Current-mode multi-scroll chaos generator employing CCCII

Yuan Lin* and Chunhua Wang

Current-mode multi-scroll chaos generator is introduced. It uses second generation current controlled current conveyor (CCII) and produces current output chaotic signals. PSPICE simulations show that current-mode multi-scroll chaos generator can generate more scroll chaotic attractors with high frequency and low voltage.

Introduction: With increasing of chaotic signal applications, demand on chaos generator that is simple, low voltage and wider frequency range is increasing [1]. In order to improve the frequency characteristics of chaotic attractors, researchers have tried to use current-mode devices to implement high frequency chaos generators. The current-mode devices used for chaos generators mainly include operational trans-conductance amplifier [2, 3], current feedback operational amplifier [4, 5], or CCII etc., [6–8]. However, the existing chaos generators mostly provide voltage output chaotic signal rather than current output chaotic signal of wider dynamic range and band, hence it is difficult to generate high frequency chaotic attractors with many scrolls. Furthermore, the current signal is easy to design adders and integrators etc., so that current-mode chaotic circuit is more simple and effective [9].

We propose an efficient current-mode multi-scroll chaos generator employing CMOS second generation current controlled current conveyor (CCII). PSPICE simulations show that the proposed current-mode chaos generator can generate more scroll chaotic attractors with high frequency. Centre of the spectrum is about 3.3 MHz.

Current-mode multi-scroll chaos generator: As shown in Fig. 1, the circuit includes three current integrators and current staircase sequence function employing CCII. There is no passive resistance in main circuit. It is suitable for integrated circuit realisation.

![Fig. 1 Current-mode chaos generator employing CCII](image)

CCII symbol is shown in Fig. 2. The ideal terminal characteristics of CCII may be written as: \(V_x = V_y, I_x = I_y, I_z = -I_y, I_u = 0 \). \(I_u \) is the biasing current. It controls input resistance \(R_i \) of inverting terminal \(X \).

![Fig. 2 Symbol of CCII](image)

Considering the main parasitic effect of CCII is \(R_{in} (i = 1, 2, 3) \) [9], it is tunable by \(b_i \). Thus the proposed current-mode multi-scroll chaos generator may be modelling in mathematics by the following equations:

\[
\begin{align*}
I_1 &= -\frac{I_2}{C_1 \cdot R_{in}} \\
I_2 &= -\frac{I_3}{C_2 \cdot R_{in}} \\
I_3 &= -\frac{I_1}{C_3 \cdot R_{in}} - \frac{I_2}{C_3 \cdot R_{in}} - I_3 + \frac{f(I_1)}{C_3 \cdot R_{in}}
\end{align*}
\]

Which are third-order non-linear differential equations including current state variables \(I_1, I_2, I_3 \) and current staircase sequence function \(f(I_1) \).

The current staircase sequence function can be realised by employing CCII, as shown in Fig. 3.

![Fig. 3 Current staircase sequence function circuit](image)

In Fig. 3, \(A_1 \) and \(A_2 \) realise \(I \), convert to \(V \). The voltage gain of \(A_1 \) is:

\[
V_x = \frac{2}{Z_{1}} \cdot \frac{Z_{1}}{Z_{2}} \cdot \frac{I_x}{Z_{2}} = \frac{I_x}{Z_{1}}
\]

The output current of \(A_1 \) is:

\[
i_1 = V(u) - 0 = \frac{|V_{sat}| \cdot |V_x|}{R_{v}} = \frac{|V_{sat}| \cdot (I_x - E_1)}{R_{v}}
\]

Some basic cells are connected in parallel as shown in Fig. 3 to obtain the current staircase sequence function:

\[
I_u = \sum_{j=1}^{N} I_j = \sum_{j=1}^{N} |V_{sat}| \cdot \frac{I_j}{R_{v}}
\]

Set \(R_1 = R_2 = R_3 = 1 \) KΩ, \(C_1 = C_2 = 100 \) pF, \(C_3 = 143 \) pF, \(x = I_1 \), \(y = I_2 \), \(z = I_3 \), \(t = \frac{R_1}{C_1}, \ dx = \frac{R_1}{C_1} dt \), \(a = C_3 \), \(\xi \) can be written as:

