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Lots of researchers have used memristors to realize the emotion model of associative memory. In previ-
ous works, researchers analyzed this associative memory from two perspectives—forgetting and variable
learning rate. In the previous emotion model, neutral stimulus(message notification) and unconditioned
reflex(good or bad message) were applied simultaneously. But the variable learning rate with time delay
is not considered in the emotion model. When the unconditioned reflex lags behind the neutral stimulus,
the associative memory can also be formed. This article proposes an emotion model of variable learning
rate with time delay. We also consider three kinds of forgetting: only a stimulus of unconditioned reflex
applied, only a neutral stimulus applied and neither stimulus of unconditioned reflex nor neutral stimu-
lus applied. In the end, the software PSPICE is used to simulate the whole circuit. This paper provides an
option to realize emotional learning based on memristor.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The memristor, as a basic circuit element, was predicted by
chua in 1971 [1] for the first time and manufactured by HP Labs
in 2008 [2] for the first time. And then, many other kinds of mem-
ristors have been proposed [3]. However, the manufacture of mem-
ristor is complex. In order to study its characteristics, apart from
the physical memristor, some researchers used CMOS circuits to
design memristor emulators [4], and others used mathematical
models to simulate real objects [5]. Due to its unique nonvolatile
storage, non-linearity and nanoscale size, memristor has been
widely used in many areas of scientific researches, such as neural
network [6–11] and chaotic circuit [12–17].

Artificial neural network (ANN) is the main trend of intelligent
computing. Through its unique learning ability, some functions can
be achieved, such as image processing [18–20], unsupervised
learning [21], supervised learning [22], reinforcement learning
[23] and so on. But most of them are realized by software, com-
pared with hardware, the realization of software needs more com-
plex structure and longer processing time. Electronic synapse is the
most important component in the design of ANN circuit. Tradi-
tional synapses were formed by MOS transistors, and its structure
is complex. Memristor as a nanoscale device is the best candidate
for synapse. It reflects the relationship of charge and flux, memris-
tance will be changed according to the current which passes
through it or voltage which is applied to it. When the power is
cut off (current becomes zero), the memristance remains the same.
So memristor can achieve synaptic plasticity well. In the future,
memristor is likely to break the limit of von Neumann architecture
[24].

In artificial intelligence, emotional models are very important.
In the fields of psychology and physiology, one of the emotional
models is discrete emotion model [25]. Researchers think that
humans have some basic emotions, such as of six basic emotions
theoretically [26]. The complex emotions are evolved from basic
emotions [27]. It is similar to the principle that three primary col-
ors can form any color. For emotion, it can also produce associative
memory. When we first hear the message notification, we will not
have any emotional fluctuations; but when we check the content of
this message and find it is a good message, we will feel happy. If
the message notification and a good message appear simultane-
ously for a while, a connection between message notification and
a good mood will be formed. When the message notification
appears alone next time, we will feel happy. If we change the good
message above into bad message, the corresponding emotion will
be sad. This is the emotion of associative memory which has been
researched by previous works [28–30]. The details of this model
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will be introduced in Section 2.2. Wang et al. designed a circuit to
simulate the functions of emotional generation and evolution [31].
Paper [30] realized the emotion model of associative memory, but
the forgetting and the variable learning rate were not considered. A
model of memristor-based associative memory neural network
(m-ASNN) for modeling the affections was proposed in [28], but
this paper only implemented the associative memory and the pro-
cesses of forgetting. In [29], the three processes of forgetting and
the variable rates of learning were realized in emotion model.
Wang et al. designed a multi-associative learning circuit that can
produce new complex emotions [32]. In previous works, research-
ers analyzed this model from two perspectives—forgetting and
variable learning rate. But the case with time delay is not consid-
ered in the emotion model. In addition when the time delay exists,
the learning rate can also be variable, this situation is not consid-
ered in previous works.

In associative memory, the first learning needs a period of time.
After the first learning, if there is another learning, the learning
time will be shorter than before. This is the variable learning rate.
It is widely researched in previous works [29,33]. When the time
delay exists in the emotion model(the time delay will be described
in the next paragraph), the learning rate can also be variable, this
situation is not considered in previous works.

