Int. J. Bifurcation Chaos 2019.29. Downloaded from www.worldscientific.com
by UNIVERSITY OF MICHIGAN FLINT on 08/31/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

International Journal of Bifurcation and Chaos, Vol. 29, No. 9 (2019) 1950117 (4] pages)
© World Scientific Publishing Company
DOI: 10.1142/50218127419501177

Multiscroll Hyperchaotic System with Hidden
Attractors and Its Circuit Implementation

Xin Zhang* and Chunhua Wang’

College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, P. R. China
*zhangxin2302@126.com
fweh1227164@hnu. edu. cn

Received July 12, 2018; Revised November 6, 2018

Based on the study on Jerk chaotic system, a multiscroll hyperchaotic system with hidden
attractors is proposed in this paper, which has infinite number of equilibriums. The chaotic
system can generate N+ M +2 scroll hyperchaotic hidden attractors. The dynamic characteristics
of the multiscroll hyperchaotic system with hidden attractors are analyzed by means of dynamic
analysis methods such as Lyapunov exponents and bifurcation diagram. In addition, we have
studied the synchronization of the system by applying an adaptive control method. The hardware
experiment of the proposed multiscroll hyperchaotic system with hidden attractors is carried out
using discrete components. The hardware experimental results are consistent with the numerical

simulation results of MATLAB and the theoretical analysis results.
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1. Introduction

In the past, chaos has been widely studied for its
complex and interesting nonlinear dynamic behav-
iors |Lorenz, 1963; |Chua et all, 11986 Sprott, M]
Chaos has been proved to be applicable to various
fields, such as neural networks [Swathy & Thamil-

maran, w], image encryption [Boriga et al), 2014;
Wang & Zhang, 2016 [Zhou et all, ] and secure
communication !Filali et alJ, M; Wu et alJ, M]

In order to increase the dynamic complexity of
chaotic system and better apply it to related fields,
the related researchers have constructed a variety of

complex chaotic s sten%ﬂ%ﬂd{ Zhang
et al.m‘, ]. The multiscroll and

multiwing hyperchaotic systems have been studied
extensively because of their complex dynamic char-

acteristics [Wang et alJ, |2Qllﬂ; Wang et al |, |2Ql_7ﬂ;
Bao_et_all, 2017; [Zhang & Wang, 2019; Zhou et all,
2014, 017).
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From the perspective of calculation, attractors
in chaotic systems can be divided into two types:
self-excited attractors and hidden attractors

[Leonov & Kuznetsov, 2013]. The chaotic system

with hidden attractors was first found and analyzed
in ILeonov et _al., M] The general definition of
chaotic system with hidden attractors is that the
hidden attractor has a basin of attraction that does
not intersect with neighborhoods of equilibriums
[lmn.muj_aﬂ, |20_1_].|, 120_].2; EﬁmmL&LKlenﬂsoszl,
12013; [Leonov et all, 2014]. According to the number
and type of equilibriums, the chaotic system with
hidden attractors includes three main types: hid-
den attractor with only stable equilibrium, hidden
attractor without equilibrium, and hidden attrac-
tor with infinite number of equilibriums [Pham
et al.,2017a]. The chaotic systems with only stable

equilibrium were proposed in Molale et al
Wang & Qheg, and [Wang Wang et all
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where 23 chaotic systems with only stable equilib-
rium were found in ' , 2013], aided by
computer search algorithms. Similarly, using com-
puter search algorithms, 17 chaotic systems with-
out equilibrium were discovered [Jafari et all,12013].
Some other diverse chaotic or hyperchaotic sys-
tems without equilibrium were reported in [Borah &

Roy, 2017; Pham et all, 2017b; (Wang & Chen,
2012; [Wang et _al), 2012: Khan & Shikha, 2018;
Singh & Roy, 2018; Hu et all, 2016; [Hu et all,
12017; [Escalante-Gonzalez et all, 2017]. Accord-
ing to the published literatures, the chaotic or
hyperchaotic systems with infinite number of equi-
libriums include the following types (including
but not limited to): the equilibriums linearly dis-
tributed |Zhou et alJ, M; Jafari & SDrotﬂ, m;
Zhon & Yang, :_circularly distributed [Got-
thans & Petrzela. |2015]; squarely distributed [Got-
thans_et_al.. 1201 |: elliptically distributed [Pham
et al., 120164] and curvilinear distributed [Chen &
Yang, [2015; Pham_et al., 2016b)].

On the whole, in the literatures that have been
reported, the chaotic systems with hidden attrac-
tors that can generate any number of scrolls are
not hyperchaotic, whereas the hyperchaotic systems
with hidden attractors cannot generate any number
of scrolls. So far, no literature has reported a multi-
scroll hyperchaotic system with hidden attractors,
and the reported multiscroll chaotic systems with
hidden attractors have the disadvantage of being
unfavorable to circuit implementation.

Compared with general chaotic systems with
hidden attractors, multiscroll hyperchaotic systems
with hidden attractors have more complex dynamic
characteristics, so they are more suitable for the
application of chaotic secure communication and
chaotic image encryption, etc. However, it is hard
to obtain multiscroll hyperchaotic systems with
hidden attractors by using the general method
of constructing multiscroll chaotic systems. There-
fore, researching how to construct multiscroll hyper-
chaotic systems with hidden attractors can not only
enrich the types of chaotic systems used in chaotic
secure communication, chaotic image encryption
and other applications, but can also further pro-
mote the researchers’ understanding of chaotic sys-
tems with hidden attractors. It is still necessary to
study how to use the existing chaotic systems to
obtain multiscroll hyperchaotic systems with hid-
den attractors that are easy to be implemented
by circuits. Therefore, it is of great significance to

study multiscroll hyperchaotic systems with hidden
attractors and this paper is carrying out the related
research.

