

j=1 c1, j x j

ẋ2 =

⎛

⎜⎜⎝

ẋ2
ẏ2
ż2
ẇ2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

ax2 − y2z2
−by2 + x2z2
−cz2 + x2 y2

−mx2

⎞

⎟⎟⎠

︸ ︷︷ ︸
f2(x2)

+

⎛

⎜⎜⎝

w2 0
0 0
0 x2
0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F2(x2)

(
f2
d2

)

︸ ︷︷ ︸
θ2

+

⎛

⎜⎜⎝

−0.1 cos(x2)

−0.2 cos(y2)

−0.3 cos(z2)

−0.4 cos(w2)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f2(x2)

+

⎛

⎜⎜⎝

x2 − x4
y2 − y4
z2 − z4
w2 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

j=1 c2, j x j

ẋ3 =

⎛

⎜⎜⎝

ẋ3
ẏ3
ż3
ẇ3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

ax3 − y3z3
−by3 + x3z3
−cz3 + x3 y3

−mx3

⎞

⎟⎟⎠

︸ ︷︷ ︸
f3(x3)

+

⎛

⎜⎜⎝

w3 0
0 0
0 x3
0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F3(x3)

(
f3
d3

)

︸ ︷︷ ︸
θ3
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Fig. 5 Time response of the combined variables of Yu system

+

⎛

⎜⎜⎝

0.1 sin(x3)

−0.2 cos(y3)

0.3 cos(z3)

−0.4 sin(w3)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f3(x3)

+

⎛

⎜⎜⎝

x3 − x4
y3 − y4
z3 − z4
w3 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

j=1 c3, j x j

(19)

ẋ4 =

⎛

⎜⎜⎝

ẋ4

ẏ4

ż4

ẇ4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

ax4 − y4z4

−by4 + x4z4

−cz4 + x4 y4

−mx4

⎞

⎟⎟⎠

︸ ︷︷ ︸
f4(x4)

+

⎛

⎜⎜⎝

w4 0
0 0
0 x4

0 0

⎞

⎟⎟⎠

︸ ︷︷ ︸
F4(x4)

(
f4

d4

)

︸ ︷︷ ︸
θ4

+

⎛

⎜⎜⎝

−0.1 cos(x4)

0.2 sin(y4)

0.3 cos(z4)

−0.4 sin(w4)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f4(x4)

+

⎛

⎜⎜⎝

−x1 − x2 − x3 + 3x4

−y1 − y2 − y3 + 3y4

−z1 − z2 − z3 + 3z4

−w1 − w2 − w3 + 3w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑4

j=1 c4, j x j

+

⎛

⎜⎜⎝

u1(t)
u2(t)
u3(t)
u4(t)

⎞

⎟⎟⎠

︸ ︷︷ ︸
u

(20)

where the parameters are selected as a = 4, b =
12, c = 5.5, m = 1, and fi , di (i = 1, 2, 3, 4) are
unknown. Let the error system as

e = Ax1 + Bx2 + Cx3 − Dx4

=

⎛

⎜⎜⎝

α1x1 + β1x2 + γ1x3 − m1x4

α2 y1 + β2 y2 + γ2 y3 − m2 y4

α3z1 + β3z2 + γ3z3 − m3z4

α4w1 + β4w2 + γ4w3 − m4w4

⎞

⎟⎟⎠ (21)

Similar to the combinatorial inner synchronization of
the Yu system, in the simulation process, we take the
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Fig. 6 Time response of the update parameters b1, c1, b2, c2, b3, c3, b4, c4 for Yu system

matrices as A = diag(3, 2, 1, 4), B = diag(2, 3, 3, 2),
C = diag(3, 2, 4, 3), D = diag(2, 3, 2, 1). The initial
conditions for the drive systems and response system
can be given as (x10, y10, z10, w10) = (4,−5, 12,−8),
(x20, y20, z20, w20) = (6, 8,−2, 10), (x30, y30, z30,