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= z \\
\dot{z} &= -a \cdot (x + y + z - f(x))
\end{align*}
\]

This is Jerk equations, where \(a = 0.7 \). Comparing (1)–(5), we can get: \(f(x) = f(I_1) \). Which is current staircase sequence function, can denote as:

\[
f_1(I_1) = \xi \sum_{j=0}^{M} \text{sgn}(RI_1 + 2j\xi) + \text{sgn}(RI_1 - 2j\xi) - \text{sgn}(RI_1)
\]

or

\[
f_2(I_1) = \xi \sum_{j=0}^{N} \text{sgn}(RI_1 + (2j + 1)\xi) + \text{sgn}(RI_1 - (2j + 1)\xi)
\]

where \(M \) or \(N \) is integer, \(\xi = E_1 = V_{sat}/R_{v} \). Considering \(f(x) \in \{f_1(x), f_2(x)\} \), system (5) can generate \(2(M+1) \) scroll or \(2(N+3) \) scroll chaotic attractors.

![Fig. 4 CMOS structure of CCII](image)

PSPICE simulations: The contrivable CCII is shown in transistor level in Fig. 4. We use TMSC 0.18 µm CMOS technology transistor models, set the supply voltage as ±1.5 V, \(b_i = 100 \) µA.
Taking $R_1 = R_2 = R_3 = 1 \, k\Omega$, $C_1 = 100 \, pF$, $C_2 = 100 \, pF$, $C_3 = 143 \, pF$, simulation shows that $\pm |V_{sat}|$ is about $\pm 1.5 \, V$. Setting $R_s = 400 \, k\Omega$, the parameters of current staircase sequence function for generating 20-scroll chaotic attractors are presented in Table 1.

<table>
<thead>
<tr>
<th>E_1</th>
<th>E_2/E_3</th>
<th>E_4/E_5</th>
<th>E_6/E_7</th>
<th>E_8/E_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>±10 mV</td>
<td>±10 mV</td>
<td>±10 mV</td>
<td>±10 mV</td>
</tr>
<tr>
<td>±50 mV</td>
<td>±60 mV</td>
<td>±60 mV</td>
<td>±70 mV</td>
<td>±80 mV</td>
</tr>
</tbody>
</table>

According to $I_1 = V_{c1}/R_{s1}$, $I_2 = V_{c2}/R_{s2}$, $I_3 = V_{c3}/R_{s3}$, $R_{s1} = R_{s2} = R_{s3}$, by scale transformation, the voltages $(V_{c1}$, V_{c2}, V_{c3}) satisfy Jerk equations too. PSPICE simulation is shown in Fig. 5. 20-scroll chaotic attractors are generated by the proposed current-mode chaos generator. However, at most 14-scroll chaotic attractors can be physically generated in one direction in the existing literature.

![PSPICE simulation of 20-scroll chaotic attractors](image1)

Fig. 5 PSPICE simulation of 20-scroll chaotic attractors

As shown in Fig. 6, the centre of chaos spectrum is about 3.3 MHz.

![PSPICE simulation of chaos spectrum](image2)

Fig. 6 PSPICE simulation of chaos spectrum

Conclusion: A current-mode multi-scroll chaos generator employing CCCII and produces current output chaotic signals is introduced. The proposed chaos generator is composed of current integrators and current staircase sequence function. PSPICE simulations are verified that the current-mode chaos generator can generate more scroll chaotic attractors with high frequency and low voltage.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (grant no. 61571185), the General Project of Hunan Provincial Education Department (grant no.15C0328), the Youth Key Project of Hunan Institute of Engineering (grant no. XJ1501).

© The Institution of Engineering and Technology 2016

Submitted: 18 April 2016
E-first: 27 June 2016
doi: 10.1049/el.2016.1329

Yuan Lin (College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411104, People’s Republic of China)
E-mail: 153190675@qq.com
 Chunhua Wang (College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, People’s Republic of China)

References

