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Abstract. In this paper, we construct a novel, 4D smooth autonomous system. Compared to the
existing chaotic systems, the most attractive point is that this system does not display any equilib-
ria, but can still exhibit four-wing chaotic attractors. The proposed system is investigated through
numerical simulations and analyses including time phase portraits, Lyapunov exponents, bifurca-
tion diagram, and Poincaré maps. There is little difference between this chaotic system without
equilibria and other chaotic systems with equilibria shown by phase portraits and Lyapunov expo-
nents. But the bifurcation diagram shows that the chaotic systems without equilibria do not have
characteristics such as pitchfork bifurcation, Hopf bifurcation etc. which are common to the normal
chaotic systems. The Poincaré maps show that this system is a four-wing chaotic system with more
complicated dynamics. Moreover, the physical existence of the four-wing chaotic attractor without
equilibria is verified by an electronic circuit.
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1. Introduction

Chaos theory has greatly developed in the past 40 years since Lorenz found the chaotic
system in 1963 [1]. Many widely-known chaotic systems have been discovered, such as
Lorenz [1], Rössler [2], Chua [3], Chen [4] and some other multiwing chaotic systems
such as three wings and/or four wings etc. [5,6]. These classical attractors are excited
from unstable equilibria. The equilibrium is very important for showing chaotic attractors,
especially for showing multiple wings or scrolls.

Recent studies have involved classifying chaotic attractors as either self-excited attrac-
tor or hidden attractor [7–11]. A self-excited attractor has a domain of attraction that is
associated with unstable equilibrium. The equilibrium plays many important roles. The
central analytic criteria for the occurrence of chaos in these conventional chaotic systems

Pramana – J. Phys., Vol. 86, No. 4, April 2016 801

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-015-1118-1-x&domain=pdf


Yuan Lin et al

are based on Shil’nikov [12,13] and Silva [14] methods. However, a hidden attractor has a
domain of attraction that is not associated with any equilibrium points. Thus, chaotic flow
with no equilibrium or with only stable equilibrium is bound to have a hidden attractor.
Hidden attractors have important engineering applications because they allow unexpected
and potentially disastrous responses to perturbations in a structure like a bridge or an
airplane wing. Some examples of hidden attractors with only stable equilibria, such as
modified Chua systems [8,9], a 3D autonomous quadratic system with only one stable
equilibrium [15], a 3D chaotic system with only two stable node-foci [16], a generalized
Sprott C system with two stable equilibria [17], have been reported. Several examples
of a hidden attractor with no equilibria have also been reported in the literature, such as
the perturbed Sprott D system with no equilibria [18], a hidden hyperchaotic attrac-
tor with no equilibria [19], fractional-order chaotic systems without equilibrium point
[10,20]. However, all of these hidden attractors with no equilibria can only generate two-
wing chaotic attractor at most. To our knowledge, there is no report about the existence of
four-wing chaotic attractor without equilibrium point.

Based on these considerations, we construct a novel 4D smooth autonomous system.
Compared with the existing chaotic systems, the most attractive point is that the model
does not display any equilibria, but can exhibit four-wing chaotic attractor. The proposed
system is investigated using numerical simulations and analyses including time-phase
portraits, Lyapunov exponents, bifurcation diagram and Poincaré maps. The physical
existence of the four-wing chaotic attractor without equilibria is verified by an electronic
circuit.

This paper is organized as follows. In §2, the proposed dynamic system is studied by
numerical and theoretical analyses. In §3, the oscillator circuit is designed for implemen-
tation. In §4, we draw our conclusions.

2. The proposed 4D dynamical system

The model to be investigated in this paper can be described as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = a1x − yz−d1,

ẏ = −b1y + xz + w,

ż = −c1z + xy,

ẇ = −e1x.

(1)

Here x, y, z,w are state variables, a1, b1, c1, d1 and e1 are known non-negative constants.
If there are equilibria for system (1), they can be obtained by solving: ẋ = 0, ẏ = 0, ż =
0 and ẇ = 0. But the equations have no solution. Hence, in system (1), there is no
equilibrium.

2.1 Four-wing chaotic system without equilibria

In this paper, the numerical simulations are carried out using MATLAB. The fourth-order
Runge–Kutta integration algorithm was performed to solve differential equations. The
initial condition is set to [1, 1, 1, 1]T . The new system can display a four-wing chaotic
attractor if the parameters are properly chosen. Setting the parameters (a1, b1, c1, d1, e1) =
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Figure 1. Phase portraits of the four-wing chaotic attractor: (a) x–z plane; (b) y–z

plane; (c) x–y plane; (d) x–y–z space.

(4, 12, 5.5, 10, 0.5), as seen in figure 1, the system has generated a four-wing chaotic
attractor.