The next section describes the mathematical
model of the new multiscroll hyperchaotic system
with hidden attractors. The dynamic characteristics
and the synchronization example of the system are
studied in Sec. 3. We conduct the hardware circuit
design and show the experimental results in Sec. [l
Section Bl reports the comparison of relevant litera-
tures. Finally, the conclusion of the overall study is
given in the last section.

2. Multiscroll Hyperchaotic System
with Hidden Attractors

On the basis of Jerk system , 2000], we pro-

pose a multiscroll hyperchaotic system with hidden
attractors and its state equation is

(dx

E:y7

dy
dr

%
dr
d_w
dr

=z — ayzw,

:_x_y_/BZ—i_f(x?MaN)u

=y+z

where «, 3 are two constant coefficients of the sys-
tem state equation, f(z, M, N) is a step sequence
with the middle point of its vertical edge located at
the origin of the coordinate axis, and

f(z, M,N)

N
= 0.5sgn(z) + 0.5 Z[sgn(x —n)+ 1]

n=1

M
+0.5 Z [sgn(z +m) — 1]

m=1

N
=05 (N — M +sgn(x) + Z sgn(x —n)
n=1

M
+> sgn(z+ m)> . (2)

m=1
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Fig. 1.
set as: « = 0.01, 3 =0.62, N =M =0.

Phase portraits of 2-scroll hyperchaotic hidden attractors in (a) z—y, (b) x—2 and (c) x—w plane. The parameters are
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Fig. 2.
set as: « =0.01, 3=0.62, N=0, M = 1.

If the appropriate values of « and [ are
selected, system will generate N + M + 2 scroll
hyperchaotic hidden attractors. Let o = 0.01, § =
0.62, N = M = 0, system () will generate 2-scroll
hyperchaotic hidden attractors, as shown in Fig. [l
When N = 0, M = 1, the phase portraits of the gen-
erated 3-scroll hyperchaotic hidden attractors are
shown in Fig. 2l When N = M = 1, system ([
will generate 4-scroll hyperchaotic hidden attrac-
tors, as shown in Fig. Bl When N = 1, M = 2

Phase portraits of 3-scroll hyperchaotic hidden attractors in (a) z—y, (b) z—z and (c¢) z—w plane. The parameters are

and N = M = 2, system ([I)) will generate 5- and 6-
scroll hyperchaotic hidden attractors, and the phase
portraits are respectively shown in Figs. [ and [l
When N =5, M = 6, system () will generate 13-
scroll hyperchaotic hidden attractors, as shown in
Fig. 6l As can be seen from these phase portraits,
by adjusting the values of the parameters N and
M, the system () can generate different numbers
of multiscroll hyperchaotic attractors with hidden
characteristics along with the z-axis.

1 1
2
0.5 05
> 0 N 0 =0
-05 -05
-2
N 4 E 0 2 4 -4 =2 0 2 4
X X

Fig. 3.
set as: « = 0.01, 8 =0.62, N =M = 1.

Phase portraits of 4-scroll hyperchaotic hidden attractors in (a) z—y, (b) z—z and (c) z—w plane. The parameters are
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Fig. 4. Phase portraits of 5-scroll hyperchaotic hidden attractors in (a) z—y, (b) z—z and (c) z—w plane. The parameters are

set as: « = 0.01, 8 =0.62, N =1, M = 2.

Fig. 5. Phase portraits of 6-scroll hyperchaotic hidden attractors in (a) z—y, (b) z—z and (c) z—w plane. The parameters are

set as: « = 0.01, 3 =0.62, N = M = 2.

Fig. 6. Phase portraits of 13-scroll hyperchaotic hidden attractors in (a) z—y, (b) z—z and (¢) z—w plane. The parameters

are set as: « = 0.01, 6 =0.62, N =5, M =6.

3. Dynamics Analysis and Adaptive
Synchronization

3.1. Symmetry and dissipation

System (I) has a natural symmetry under the coor-

dinates transform (z,y,z,w) to (—z, -y, —z, —w),

which persists for all values of the system parame-

ters. By using this property, it is easy to extend the

saddle-focus equilibriums with index 2 by construct-
ing multipiecewise functions with odd symmetric.

The general case of dissipativity for system ([
is calculated as

VV = ot — o+ —
X

= azw — f. (3)
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Therefore, system ([I]) is dissipative if VV < 0,
namely azw — 6 < 0, when selecting o = 0.01,
£ = 0.62, and then we get zw < 62. This means
that the asymptotic motion settles onto an attractor
and each volume containing the system trajectory
shrinks to zero at an exponential rate as t — oo.

3.2. FEquilibrium and stability
analysis

The equilibrium of system () can be obtained by
solving the following equation

y =0,

z—ayzw = 0,
—z—y—pPz+ f(xe, M\,N) =0,
y+2z=0.

(4)

The equilibrium of system (@) is E€ = (2, y*,
2E wF) = (2%,0,0,c¢), where c is a real constant,
o = M —-05-M+05,...,-0.5,05,..., N —
0.5, N + 0.5. It means that the w-axis is the line
equilibrium of system (), namely that system ()
has infinite number of equilibriums. According to
the definition of chaotic system with hidden attrac-
tors [Jafari & Sprott, 2013; [Pham et all, M],
system () is a kind of chaotic system with hidden
attractors. The Jacobian matrix of system () at
the equilibrium E® can be expressed as

J(E?)
[ 0 1 0 0
0 azw 1—oayw ayz
Tt faeMN) -1 -8 0
i 0 1 1 0 Jlge
[0 1 0 0
0O 0 1 O
T 1 -1 -8 ol 5)
| 0 1 1 0

It can be seen from Eq. (H) that, although the
system () has infinite number of equilibriums, the
Jacobian matrix at the equilibriums of this system
is independent of the position of the equilibriums.