w30) = (5,−4, 8, 16) and (x40, y40, z40, w40) =
(2, 6, 10,−4). The initial values of estimated para-
meters are chosen as ( f̂1, d̂1) = (1, 1), ( f̂2, d̂2) =
(1, 1), ( f̂3, d̂3) = (1, 1), and ( f̂4, d̂4) = (1, 1). Mean-
while, we assume k1 = 2, k2 = 3, k3 = 2, k4 = 3, γ1 = 1,
γ2 = 1, γ3 = 0.02, ε = 0.1, and the initial values of the
feedback gains are selected as σ10 = 2, σ20 = 2, σ30 =
2, σ40 = 2. The time responses of error variables
and adaptive parameters f̂1, d̂1, f̂2, d̂2, f̂3, d̂3, f̂4, d̂4

are shown in Figs. 7, 8 and 9, respectively. From

these figures, we can easily get that the synchroniza-
tion errors e1, e2, e3, e4 converge to zero very quickly,
which means that the combinatorial inner synchroniza-
tion of Li system with unknown parameters and exter-
nal disturbances in the same star-like sub-network is
realized. As anticipated from theoretic results, the esti-
mated parameters f̂i , d̂i (i = 1, 2, 3, 4) finally coincide
with the unknown parameters fi , di (i = 1, 2, 3, 4).
The reported results remain consistent for other arbi-
trary initial conditions.

Remark 2 As the fact that each sub-network can per-
form well alone at the same time, all the unknown para-
meters of the nodes in multiple sub-networks can be
identified exactly in the inner synchronization phase.
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Fig. 7 Time responses of the synchronized error variables for
Li system

Unlike the methods in [36–39], the method proposed
in this paper is to add an auxiliary item that is related
to the corresponding unknown parameters to the para-
meter update laws, which proves to be not dependent
on the selection of initial parameters. That is to say the
adaptive method in this paper is free from the restriction
that the closer to its real value for the initial parameter,
the better of the synchronous performance. From the
Figs. 4, 6, 7 and 9, we can see that the method proposed
in this paper can perform very well with arbitrary initial
values. Furthermore, it needs very short of time in real-
izing the combinatorial synchronization, and the trajec-
tory is tending to more smooth and steady compared
with the previous method as Figs. 10, 11, 12 and 13.
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Fig. 8 Time response of the combined variables of Li system
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Fig. 9 Time response of the update parameters f1, d1, f2, d2, f3, d3, f4, d4 for Li system
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Fig. 10 Time responses of the error variables for Yu system with
the general method

4.2 Combinatorial outer synchronization between
multiple star-like sub-networks with external
disturbances

From the Sect. 4.1, we know that all of the system
parameters are identified, but the systems may also be
disturbed by some external disturbances unavoidably.
For the outer synchronization between different sub-
networks, the connection matrix is chosen as

C =

⎛

⎜⎜⎝

1 −1 0 0
0 1 −1 0
0 1 1 −1

−1 0 0 1

⎞

⎟⎟⎠ (22)

For convenience, we just select two different types of
systems as the node dynamics in this paper, we assume
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Fig. 11 Time response of the update parameters b1, c1, b2, c2, b3, c3, b4, c4 for Yu system with the general method

there are three identical sub-networks in which the
nodes are constructed by Yu system and only one non-
identical sub-network in which the nodes is composed
of Li system. The combinatorial outer synchronization
of multiple drive systems and one response system can
be written as

ẋ1 =

⎛

⎜⎜⎝

ẋ1

ẏ1

ż1

ẇ1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−a1x1 + y1z1

b1 y1 − x1z1

x1 y1 + d1w1 − c1z1

x1z1 − f1w1

⎞

⎟⎟⎠

︸ ︷︷ ︸
f1(x1)

+

⎛

⎜⎜⎝

0.1 sin(x1)

0.2 sin(y1)

0.3 sin(z1)

0.4 sin(w1)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f1(x1)