In this emotion model, the message notification is called neutral
stimulation. The good(bad) message can cause emotional fluctua-
tions, this phenomenon is called unconditioned reflex. Neutral
stimulation does not produce any emotional fluctuations, only
after acquired learning, it can cause emotional changes alone.
The unconditioned reflex is innate, it can produce emotional
changes without learning. In these articles, neutral stimulation
and unconditioned reflex happen at the same time. But when neu-
tral stimulation is earlier than unconditioned reflex, associative
memory can be established as well [33]. Paper [33] realized pavlov
associative memory with time delay. However, the case with time
delay has not been considered in the emotion model so far. In this
article, we realize this function. In this case, message notification
and good message often do not appear at the same time. We often
hear the message notification first and then check if the content of
the message is good or bad. For example, when the mobile phone
receives a text message, we hear the SMS ringtone of mobile phone
first and then check the message content. So, it makes sense to
study this emotion model when there is a time delay between neu-
tral stimulation and unconditioned reflex. In this article, this more
useful function is considered.

As described above, this article realizes a new function which is
the variable learning rate with time delay in an emotion model.
The rest sections of the article are structured as follows. Section 2
introduces two memristor models and an emotion model with
associative memory. Section 3 introduces the circuit realization
of the emotion model in detail. This section includes input neuron,
output neuron, synapse, time delay module and rate variation
module. Section 4 is the simulation result of the whole circuit with
PSPICE. Section 5 is the conclusion part.
Fig. 1. PSPICE simulation of memristor model with Biolek window function. (a)
Input voltage. (b) Changes of memristance.
2. Model introduction

2.1. Memristor model

As a new circuit component, memristor represents the relation-
ship between charge and flux. Among different kinds of memristor
models, the most researched model is TiO2 memristor model from
HP laboratory [2], but this model ignores the border effect. To solve
this problem, lots of researchers added the window function to
make it accord with the physical memristor [34]. In previous
works, there were a variety of mathematical memristor models
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[35]. Two memristor models are selected in this work, one is HP
memristor model with Biolek window function [36], the other is
Ag/AgInSbTe/Ta-based model with threshold voltage [37].

The mathematical expression of HP memristor model is as
follows.

MðtÞ ¼ RONxðtÞ þ ROFFð1� xðtÞÞ ð1Þ

xðtÞ ¼ ðwðtÞÞ=D 2 ð0;1Þ ð2Þ
In the equation, M(t) is memristance of memristor, ROFF and RON are
the maximum and minimum memristance respectively. w(t) is the
width of the doped region. D is the length of memristor. In order to
realize the nonlinear modeling, paper [39] proposed a window
function as follows.

dx
dt

¼ kFðXÞiðtÞ ð3Þ

FðxÞ ¼ 1� ðx� stpð�iÞÞ2p ð4Þ
where p is a positive integer, stpð�Þ is the step function, k ¼ lvRON

D2 is
the so-called dopant mobility. This memristor model is used in
input neuron. Fig. 1(b) shows the memristance changes over time
when the voltage shown in Fig. 1(a) is applied. In this test, we set
RON=5(X), ROFF = 2.6 K(X), Rinit = 2.5 K(X), D = 10(nm),
lv = 1:0� 10�14m2S�1X�1, P = 1. Rinit is the initial memristance value
of memristor.

Memristor model with threshold voltage is used in three mod-
ules—synapse, time delay module and rate change module. These
modules will be introduced in detail in the third part. Ag/
AgInSbTe/Ta-based model is closer to the physical memristor than
other mathematical memristors [37]. If a positive voltage that
exceeds the positive threshold is applied to memristor, the mem-
ristance will decrease fast at first and decrease slowly at the end.
If a negative voltage which is smaller than the negative threshold
is applied to memristor, the memristance will increase fast at first
and increase slowly at the end. If the voltage is smaller than the
threshold, the memristance will not change. The derivative of the
state variable w(t) of this model is

dwðtÞ
dt ¼

lv
RON
D

ioff
i tð Þ�i0
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Fig. 3. Memristance changes at different voltage.
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where i0; ioff , and ion are constants, VTþ and VT� are positive and neg-
ative threshold voltages respectively, f(w(t)) is the window func-
tion. Fig. 2 shows the memristance changes with the applied
voltage. In this test, RON = 80X;ROFF = 3 KX;Rinit = 2.9 KX,
D = 3� 10�9nm, lv = 5:0� 10�10m2S�1X�1, P = 10, VON = 1 V,

VOFF = -1 V, IOFF = 1:5� 10�5; I0 = 1:0� 10�6; ION = 0.5. We can see
the threshold voltage and the change rate of memristance
obviously.