By solving |\E — J(EQ)| = 0, where E is an
identity matrix, we can get that the characteristic
roots of the system () at the equilibrium E9 satisfy

Multiscroll Hyperchaotic System with Hidden Attractors

the following equation
AN+ BA+ A+ 1) =0. (6)

Obviously, one of the solutions in Eq. (@) is 0,
and the other three satisfy

M4 BN+ A+1=0. (7)

The solution of Eq. (7) can be obtained accord-
ing to the root formula of the standard unary cubic
equation. The algebra expression of the general
solution is

A1=§+§’/g+\/l+§’/g\/&

where ¢ = 2(33/27 — 3/3 + 1,A = ¢*/4 + p?/27 =
B33/27 — 32/108 — 3/6 + 31/108,p = —3?/3 + 1.
According to the root criterion of the unary cubic
equation, when A > 0, the equation has a real root
and two complex roots. Therefore, for ensuring that
the system () has chaotic behavior, it must guaran-
tee A > 0. In addition, since the saddle-focus equi-
librium with index 2 is extremely important for the
generation of chaos, it is necessary to ensure that
the solution of Eq. () has a negative real number
solution and a pair of conjugate solutions with pos-
itive real parts, namely

.
A >0,

§+</g+\/ﬁ+ /-3 - VA<,

g;@ng#g«z)»
9)

We can solve this equation and obtain
—2.6107186 < B < 1, namely when system coeffi-
cient 3 meets this condition, Eq. (@) has a negative
real number solution and a pair of conjugate solu-
tions with positive real parts. We select § = 0.62,
the solutions of Eq. (@) are A\; = —0.8423, 23 =
0.1111 £ 1.08397, Ay = 0. In this case, all the equi-
libriums of the system are saddle-focus equilibriums

1950117-5
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with index 2. Therefore, the system has the poten-
tial to generate a chaotic attractor.

3.3. Lyapunov exponent, bifurcation
diagram and Poincaré map

In this section, we will use the dynamic analysis
methods, including Lyapunov exponent diagram,
bifurcation diagram and Poincaré map, to investi-
gate the dynamical characteristics of the multiscroll
hyperchaotic system with hidden attractors. Since
the nonlinear function f(x, M, N) in the proposed
hyperchaotic system contains sign functions sgn(z),
sgn(x —n) and sgn(x +m), in order to calculate the
Lyapunov exponents, the continuous differentiable
functions a tan(B(z))/(7/2),atan(B(x —n))/(7/2)
and 2a tan(B(z+m))/(m/2) are adopted to approx-
imate the corresponding sign function. In general,
if B is larger, the approximation performance is

better, so B = 1000 is selected [Zhang & Yu, 2013;
Zhou et all, 2018b]. We use the famous Wolf algo-
rithm [Wolf et all, [1985] to simulate the Lyapunov

exponent spectrum with respect to 8. When o =
0.0, N=M =2, 5 €(04,1.1), and initial condi-
tions are set as [0.4,0,0, —0.4], the Lyapunov expo-
nents and bifurcation diagram of system (I) are
shown in Fig.[7

It can be seen from Fig. [[[a) that, when 0.4 <
£ <0948, LE1 >0,LE5 >0, LEg~0 and LE,4 < 0.
In other words, the system () has two positive Lya-
punov exponents, a negative Lyapunov exponent
and a Lyapunov exponent equal to 0, which indi-
cates that the system () is hyperchaotic in this
parameter space. When § = 0.62, the Lyapunov
exponents are LFE{=0.0837, LE5=0.0791, LE3=0

0.5
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>
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(a)
Fig. 7.

and LE, = —0.7728, so the Lyapunov dimension
is Dy, =~ 3.21, which corresponds to a hyperchaotic
attractor. As parameter [ increases further, such
as 0.948 < 3 < 0.993, and then LE; > 0,LFEy =~
0,LE3 < 0,LE4 < 0, system () has only one pos-
itive Lyapunov exponent, so the system goes from
hyperchaotic state to general chaotic state. There-
fore, the dynamic behavior complexity of the system
is reduced. It can also be seen from the Lyapunov
dimension, that when 8 = 0.96, the Lyapunov expo-
nents are LFE, = 0.0849, LE, = 0, LE3 = —0.056
and LE, = —0.986, so the Lyapunov dimension is
Dy, ~ 3.03, which corresponds to a general chaotic
attractor.

As the system parameter further increases,
when in interval 0.993 < B < 1.02, the system
has two Lyapunov exponents that are equal to 0
and two negative Lyapunov exponents, thus the
corresponding Lyapunov dimension in this inter-
val is Dj = 2, which corresponds to quasi-periodic
attractor (torus). When 1.02 < § < 1.1, the sys-
tem has only one Lyapunov exponent that is equal
to 0, others are negative and the corresponding Lya-
punov dimension in this interval is Dy = 1, which
corresponds to the periodic attractor (limit cycle).
The above analysis results are further confirmed in
Fig. [[(b). According to Figs. [f{a) and [(b), when
0.4 < < 0.948, system (I is a multiscroll hyper-
chaotic system, and when 0.948 < ( < 0.993, sys-
tem () is a general multiscroll chaotic system. This
is the innovation of the multiscroll hyperchaotic sys-
tem designed in this paper, compared with the mul-
tiscroll chaotic system with hidden attractors pro-

posed in [Chen & Yangd, 2015], it has more complex

dynamic characteristics.