+

⎛

⎜⎜⎝

x1 − x2

y1 − y2

z1 − z2

w1 − w2

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑

c̃1, j x j
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Fig. 12 Time responses of the synchronized error variables for
Li system with general method
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Fig. 13 Time response of the update parameters f1, d1, f2, d2, f3, d3, f4, d4 for Li system with the general method

ẋ2 =

⎛

⎜⎜⎝

ẋ2

ẏ2

ż2

ẇ2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−a1x2 + y2z2

b1 y2 − x2z2

x2 y2 + d1w2 − c1z2

x2z2 − f1w2

⎞

⎟⎟⎠

︸ ︷︷ ︸
f2(x2)

+

⎛

⎜⎜⎝

−0.1 cos(2πx2)

−0.2 cos(2π y2)

−0.3 cos(2π z2)

−0.4 cos(2πw2)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f2(x2)

+

⎛

⎜⎜⎝

x2 − x3

y2 − y3

z2 − z3

w2 − w3

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑

c̃2, j x j

ẋ3 =

⎛

⎜⎜⎝

ẋ3

ẏ3

ż3

ẇ3

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−a1x3 + y3z3

b1 y3 − x3z3

x3 y3 + d1w3 − c1z3

x3z3 − f1w3

⎞

⎟⎟⎠

︸ ︷︷ ︸
f3(x3)

+

⎛

⎜⎜⎝

0.1 sin(3πx3)

0.2 cos(3π y3)

0.3 sin(3π z3)

0.4 cos(3πw3)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f3(x3)

+

⎛

⎜⎜⎝

x3 − x4

y3 − y4

z3 − z4

w3 − w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑

c̃3, j x j

(23)

ẋ4 =

⎛

⎜⎜⎝

ẋ4

ẏ4

ż4

ẇ4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

a2x4 − y4z4 + k2w4

−b2 y4 + x4z4

−c2z4 + x4 y4 + d2x4

−m2x4

⎞

⎟⎟⎠

︸ ︷︷ ︸
f4(x4)

+

⎛

⎜⎜⎝

−0.1 cos(4πx4)

−0.2 sin(4π y4)

0.3 cos(4π z4)

0.4 sin(4πw4)

⎞

⎟⎟⎠

︸ ︷︷ ︸
� f4(x4)
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Fig. 14 Time responses of the combinatorial outer synchroniza-
tion error of multiple star-like sub-networks

+

⎛

⎜⎜⎝

−x1 + x4

−y1 + y4

−z1 + z4

−w1 + w4

⎞

⎟⎟⎠

︸ ︷︷ ︸
∑

c̃4, j x j

+

⎛

⎜⎜⎝

ũ1(t)
ũ2(t)
ũ3(t)
ũ4(t)

⎞

⎟⎟⎠

︸ ︷︷ ︸
ũ

(24)

During the simulation process, we take the matrices
as A = diag(2, 1, 3, 4), B = diag(2, 3, 1, 2), C =
diag(2, 4, 2, 3), D = diag(4, 2, 3, 2). The choice of
initial conditions for the drive systems and response
system is arbitrary, which can be taken as (x10, y10,
z10, w10) = (2, 5, 6, −8), (x20, y20, z20, w20)

= (5, 10, 4, 9), (x30, y30, z30, w30) = (4,−8, 12, 6)

and (x40, y40, z40, w40) = (5,−8, 4, 18). The time
responses of error variables are shown in Fig. 14. It can
be seen that the synchronization errors e1, e2, e3, e4

converge to zero very quickly, which means that the
combinatorial outer synchronization between different
multiple star-like sub-networks with external distur-
bances is realized.

Remark 3 The topological structure of the sub-network
in this paper can be extended to other more general net-
work structure, only under the condition of leaving a
being synchronized sink node as an interaction center
to contact with other ones in different sub-networks.