2.2 Lyapunov spectra

When the parameters (a1, b1, c1, d1) = (4, 12, 5.5, 10) are fixed, while parameter e1 is
varied, the spectra of maximum Lyapunov exponents are obtained as shown in figure 2.
From figure 2, we see that the maximum Lyapunov exponent is positive, which implies
that the system is chaotic.

Remark. The positive Lyapunov exponents are widely used nowadays as an indication
of chaotic behaviour in a system. While this fact is widely used and is correct for most of
the systems, in general case for a particular system it may be not true, e.g., the so-
called Perron effects of Lyapunov exponents sign reversal. For rigorous use of Lyapunov
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Figure 2. The spectrum of maximum Lyapunov exponents of system (1) with respect
to e1.
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exponents, one has to check the conditions of Oseledets theorem (to prove ergodicity, etc.)
which is a very difficult task [21].

2.3 Bifurcation diagram and Poincaré map

When the parameters (a1, b1, c1, d1) = (4, 12, 5.5, 10) are fixed, while parameter e1 is
varied, the corresponding bifurcation diagram of state x with respect to e1 is obtained as
shown in figure 3. From figure 3, we see that there are no characteristics as the common
chaotic systems with equilibia such as pitchfork bifurcation and Hopf bifurcation.

The Poincaré map can reflect bifurcation and folding properties of chaos. We have
taken different cross-sections and the system parameters are set to (a1, b1, c1, d1, e1) =
(4, 12, 5.5, 10, 0.5). Figure 4 shows projections of the Poincaré map on different cross-
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Figure 3. Bifurcation diagram of the state variable x vs. parameter e1.
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Figure 4. Poincaré maps of the four-wing hyperchaotic attractor with parameters
a1 = 4, b1 = 12, c1 = 5.5, d1 = 10, e1 = 0.5, on different cross-sections
x = 0, y = 0, z = 0, w = 0.

804 Pramana – J. Phys., Vol. 86, No. 4, April 2016



A novel four-wing non-equilibrium chaotic system

sections: x = 0; y = 0; z = 0;w = 0, one can see that the Poincaré map here consists
of several limbs with various bifurcations in different directions, which indicates that the
system has extremely rich dynamics. Also, the Poincaré maps show that the branches
are joined and united as a single attractor. This proves the existence of four-wing chaotic
attractor with more complicated dynamics.

3. Circuit implementation

In this section, an electronic circuit is designed to realize system (1). According to figure 1,
the maximum of state variables is 100. To prevent the operational amplifiers and analogue
multipliers from saturation, the linear transformation x = 10x2, y = 10y2, z = 10z2 and
w = 10w2 can be used and the minification is 10. System (1) with (a1, b1, c1, d1, e1) =
(4, 12, 5.5, 10, 0.5) will be changed to

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = a2x2 − y2z2−d2,

ẏ = −b2y2 + x2z2 + w2,

ż = −c2z2 + x2y2,

ẇ = −e2x2,

(2)
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Figure 5. Circuit diagram to realize the chaotic attractor of the novel system.
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Figure 6. Experimental observations of the chaotic attractor: (a) x–z plane (1 V/Div,
1 V/Div), (b) y–z plane (1 V/Div, 2 V/Div), (c) x–y plane (1 V/Div, 1 V/Div).

where (a2, b2, c2, d2, e2) = (4, 12, 5.5, 1, 0.5). Clearly, since the linear revertible trans-
form does not change the structure of the state space, such an amplitude reduction keeps
the pattern of the attractor. The designed circuit realizing (2) is presented in figure 5.
The resistors in figure 5 are chosen as R3 = R6 = R8 = 10 K�,R1 = 250 K�,R2 =
100 M�,R4 = 83.3 K�,R5 = 100 K�,R7 = 181.8 K�,R9 = 2M�. The voltage
is chosen as V1 = 1 V. The operational amplifiers are of type LT082 and the multi-
pliers are of type AD633 with an output coefficient of 0.1. The power is supplied by
15 V. The experimental observations from the analogue oscilloscope are shown in
figure 6. This experiment shows that the system with the above-mentioned parameters
can generate a real four-wing chaotic attractor. Comparing the numerical simulation and
the circuit experimental results, it can be declared that a very good qualitative agreement
between the two parts has been confirmed.

4. Conclusion

In this paper, a novel four-wing non-equilibrium chaotic system is introduced. The
dynamic behaviour is analysed and the presence of four-wing chaotic attractor in the
absence of equilibria is validated. Besides that, an oscillator circuit is designed to verify
that the system without equilibrium point can generate a four-wing chaotic attractor. On
account of the complicated topological structures, the proposed four-wing chaotic system
without equilibrium may be further studied theoretically and has a promising application
in the field of information technology such as secure communication and encryption.
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