ElpsaEE

(b)

Lyapunov exponent and bifurcation diagram with the system parameters a = 0.01, N = M =2 and 04 < § < 1.1,

(a) Lyapunov exponent diagram and (b) bifurcation diagram, 8 — x.
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Figure B shows the Poincaré map diagram, in
this diagram, the system parameters are o = 0.01,
£ =0.62 and N = M = 2. The Poincaré map of the
system () in z—y, z—z and z—w planes are respec-
tively shown in Figs. B(a)-Bl(c). As can be seen from
Figs. B(a)Bl(c), the Poincaré map of the system on
different planes are a number of dense points and
they are respectively very similar to Figs. B(a)-{5lc),
which proves the characteristics of bifurcation and
foldability that chaos possesses.

3.4. Adaptive synchronization of
the novel four-dimensional
chaotic system

The adaptive synchronization method enables the
system to adjust its coupling strength along with
the magnitude of error, which is more suitable
for numerical simulation and actual system [Zhou
et al.,12008; Du et all, M] The estimation method
of unknown parameters brought by adaptive syn-
chronization method provides a good analysis tool
for chaotic synchronization. In recent years, adap-
tive synchronization methods have been widely used
in the study of chaotic synchronization [Vaidya-
nathan, M; Gao_et alJ, M Therefore, we give
an adaptive synchronization example for the pro-
posed multiscroll hyperchaotic system with hidden
attractors.

The two multiscroll hyperchaotic systems with
hidden attractors, we called them respectively mas-
ter and slave systems, are described as follows. The
master system is described as

T1 = Y1,
Y1 = 21 — Qy121w1,

(10)
7ﬂzl +f($1aMaN)a

Z"l = —T1 —

w1 = y1 + 21,

Poincaré map in (a) z—y plane, z = 0, (b) z—= plane, y = 0 and (¢) z—w plane, z = 0.

while the slave system is
Ty = Y2 + Us,
Y2 = 22 — QY222W2 + Uy,
Z9 = —x3 —y2 — Baa + f(x2, M, N) + u.,

W = Yo + 22 + Uy,

(11)

in which « and § are unknown system parameters.
In Eq. @), u = [ug,uy, us,uy]” is the designed
adaptive controller. The error function about all
state variables of the master system and the slave
system are expressed as (e, €y, €z, €y) = (X1 — T2,
Y1 — Y2, 21 — Z2, W1 — W2).

Because the system parameters o and ( are
unknown, for adaptive control method, we must
estimate the error of the system parameters, they
are represented as (eq,eg) = (a—oy, f— 1), where
the estimations of the unknown parameters o and
(8 are «a and (1, respectively.

The designed adaptive controller is shown
below

Uy = €y + 0y,

uy = e, — aq(y121w1 — Y2z2ws2) + dyey,

— €y — ﬁlez + 52627
Uy = €y + €z + dwew,

where 6,,0,,0, and J,, are four positive gain
constants. The system parameter update law in
Eq. (I2) is given by (d1,01) = [—ey(yiziwr —
Yozaws), —€2].

Next, we verify the correctness of the designed
adaptive controller. For this reason, we define a
quadratic Lyapunov function

Uy = —€4

V<ewa €y, €2, €, €a, 65)

1
~(e2+ei+el+en +el+ep).

= (13)
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The Lyapunov function is differentiated and the
following equation is obtained

V= €€y + €y€y + €,€; + €y
+ eqa + egeg. (14)

The error dynamics of the master system and
the slave system can be expressed as

€y = T1 — To = —0z€,,

€y =11 — Y2 = —€a(Y121W1 — Y220w2) — dyey,
éz = Z.l - 22 = 76/662 o 5Zez’

Cw = W1 — Wy = — ey

(15)

We can get the corresponding dynamics of the
parameter estimation errors (éq,€3) = (—a&1, —31).

Based on the analyses above, one can get the
differential form of the Lyapunov function

V = —6.e2 - 5ye§ — 0,62 — 5,2 (16)

It is easy to see that the differential of the Lya-
punov function is a negative semidefinite function.
Therefore, it is simply to verify that e, — 0,e, —
0,e, — 0 and e, — 0 exponentially as t — oo
according to the Barbalat’s lemma , ]
Therefore, the synchronization between the master
system and the slave system is obtained.

In order to verify the correctness of the designed
adaptive controller and synchronization scheme, we
take the 6-scroll hyperchaotic system with hidden
attractors as an example to carry out the synchro-
nization simulation experiment. The initial state of
system state variables, the system parameters and
the initial value of corresponding parameter estima-
tion in the two systems are listed below

21(0) =04, 31(0) =0,

21(0) =0, wy(0)=0.8,

x2(0) = 0.2, y2(0) =0.1, an
2(0) = —0.1, wy(0) = 0.75,

a=0.01, [=0.62,

a1(0) =0.03, S31(0) = 0.58.