Fig. 3 shows another unique feature of this model. If amplitudes
of voltages are different,/textcolorredchanging rates of memristor
will be different. A pulse signal is used in this test, the period is
20s, duty cycle is 50%, voltage amplitude is X(V), X is variable.
Red line and blue line represent X = 2 V and X = 3 V respectively.
The result shows, the greater the amplitude of negative voltage
is, the faster the increase rate of memristance will become. The
greater the positive voltage is, the slower the decrease rate of
memristance will become. This feature can be used to realize the
variable rate of learning. In this test, we set
RON = 80X;ROFF = 3 KX;Rinit = 200X, D = 3� 10�9nm,
lv = 5:0� 10�9m2S�1X�1, P = 10, VON = 1 V, VOFF = �1 V,

IOFF = 0:5� 10�5; I0 = 1:0� 10�6; ION = 1. Biolek window function
is used in this test.
Fig. 4. Emotion model.
2.2. Emotion model

2.2.1. Existing model
In this article, an emotion model with associative memory is

selected. In previous works, researchers only realized the functions
of basic associative memory which are three forgetting processes
and variable rate of learning [30,28,29]. They did not consider
the variable learning rate with time delay. In this article, variable
learning rate with time delay is considered.

Fig. 4 shows the emotion model. GM, MN and BM are three
input neurons, represent good message, message notification and
bad message respectively. HN and SN are two output neurons, rep-
resent happy neuron and sad neuron respectively.In this emotion
model, the message notification is called neutral stimulation. The
good(bad) message can cause emotional fluctuations, this phe-
nomenon is called unconditioned reflex. Good message can make
people feel happy, this is the innate ability. That is to say, the HN
neuron will output a signal as long as GM neuron fires. Hence,
we use resistors to represent this inherent synaptic weight. How-
ever, the relationship between MN and HN is conditioned reflex.
Message notification can not make people feel happy at first. Only
Fig. 2. PSPICE simulation of Ag/AgInSbTe/Ta-based memristor model (a) Input
voltage. (b) Changes of memristance.
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through learning can establish the relation between MN and HN. In
other word, synaptic weight between these two neurons can be
adjusted, therefore, this model uses memristor to realize this func-
tion. Obviously, good message can not make people feel sad. So, the
dotted line means that the synapse weight between GM and SN is
almost zero. To the bad message, the analysis method is the same
as good message.
2.2.2. Proposed emotion model of variable learning rate with time
delay

In previous works, good message and message notification were
applied simultaneously [28,29]. But when neutral stimulation
(MN) is earlier than unconditioned reflex, associative memory
can be established as well. This process is called time delay
learning.

In our daily life, we hear the SMS ringtone firstly and then read
the text. In this process, SMS ringtone and read message content
have a chronological order. A good message content can make us
feel happy. But an SMS ringtone will not produce any emotional
fluctuations. Through the delay learning method, we can have a
new explanation of this emotion model. In this model, GM, MN
and BM are equivalent to good message content, SMS ringtone
and bad message content respectively. Table 1. shows this simple
associative learning. Because the future learning is the same as
the second learning, we only explain the second learning.



Table 1
Processes of associative learning

step input result

At the beginning rOnly good message (bad message) Happy(sad)
sOnly message notification No emotion

rThe message notification is applied firstly No emotion
First learning sAfter a while (time delay), a good message (bad message) is applied Happy(sad)

tNext time, when only message notification is applied. Happy(sad)

forgetting I rOnly good message (bad message) is continued for a period of time Happy(sad)
sNext time, when only message notification is applied. No emotion

forgetting II rOnly message notification is continued for a period of time No emotion
Next time, when only message notification is applied No emotion

forgetting III rNeither good message (bad message) nor message notification is continued for
a period of time

No emotion

sNext time, when only message notification is applied No emotion

rThe message notification is applied firstly No emotion
Second learning sAfter a while (time delay), a good message (bad message) is applied Happy(sad)

tNext time, when only message notification is applied. Happy(sad). But the learning time is shorter
than before. (variable learning rate)
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3. Circuit design

The whole circuit contains five modules. The first module is the
input neuron, which realizes production of the pulse signal. The
second module is the output neuron, which outputs the final sig-
nal. The third module is the synapse, which realizes the connection
between neurons. The fourth module is the time delay module,
which realizes the learning with time delay. The last module is
the rate variation module, which makes learning rate variable.
Fig. 5. Circuit of input neuron.