5 Conclusions

As it is known to all that in complex networks, the nodes
in the same or different sub-networks may also need to
exchange information with each other in a synchronous

way to accomplish a complex task collectively, such as
a synchronized multi-robot system, in which each robot
with different weighting coefficient interacts with oth-
ers directly or indirectly, can accomplish a complex
multifunctional task in the form of collaboration, which
is difficult to be achieved by an individual because the
collective behavior of all robots offers more flexibility
and maneuverability. Motivated by this discussion, in
this paper, we proposed a more general method, which
can realize not only the combinatorial inner synchro-
nization within a star-like sub-network, but also the
combinatorial outer synchronization between differ-
ent star-like sub-networks by a suitable switch control
scheme. The switch control scheme can be set as a time
trigger or an event trigger. Each star-like sub-network
has only one response system as an interaction center
to contact with not only the nodes within the same sub-
network but also other interaction centers in different
sub-networks. The sink node is assigned to coordinate
with the other nodes, which belong to the same sub-
network with the sink node, to realize the combina-
torial inner synchronization independently at first. As
the fact that every sub-network performs well alone at
the same time for the combinatorial inner synchroniza-
tion, and the time of the synchronization is finite, so
we can set a suitable time threshold. Once it achieves
at the scheduled time threshold, the interaction center
will switch to contact with other interaction centers in
different sub-networks for the combinatorial outer syn-
chronization, which means that the proposed switch
control scheme is fit for not only the synchronization
within a sub-network but also between different sub-
networks. By introducing a star-like topological struc-
ture that all nodes with identical node dynamics in a
sub-network connect with each other in a certain way,
only leaving a sole sink node as an interaction cen-
ter to interchange information with other sink nodes in
different sub-network, we only need to one controller
for the individual sub-network in realizing the combi-
natorial inner synchronization and one controller for
the combinatorial outer synchronization between dif-
ferent sub-networks. Based on the Lyapunov stability
theory, LaSalle’s invariance principle, cluster analy-
sis, and pinning control, some sufficient conditions
for the combinatorial inner synchronization in a sub-
network with unknown parameters and external distur-
bances, and the combinatorial outer synchronization
between multiple sub-networks with external distur-
bances are derived. Some numerical simulations ver-
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ify the correctness and effectiveness of our theoretic
analysis.

The main features distinguishing our work from the
previous ones are that: (1) Most of the previous works
focus on only either the inner synchronization within
a network or the outer synchronization between dif-
ferent networks, while in reality, there are still some
situations that the nodes not only within the same net-
work but also between different sub-networks also need
to interchange information with each other in a syn-
chronous way. Therefore, it seems particularly impor-
tant to study the synchronization of the nodes not only
within the same sub-network but also between differ-
ent sub-networks. (2) As the fact that the nodes in each
sub-network have the same system model, and they
can synchronize to an identical node, which is taken as
a sink node with the inner synchronization, we only
have to let the being synchronized sink node as an
interaction center to interchange information with other
sink nodes in different sub-networks. In fact, we can
choose an arbitrary zero-row-sum matrix as a connec-
tion matrix for the individual sub-network with only
one sink node in connection with other sink nodes. In
this paper, we just take the star-like topological struc-
ture as an example to testify the feasibility and valid-
ity of the proposed scheme. (3) As the previous works
need too many controllers, whose numbers are usu-
ally the same as the nodes, while in this paper, we
only need to one controller for the individual sub-
network in realizing the combinatorial inner synchro-
nization, and one controller for the combinatorial outer
synchronization between different sub-networks with
a suitable switch control scheme. (4) In the parame-
ter estimation stage, unlike the previous methods, the
method proposed in this paper is to add an auxiliary
item that is related to the corresponding unknown para-
meters to the parameter update laws, which proves to
be not dependent on the selection of initial parame-
ters. That is to say the adaptive method in this paper
has good immunity on the selection of initial parame-
ters. (5) The proposed method is simple and typical in
the reality and applied to a majority of fields such as
technological, social, and biological networks. Further-
more, all of the sub-networks can perform well alone
at the same time, and the nodes are setting with dif-
ferent weight coefficients according to its role in the
whole synchronous process, which is more in line with
the actual and has much more research value in the
reality.
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