The positive gain constants are selected as
0y = 0y = 0, = 6, = 3. Figure[@shows the time-
history of the synchronization errors e, ey, e,

0.3
—e
X
0.2 —e
Cl)g ey
N
01 z
o> e
“ w
A
-0.1
0 5 10

time
Fig. 9. Time-history of the synchronization errors between
the master system and the slave system, when z;(0) = 0.4,
y1(0) = 0,21(0) = 0,w1(0) = 0.8;22(0) = 0.2,y2(0) = 0.1,
z2(0) = —0.1,w2(0) = 0.75; « = 0.01, 8 = 0.62; a1 (0) = 0.03,
B31(0) = 0.58.

and e,,. From Fig. 0, we can see that the synchro-
nization between the slave system and the master
system is achieved.

4. Hardware Circuit Design and
Experimental Results

In order to further verify the correctness of the
proposed multiscroll hyperchaotic system with hid-
den attractors, the corresponding circuit experi-
ments are carried out in this section. The designed
hardware experimental circuit is shown in Fig. I
The analog multiplier AD633JN and the opera-
tional amplifier TL0O82 are adopted in the circuit
implementation. The power voltage of TL0O82 and
ADG633JN are set to £15V.

Let vo1 = z,v00 = y,vo3 = z and voy = w, of
which ver, vog, vos3 and voy respectively represent
the voltages across the capacitance C7,Cy, C3 and
Cy in Fig. [0l Tt is easy to get the state equation of
the circuit shown in Fig.

dx Y
Oy — = 2
Ydat TRy

dy z Yyzw
Oy —2 == —0.01- 22—
2T dt T Ry Ry’

(18)
oz oy = fl@)
S dt Ry Rs Rg R;’

dw Y z
C, — =2 4 =
Y4t T Rs ' Ro
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Fig. 10. Circuit diagram of multiscroll hyperchaotic system with hidden attractors.

Fig. 11. Field picture of hardware circuit experiment.
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The time factor 1/RC is introduced into Eq. ()

,

der vy
c.Z_-Z

dt R’

dy z ayzw
“% R R

(19)

c.d__x_y_ pz fl@)

d¢4 R R R R’

dw 'y =z

Let @« = 0.01, g = 0.62, C; = Cy = (3 =
C4 = 10nF and R = 100k, and compare Egs. (I8
and (I9), one gets

,

The photo of the experimental site is shown
in Fig. M. The relationship between the number
of scrolls and the on-off set of switch is listed in
Table [, which contains ten kinds of circumstances.
For the circuit in Case 1, Case 2, Case 4, and set-
ting the corresponding value of the comparison volt-
age FE, the 2-scroll, 3-scroll and 4-scroll hidden
attractors chaotic phase portraits can be observed.
The experimental circuit results of hidden attrac-
tor chaotic phase portraits in z—y and z—z plane
are shown in Fig. 2.

Comparing Figs. [2(a) and [[2(b) and Figs.d(a)
and [Mi(b), Figs. [2(c) and [2d) and Figs. Ba) and
2(b), Figs. I2(e) and [Z(f) and Figs. Bla) and Blb),
we can see that the MATLAB simulation results
and the circuit experimental results are consistent.

Ri = % — Ry =100k, This proves the correctness of the proposed multi-
1 scroll hyperchaotic system with hidden attractors.
Ri _ % Ry = 100k,
’ 5. Relevant Literature Comparison
Oéﬂ = % — Rz = 100k, The relevant literature comparison is shown in
3 Table 2. The number of scrolls generated by the
1 Ry — 100kQ hyperchaotic systems with hidden attractors that
R, R 4= ’ were published in [Wang et all. 2012: Khan &
1 1 Shikha, [2018; ISingh &m, ; ,
— = — — R5 =100k, (20) 12013; IChen & Yang, |2015] are limited, at most, only
Bs R 2-scroll hidden attractors can be generated, and no
1 Jé] hardware circuit verifications have been carried out.
Re “ R Rg = 161.3kQ, The multiscroll chaotic system with hidden attrac-
tors proposed in literature , } can gen-
L - 1 — Ry = 100k(2, erate any number of scroll hidden attractors only in
Ry R numerical simulation. However, when the circuit is
1 1 implemented, it is limited to sine function electronic
R_S =R Rg = 100k<2, devices and only a limited number of scrolls can be
generated. Therefore, this chaotic system is a kind
1 _ 1 s Re = 100k of multiscroll chaotic system with limited number of
Ry R ? ) scrolls; in addition, this multiscroll chaotic system
Table 1. Relationship between the number of scrolls with the on-off set of switch.
S1 So S3 Sy S5 Se S E/V Number of Scrolls
Case 1 off off off on off off off 0 2
Case 2 off off on on off off off 3
Case 3 off off off on on off off -1 3
Case 4 off off on on on off off 0 4
Case 5 off on on on on off off 5
Case 6 off off on on on on off —1 5
Case 7 off on on on on on off 0 6
Case 8 on on on on on on off 1 7
Case 9 off on on on on on on —1 7
Case 10 on on on on on on on 0 8
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Multiscroll Hyperchaotic System with Hidden Attractors

Fig. 12. Hardware experimental results of multiscroll hyperchaotic circuit with hidden attractors. In which, phase portraits
of 2-scroll hyperchaotic hidden attractors are shown in (a) z—y and (b) z—z plane; phase portraits of 3-scroll hyperchaotic
hidden attractors are shown in (¢) z—y and (d) z—z plane; phase portraits of 4-scroll hyperchaotic hidden attractors are shown
in (e) z—y and (f) z—z plane (where z =y = z = 0.5 V/div).

Table 2.

Related literature comparison.