Fig. 6. Function of input neuron (a) input signal (b) output signal.
3.1. Input neuron

If the received signal exceeds the threshold, neurons will output
a pulse signal. This is the function of neurons. In previous works,
most researchers used the leaky integrate-and-fire neuron model
as input neuron [32,38]. Some used Operational Amplifier [39]
and 555 timer [40]. Inspired by the circuit designed in [41]. In this
article, we use memristor instead of capacitor to design input neu-
ron. Fig. 5 shows the circuit structure.

Vin and Vout are input and output voltages respectively. VCC is
the DC voltage source of 2 V. M1, M4 and M6 are NMOS transistors,
and M2, M3 and M5 are PMOS transistors. M1, R1 and M2 realize
the function of switch. Threshold voltage of M1 represents the
threshold of input neuron. If the input voltage exceeds threshold,
potential of M1 drain electrode will be 0 V, M2 works at on-
state. Otherwise, resistance of M2 is infinite, the circuit behind will
not work. State of M3, M4, M5 and M6 are controlled by the output
of D flip-flop. If the output of D flip-flop is 0, M3 and M6 work at
on-state, M4 and M5 work at off-state. The circuit marked by red
arrow will work. This situation will lead to a decrease of memris-
tance, and then, cause the potential of point A to rise. If the output
of D flip-flop is 1, M3 and M6 work at off-state, M4 and M5 work at
on-state. The circuit marked by blue arrow will work. This situa-
tion will lead to an increase of memristance, and then, cause the
potential of point A to rise. Therefore, both these two situations
cause the voltage of point A to rise. Component U1 is a Schmitt
trigger, if the input voltage exceeds the positive threshold, it will
produce a rising edge of signal. If the input voltage is smaller than
negative threshold, it will produce a falling edge signal. D flip-flop
is to compose a binary adder, every rising edge of signal will cause
the output signal to alternate between 0 and 1.

The initial output state of D flip-flop is 0, the initial memris-
tance of M is a large value. So, a small voltage which is smaller than
negative threshold of U1 is gotten at point A. As the memristance
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decreases, voltage of point A rises. When the voltage exceeds the
positive threshold, U1 produces a rising edge signal to cause the
output of D flip-flop to alternate. At this time, memristance of M
is small, circuit marked by blue arrow works, voltage of point A
is smaller than negative threshold of U1, U1 will produce a falling
edge of signal. As the memristance increases, voltage of point A
rises. When the voltage exceeds the positive threshold, the output
of D flip-flop alternates. So, again and again, the output of D flip-
flop will produce a pulse signal. When there is no input signal, out-
put of D flip-flop may be 1, so, at the end of circuit, we add an AND
gate. The properties of pulse signal can be adjusted by changing the
values of VCC, memristor and R.

Fig. 6 shows the input signal and output signal of input neuron.
In this module, HP memristor model with Biolek window function
is selected. We set VCC = 2 V, R1=1 k(X), RON = 10(X), ROFF = 2.6 K
(X), Rinit = 2.5 K(X), D = 10(nm), lv = 5:0� 10�14m2S�1X�1, P = 1.



Fig. 7. Circuit of output neuron.
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3.2. Output neuron

The function of output neuron is to produce pulse signals when
the input signals exceed the threshold. Because the input signal is
pulse signal, a simple comparator can be used to design output
neuron.

The circuit structure is shown in Fig. 7. VCC is a DC voltage
source of 3 V, resistance of R1 and R2 is 1 k(X). Turn-on voltage
of M1 represents threshold of output neuron. Component SUM is
an analog adder, sum all outputs from the synapses connected with
it. If signal exceeds threshold, it will produce a voltage of 3 V. Due
to input signal is pulse signal, the output signal is pulse signal too.
3.3. Synapse

The function of synapse is to receive the signals from presynap-
tic neurons connected with it, and then transmits signals to post-
synaptic neurons. In order to realize this function, principle of
voltage division in circuit theory is used in this article. Fig. 8 shows
Fig. 8. Circuit structure of synapse (a) Synapse of unco

Fig. 9. Circuit of s
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the structure of the simple synapses of unconditioned reflex and
conditioned reflex. Fig. 8(a) shows the synapse of unconditioned
reflex. Due to unconditioned reflex is innate, do not need to learn.
This synapse can output a signal which exceeds the threshold of
postsynaptic neuron as long as there is a signal from presynaptic
neurons. Therefore, two resistors are selected to constitute the
synapse. Fig. 8(b) shows the synapse of conditioned reflex. The first
component is an analog adder, which receives the signal from
three modules. M is a memristor. ABM is a component called as
LIMIT in software PSPICE to restrict the negative signal to transmit
to postsynaptic neuron. The initial memristance of M is set very
large, because the conditioned reflex can’t produce output signal
at first, only after learning the postsynaptic neuron can react to sig-
nals from synapse. More details on how it works will be explained
in part 3.5.
3.4. Time delay module and rate variation module