Literature

Number of Scrolls

Complexity of the System Hardware Experiment

Published Year

Wang et al., 2012]
[Zhou & Yang, 2013]

[Chen & Yang, 2015]
[Khan & Shikha, 2018]
[

Singh & Roy, 201
[Hu et al., 2016]

Hu et al., 2017]

[Escalante-Gonzalez et al., 2017]
This paper

Single Scroll
2-Scroll
2-Scroll
2-Scroll
2-Scroll
Limited
Limited

Arbitrary
Arbitrary

Hyperchaotic
Hyperchaotic
Hyperchaotic
Hyperchaotic
Hyperchaotic
Chaotic
Chaotic
Chaotic
Hyperchaotic

No
No
No
No
No
No
No
No
Yes

2012
2013
2015
2018
2018
2016
2017
2017
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with hidden attractors is not a hyperchaotic system.
In literature [Hu et all, ], a multiscroll chaotic
system with hidden attractor is designed based on
memristor and sine function, and the same prob-
lem is encountered as in literature M, m],
the proposed system is a multiscroll chaotic system
with limited number of scrolls and it is not a hyper-
chaotic system. The multiscroll chaotic system with
hidden attractors designed in literature [Escalante-
Gonzalez et al., M} can generate any number of
scroll hidden attractors, but it is not a hyperchaotic
system and no hardware experiment has been car-
ried out.

By comparison, the chaotic system proposed in
this paper can generate hidden attractors with any
number of scrolls and it is a hyperchaotic system
with more complex dynamic characteristics, there-
fore, it is more suitable for chaotic secure commu-
nications, image encryption, and so on. In addition,
the hardware experiments are also carried out using
discrete components.

6. Conclusion

Based on Jerk chaotic system, a multiscroll hyper-
chaotic system with hidden attractors that can
generate any number of scrolls is proposed. The
numerical simulations of the system are given by
MATLARB simulation, including the phase portraits
of 2-; 3-, 4-, 5-, 6- and 13-scroll hyperchaotic hid-
den attractors. The dynamic characteristics of the
multiscroll hyperchaotic system with hidden attrac-
tors are analyzed by means of dynamic analysis
methods such as Lyapunov exponent and bifurca-
tion diagram. An adaptive synchronous numerical
simulation is carried out for the proposed chaotic
system. The hardware experiment of the proposed
multiscroll hyperchaotic system with hidden attrac-
tors is carried out using discrete components, the
hyperchaotic phase portraits of 2-; 3- and 4-scroll
hidden attractors are generated, and the experi-
mental results are consistent with the MATLAB
simulation results. Finally, by comparing the rele-
vant literatures, we find that the reported hyper-
chaotic systems with hidden attractors can only
generate 2-scroll hidden attractors, but the hyper-
chaotic system with hidden attractors proposed in
this paper can generate N + M + 2 scroll hyper-
chaotic hidden attractors; other reported multi-
scroll chaotic systems with hidden attractors are
not hyperchaotic systems, while the proposed mul-
tiscroll chaotic system with hidden attractors is a

hyperchaotic system, and the whole circuit has a
simple structure. It is worth noting that the simple
step sequence is adopted in our work to generate
multiscroll attractors. However, in order to gener-
ate more chaotic attractors with different shapes
in the proposed chaotic system, the nonlinear func-
tions in the proposed chaotic system can be replaced
by piecewise-linear sequence , @], sat-
uration sequence |Zhang & Wang, 2018], and hys-
teresis sequence |Zhang & Yu, . ILii et all,12006].
And the corresponding equilibrium calculation and
simulation test are carried out and proved to be
feasible.

Acknowledgments

The authors would like to thank the editors and
anonymous reviewers for their valuable comments
which have helped in improving this paper. This
research was supported by the National Natural
Science Foundation of China (No. 61571185), the
Science and Technology Planning Project of Hunan
Province (No. 2017GK4009), and the Open Fund
Project of Key Laboratory in Hunan Universities
(No. 18K010).

References

Bao, B. C., Jiang, T., Wang, G. Y., Jin, P. P., Bao,
H. & Chen, M. [2017] “Two-memristor-based Chua’s
hyperchaotic circuit with plane equilibrium and its
extreme multistability,” Nonlin. Dyn. 89, 1157-1171.

Bao, B. C., Hu, A. H., Bao, H., Xu, Q., Chen, M. &
Wu, H. G. [2018] “Three-dimensional memristive
Hindmarsh-Rose neuron model with hidden coexist-
ing asymmetric behaviors,” Complexity 4, 3872573.

Borah, M. & Roy, B. K. [2017] “Hidden attractor dynam-
ics of a novel non-equilibrium fractional-order chaotic
system and its synchronisation control,” 3rd Indian
Control Conf., pp. 450-455.

Boriga, R., Dascalescu, A. C. & Priescu, 1. [2014] “A
new hyperchaotic map and its application in an image
encryption scheme,” Sign. Process.-Image Commun.
29, 887-901.

Chen, Y. M. & Yang, Q. G. [2015] “A new Lorenz-type
hyperchaotic system with a curve of equilibria,” Math.
Comput. Simul. 112, 40-55.

Chua, L. O., Komuro, M. & Matsumoto, T. [1986] “The
double scroll family,” IEEE Trans. Circuits Syst. 33,
1072-1118.

Du, L., Yang, Y. & Lei, Y. M. [2018] “Synchronization
in a fractional-order dynamic network with uncertain
parameters using an adaptive control strategy,” Appl.
Math. Mech.-Engl. Ed. 39, 353-364.

1950117-12



Int. J. Bifurcation Chaos 2019.29. Downloaded from www.worldscientific.com
by UNIVERSITY OF MICHIGAN FLINT on 08/31/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Escalante-Gonzalez, R. J., Campos-Canton, E. & Nicol,
M. [2017] “Generation of multiscroll attractors
without equilibria via piecewise linear systems,”
Chaos 27, 053109.

Filali, R. L., Benrejeb, M. & Borne, P. [2014] “On
observer-based secure communication design using
discrete-time hyperchaotic systems,” Commun. Non-
lin. Sci. Numer. Simul. 19, 1424-1432.

Gao, X. J., Cheng, M. F. & Hu, H. P. [2016] “Adap-
tive impulsive synchronization of uncertain delayed
chaotic system with full unknown parameters via
discrete-time drive signals,” Complexity 21, 43-51.

Gotthans, T. & Petrzela, J. [2015] “New class of chaotic
systems with circular equilibrium,” Nonlin. Dyn. 81,
1-7.

Gotthans, T., Sprott, J. C. & Petrzela, J. [2016] “Simple
chaotic flow with circle and square equilibrium,” Int.
J. Bifurcation and Chaos 26, 1650137-1-8.

Hu, X. Y., Liu, C. X., Liu, L., Ni, J. K. & Li, S. L. [2016]
“Multi-scroll hidden attractors in improved Sprott A
system,” Nonlin. Dyn. 86, 1725-1734.

Hu, X. Y., Liu, C. X., Liu, L., Yao, Y. P. & Zheng, G.
C. [2017] “Multi-scroll hidden attractors and multi-
wing hidden attractors in a 5-dimensional memristive
system,” Chin. Phys. B 26, 120-126.

Jafari, S. & Sprott, J. C. [2013] “Simple chaotic flows
with a line equilibrium,” Chaos Solit. Fract. 57, 79—
84.

Jafari, S., Sprott, J. C. & Golpayegani, S. M. R. H. [2013]
“Elementary quadratic chaotic flows with no equilib-
ria,” Phys. Lett. A 377, 699-702.

Khalil, H. K. [2002] Nonlinear Systems, 3rd edition
(Prentice-Hall, Upper Saddle River, NJ, USA).

Khan, A. & Shikha [2018] “Chaotic analysis and
combination-combination synchronization of a novel
hyperchaotic system without any equilibria,” Chin.
J. Phys. 56, 238-251.

Leonov, G. A., Kuznetsov, N. V. & Vagaitsev, V. L.
[2011] “Localization of hidden Chua’s attractors,”
Phys. Lett. A 375, 2230-2233.

Leonov, G. A., Kuznetsov, N. V. & Vagaitsev, V. 1. [2012]
“Hidden attractor in smooth Chua system,” Physica
D 241, 1482-1486.

Leonov, G. A. & Kuznetsov, N. V. [2013] “Hidden attrac-
tors in dynamical systems. From hidden oscillations
in Hilbert—Kolmogorov, Aizerman, and Kalman prob-
lems to hidden chaotic attractor in Chua circuits,”
Int. J. Bifurcation and Chaos 23, 1-69.

Leonov, G. A., Kuznetsov, N. V. Kiseleva, M. A.,
Solovyeva, E. P. & Zaretskiy, A. M. [2014] “Hidden
oscillations in mathematical model of drilling system
actuated by induction motor with a wound rotor,”
Nonlin. Dyn. 77, 277-288.

Lorenz, E. N. [1963] “Deterministic non-periodic flow,”
J. Atmos. Sci. 20, 130-141.

Multiscroll Hyperchaotic System with Hidden Attractors

Li, J. H., Yu, S. M., Leung, H. & Chen, G. R. [2006]
“Experimental verification of multidirectional multi-
scroll chaotic attractors,” IEEE Trans. Circuits Syst.-
I: Regul. Pap. 53, 149-165.

Molaie, M., Jafari, S., Sprott, J. C. & Golpayegani, S.
[2013] “Simple chaotic flows with one stable equilib-
rium,” Int. J. Bifurcation and Chaos 23, 1350188-1-7.

Pham, V. T., Vaidyanathan, S., Volos, C. & Jafari, S.
[2015] “Hidden attractors in a chaotic system with
an exponential nonlinear term,” Fur. Phys. J. Special
Topics 224, 1507-1517.

Pham, V. T., Jafari, S., Wang, X. & Ma, J. [2016a] “A
chaotic system with different shapes of equilibria,”
Int. J. Bifurcation and Chaos 26, 1650069-1-5.

Pham, V. T., Jafari, S., Volos, C. & Kapitaniak, T.
[2016b] “A gallery of chaotic systems with an infinite
number of equilibrium points,” Chaos Solit. Fract. 93,
58-63.

Pham, V. T., Jafari, S., Volos, C. & Kapitaniak, T.
[2017a] “Different families of hidden attractors in a
new chaotic system with variable equilibrium,” Int.
J. Bifurcation and Chaos 27, 1750138-1-10.

Pham, V. T., Wang, X., Jafari, S.; Volos, C. & Kapita-
niak, T. [2017b] “From Wang—Chen system with only
one stable equilibrium to a new chaotic system with-
out equilibrium,” Int. J. Bifurcation and Chaos 27,
1750097-1-9.

Singh, J. P. & Roy, B. K. [2018] “Hidden attractors in a
new complex generalised Lorenz hyperchaotic system,
its synchronisation using adaptive contraction theory,
circuit validation and application,” Nonlin. Dyn. 92,
373-394.

Sprott, J. C. [2000] “Simple chaotic systems and cir-
cuits,” Am. J. Phys. 68, 758-763.

Swathy, P. S. & Thamilmaran, K. [2014] “Hyperchaos
in SC-CNN based modified canonical Chua’s circuit,”
Nonlin. Dyn. 78, 2639-2650.