In previous works, the message notification and good(bad) mes-
sage are applied simultaneously. But when neutral stimulation is
earlier than unconditioned reflex, associative memory can be
established as well. Of course, delay time is limited. If time interval
is too long, associative memory can not be taken shape. Therefore,
the function of time delay module is to store the message notifica-
tion signal for a while. If the good message comes, good message
and storage message will change the synapse weight together. If
there is no message notification, the storage signal will disappear
gradually. Hence a circuit of signal storage is designed as Fig. 9.
In this circuit, VCC1 = 5 V, VCC2 = 3 V. Resistance of all resistors
is 1 k(X) except R3 = 600(X). The input port is connected to the
output of message notification neuron. If there is an input signal,
M4 and M5 work at on-state, the circuit marked by blue arrow will
work. Memristance of M will decrease. Otherwise, Memristance of
M will increase. If the memristance decreases to a very small value,
and then we remove the input signal, the circuit marked by red
nditioned reflex. (b) Synapse of conditioned reflex.

ignal storage.
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arrow will work. Voltage of point A will be very large, so compara-
tor2 has a high-level output voltage. But the circuit marked by red
arrow causes the voltage of point A to decrease gradually. That is to
say, storage time is not infinite. The whole circuit of time delay
module is shown in Fig. 10(a). Only when good messages(bad mes-
sages) but not message notifications are received, the time delay
module will output signals. Therefore, NOT gate and AND gate
are used to limit the output signal. Vin1;Vin2 and Vin3 represent
input signal. Vin1 is the output signal of message notification neu-
ron shown in Fig. 5. Vin2 and Vin3 are input signal of message noti-
fication neuron and good message neuron respectively. In this
module, parameters of Ag/AgInSbTe/Ta-based model is as follows:
RON = 80X;ROFF = 3 KX;Rinit = 2.9 KX, D = 3� 10�9nm,
lv = 5:0� 10�10m2S�1X�1, P = 10, VON = 0.01 V, VOFF = �0.01 V,

IOFF = 5:0� 10�5; I0 = 1:0� 10�6; ION = 1.
The function of rate variation module is the same as time delay

module. As shown in Fig. 10(b), the signal needed to be stored indi-
cates that the processes of learning are completed. Only when
message notification signal but not happy message (bad message)
is applied, rate variation module will output signals. Hence, we
also add three logic gates. This module provides signal in next pro-
Fig. 10. Time delay module and rate variation module.

Fig. 11. Whole circ

122
cess of learning. Obviously, the time of storage is longer than time
delay module. In order to make the memristance of memristor
increase slowly in this module, Ion = 6 of memristor is selected.
R3 = 700(X) is modified. Two resistor R1 = 1 k and R2 = 500 are
added to adjust the output signal of this rate variation module.
The rest of circuit structure and parameters are same to the time
delay module. Vin1 is a signal which indicates that the processes
of learning have been finished. Vin2 and Vin3 represent input signal
of message notification neuron and good message neuron
respectively.
3.5. Whole circuit design

Fig. 11 is the whole circuit structure of emotion model with
associative memory. The associative memories of good message
and bad message are the same, so, for simplicity, we only use the
good message for explanation. When message notification is
merely applied, because of the large memristance of memristor,
the output of synapse is lower than threshold of output neuron,
there is no output of HN. But the output signal of MN is stored in
time delay module. When the GM signal comes next time, time
delay module will output a signal. Through analog subtracter, this
signal becomes a negative voltage. This voltage will make the
memristance decrease. Due to the existence of ABM, this negative
voltage does not have any influence on output neuron. When the
message notification comes alone next time, if memristance
decreases to a certain value, the output signal of synapse will
exceed the threshold of HN. People express happy mood. This pro-
cess indicates the associative memory has been learned. The out-
put signal of synapse will be stored in rate variation module.
When the next process of learning comes, the rate variation mod-
ule will output a signal and pass it to synapse. The absolute value
of this signal is smaller than that outputted by time delay module.
This signal is the input of analog adder(positive value). The abso-
lute value of voltage applied to synapse (negative value) is smaller
than the voltage which is provided by time delay module(negative
value) only. Through analysis of Fig. 3, we can draw a conclusion,
under this small voltage, change speed of memristance is faster
uit structure.
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than first learning. If only message notification is applied for a long
time, output voltage of MN will make memristance increase, that is
to say, the associative memory which is formed before will fade
away. This is one of the three forgetting processes. When only good
message is received or neither good message nor message notifica-
tion is received, voltage applied to negative electrode of memristor
will be almost zero. The module marked by green shade works. (In
this module R11 is 1 k(X), VCC1 and VCC2 are �1 V and 2 V respec-
tively). This module will provide a voltage of �1 V to the positive
Fig. 12. Simulation result of emotion model with associative memory (a) good messa
memristance of the first synapse (g) memristance of the second synapse.
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electrode of memristor. In this situation, the memristance of mem-
ristor will increase. This is how the other two forgetting processes
work.