Vaidyanathan, S. [2016] “Hyperchaos, adaptive control
and synchronization of a novel 4-D hyperchaotic sys-
tem with two quadratic nonlinearities,” Arch. Contr.
Sci. 26, 471-495.

Wang, X. & Chen, G. [2012] “A chaotic system with
only one stable equilibrium,” Commun. Nonlin. Sci.
Numer. Simul. 17, 1264-1272.

Wang, Z. H., Cang, S. J., Ochola, E. O. & Sun, Y. X.
[2012] “A hyperchaotic system without equilibrium,”
Nonlin. Dyn. 69, 531-537.

Wang, X. Y. & Zhang, H. L. [2016] “A novel image en-
cryption algorithm based on genetic recombination
and hyper-chaotic systems,” Nonlin. Dyn. 83, 333—
346.

Wang, C. H., Liu, X. M. & Xia, H. [2017a] “Multi-
piecewise quadratic nonlinearity memristor and its
2N-scroll and 2N+1-scroll chaotic attractors system,”
Chaos 27, 033114.

1950117-13



Int. J. Bifurcation Chaos 2019.29. Downloaded from www.worldscientific.com
by UNIVERSITY OF MICHIGAN FLINT on 08/31/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

X. Zhang & C. H. Wang

Wang, X., Pham, V. T., Jafari, S., Volos, C., Munoz-
Pacheco, J. M. & Tlelo-Cuautle, E. [2017b] “A new
chaotic system with stable equilibrium: From theoret-
ical model to circuit implementation,” IEEE Access 5,
8851-8858.

Wang, Y., Wang, C. H. & Zhou, L. [2017¢c] “A time-
delayed hyperchaotic system composed of multiscroll
attractors with multiple positive Lyapunov expo-
nents,” J. Comput. Nonlin. Dyn. 12, 051029.

Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A.
[1985] “Determining Lyapunov exponents from a time
series,” Physica D 16, 285-317.

Wu, X. J,, Fu, Z. Y. & Kurths, J. [2015] “A secure
communication scheme based generalized function
projective synchronization of a new 5D hyperchaotic
system,” Phys. Scr. 90, 045210.

Yu, S. M., Lii, J. H. & Chen, G. R. [2007] “A family of n-
scroll hyperchaotic attractors and their realization,”
Phys. Lett. A 364, 244-251.

Zhang, C. X. & Yu, S. M. [2009] “Design and implemen-
tation of a novel multiscroll chaotic system,” Chin.
Phys. B 18, 119-129.

Zhang, C. X. & Yu, S. M. [2013] “On constructing com-
plex grid multiwing hyperchaotic system: Theoreti-
cal design and circuit implementation,” Int. J. Circuit
Th. Appl. 38, 221-237.

Zhang, G. T. & Wang, F. Q. [2018] “A novel multiscroll
chaotic generator: Analysis, simulation, and imple-
mentation,” Chin. Phys. B 27, 018201.

Zhang, S., Zeng, Y. C., Li, Z. J., Wang, M. J. & Xiong,
L. [2018] “Generating one to four-wing hidden attrac-
tors in a novel 4D no-equilibrium chaotic system with
extreme multistability,” Chaos 28, 013113.

Zhang, X. & Wang, C. H. [2019] “A novel multi-attractor
period multiscroll chaotic integrated circuit based
on CMOS wide adjustable CCCIL,” IEEE Access 7,
16336-16350.

Zhou, J., Lu, J. A. & Li, J. H. [2008] “Pinning adap-
tive synchronization of a general complex dynamical
network,” Automatica 44, 996-1003.

Zhou, P. & Yang, F. Y. [2013] “Hyperchaos, chaos, and
horseshoe in a 4D nonlinear system with an infinite
number of equilibrium points,” Nonlin. Dyn. 76, 473~
480.

Zhou, P., Huang, K. & Yang, C. D. [2013] “A fractional-
order chaotic system with an infinite number of equi-
librium points,” Discr. Dyn. Nat. Soc. 3, 331-372.

Zhou, L., Wang, C. H. & Zhou, L. L. [2016] “Generating
hyperchaotic multiwing attractor in a 4D memristive
circuit,” Nonlin. Dyn. 85, 2653-2663.

Zhou, L., Wang, C. H. & Zhou, L. L. [2017] “Generat-
ing four-wing hyperchaotic attractor and two-wing,
three-wing, and four-wing chaotic attractors in 4D
memristive system,” Int. J. Bifurcation and Chaos 27,
1750027-1-14.

Zhou, L., Wang, C. H., Zhang, X. & Yao, W. [2018a]
“Various attractors, coexisting attractors and anti-
monotonicity in a simple fourth-order memristive
twin-T oscillator,” Int. J. Bifurcation and Chaos 28,
1850050-1-18.

Zhou, L., Wang, C. H. & Zhou, L. L. [2018b] “A
novel no-equilibrium hyperchaotic multiwing system
via introducing memristor,” Int. J. Circuit Th. Appl.
46, 84-98.

1950117-14



	1 Introduction
	2 Multiscroll Hyperchaotic System with Hidden Attractors
	3 Dynamics Analysis and Adaptive Synchronization
	3.1 Symmetry and dissipation
	3.2 Equilibrium and stability analysis
	3.3 Lyapunov exponent, bifurcation diagram and Poincaré map
	3.4 Adaptive synchronization of the novel four-dimensional chaotic system

	4 Hardware Circuit Design and Experimental Results
	5 Relevant Literature Comparison
	6 Conclusion