4. Result analysis

Simulation results are shown in Fig. 12. Process A and B are the
associative memories of good message and bad message respec-
tively. For process A. At first, only good message can cause an out-
ge (b) message notification (c) bad message (d) happy neuron (e) sad neuron (f)



Table 2
Comparison with previous works
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put pulse of happy neuron (HN), and message notification can not.
Testr is the first process of learning, good message comes behind
message notification. And then, only message notification is
applied, there is an output pulse of HN. That is to say, associative
memory is completed. Tests is a process of forgetting, neither
good message nor message notification is applied. And next time,
when message notification comes only, there is no output signal
of HN. Testt is the second process of learning. Analysis is the same
as the first learning. Testu is another forgetting, only good mes-
sage is applied for a while. And then notification comes only, there
is no output signal of HN. Testv is the third process of learning.
Analysis is the same to the first learning. Testw is the last process
of forgetting, only message notification is applied for a while, we
can see that the output pulse of happy neuron vanishes at end of
this process. Pictures I and II are the enlargements of memristance
change during the first and second learning respectively. In these
two pictures, we control changes of memristance to be the same
to each other. Through observing the length of time consumed,
we can know the speed of the second learning is faster than the
first learning. That is to say, the learning rate is variable. After pro-
cess A, we do not receive any message. The associative memory
between good message and message notification has vanished
completely. Process B shows the associative memory between
bad message and message notification. The analysis of process B
is the same as process A. So, we can draw a conclusion, this circuit
can realize the function of emotion model with associative mem-
ory well.

Remark: As is shown in Table 2, the difference between our arti-
cle and previous works is demonstrated. A model for modeling the
affections was proposed in [28], but this paper only implemented
the associative memory and the processes of forgetting. Paper
[30] used memristive circuit to simulate the learning and forget-
ting processes of emotions. In [29], the three processes of forget-
ting and the variable rates of learning were realized in emotion
model. But they did not consider the variable learning rates with
time delay. In this article, we realize this useful function. When
the time delay is exist, the learning rate can also be variable.
5. Conclusion

In this article, an emotion model with associative memory is
realized through a memristance circuit. Comparing to the previous
works, the variable learning rate with time delay can be realized.
This more ordinary situation can be used to simulate the emotional
changes when we check the messages after SMS ringtone is
received. At first, the SMS ringtone will not cause any emotional
fluctuations. We will feel happy or sad based on whether the mes-
sage is good or bad after the SMS ringtone is received. This learning
process gradually forms a connection between SMS ringtone and
different moods. Next time, when the SMS ringtone comes, we will
feel happy or sad. We also consider three processes of forgetting:
only when good (bad) message is applied, only when message noti-
fication is applied and neither good (bad) message nor message
notification is applied. After the forgetting processes, the bond
124
between SMS ringtone and different moods will disappear. When
the SMS ringtone acts alone, we will not feel happy or sad. If
another learning process is appended after one round of forgetting
process, the learning rate will actually get higher than before. All
works finished in this article will provide an option for future emo-
tional learning. These functions presented in this paper will help
the emotion robot gain stronger emotion learning ability. However,
some improvements need to be finished in the future. Firstly, the
variable speed of forgetting is one of the problems that need to
be considered in future research. Secondly, when the bond
between good mood and message ringtone is built, if we directly
connect bad mood and the ringtone without putting it through for-
getting process, both emotions (being happy and being sad) will
show up if the message ringtone rings, which is definitely not to
be expected and needed to be fixed someday.
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