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Lyapunov exponent (LE), chaotic range and complexity are the key considerations of a

discrete chaotic system. A dynamic chaotic system with larger LE and wider parameter
space will result in better statistical performance that can be used to generate pseudo

random sequences and applied to encryption fields. At the same time, the combination of

simple chaotic maps can generate more excellent chaotic behavior. This paper proposes
a newly combined chaotic system called Parallel Chaotic System (PCS). Multiple simple

chaotic maps are paralleled to construct the novel system. In this system, LE and chaotic
range can be improved as much as possible by setting additional parameters. Compared

with the existing models made up of same seed maps, PCS is able to get better chaotic

behavior by means of a simple structure at the same time. Performance evaluation
emphasizes that the chaotic maps generated by PCS are more unpredictable with better

complexity.

Keywords: Parallel chaotic system (PCS); combined chaotic system; chaotic maps;
Lyapunov exponent; chaotic ranges.

PACS number: 05.45.Ac

1. Introduction

Chaotic behavior, as a novel nonlinear dynamic behavior, was first discovered in

meteorology as the butterfly effect.1 It means that small changes in initial condi-

tions can drive long-term and large chain reactions of the entire system. The basic

characteristic of a chaotic system is its extreme sensitivity to initial value. The

trajectories generated by two nearly identical initial values are separated exponen-

tially as time goes on, and Lyapunov exponent (LE) is a quantitative description of

†Corresponding author.
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this phenomenon.2 Therefore, the increase of LE means the chaotic system is more

sensitive to the initial value with better dynamic characteristics. The chaotic range

is another important characteristic. The narrow chaotic range represents that the

chaos can easily disappear after interference. In other words, wider chaotic range

can acquire higher security. Chaotic motion also has other characteristics, such as

boundedness, ergodicity and unpredictability. Because of these unique properties,

chaos has been applied in many aspects especially in chaotic secure communica-

tion,?,3 chaotic image encryption,4,5 pseudo-random number generator6,7 and other

security fields.

The current chaotic systems can be divided into two types: (1) one-dimension

(1D) and (2) high-dimension (HD). Compared with 1D chaotic maps, HD chaotic

maps, like Lorenz chaotic system,8,9 strange attractor of chaos10–17 and some dis-

crete hyperchaotic systems,18–20 usually have a higher LE, and their nonlinear be-

havior is more complex and unpredictable, but they have higher costs in computa-

tion and more difficulties in hardware implementation. Simultaneously, the simple

chaotic maps, like Logistic map, Sine map and Gauss map, have lower costs in

computation and relatively simpler hardware circuit structure. Therefore, they can

be easily realized in chaos-based applications. However, they have several security

weaknesses: (1) their chaotic ranges are limited. (2) their LEs are usually small.

(3) their outputs are easy to be predicted with low computation costs.

In order to overcome these defects of 1D chaotic maps, it is very necessary to de-

sign a map with better chaotic performance. Recently, some efforts have been made

by combining them together. In general, there are four kinds of models of chaotic

systems. The first kind of model is cascade chaotic system21 which is essentially

a composite function map. Its LE is the sum of inner and outer seed maps. Only

when the iterative function is matched can it have a good chaotic performance. Its

chaotic range is expanded compared with its seed maps but the improvement of LE

is limited. Similarly, a robust chaos22 was obtained by the sinusoidal transformation

after the combination of two seed maps.23 Its LE is the sum of the two seed maps

and a Sine map. The second kind of model is parameter-modulated chaotic system24

where a seed map is used to dynamically modulate another map. The linear trans-

formation ensures that the iterative value of the controlling map is transformed to

the chaotic range of the modulated map. It greatly expands the chaotic range and

improves the initial value sensitivity of the system. Only the modulated seed map

as the iterative function of the system, it does not essentially improve LE. The third

kind of model is fusion model.25 According to the threshold of the controller, one

of the seed maps is selected for each iteration but it cannot fundamentally improve

LE either. The last model is modulo operation.26 Through a modulo operation, the

output of the two seed maps is controlled in a certain area. However, its LE fails to

improve a lot and the hardware implementation of modulo operation is complex. In

order to obtain a much more complicated chaotic behavior, Refs. 27 and 28 came

up with an idea of multilayer cascade, multilayer modulation and combination of
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basic models. It may have a higher LE and a wider chaotic range but it gains better

chaotic performance at the expense of harder hardware implementation. In short,

compared with their corresponding seed maps, the maps generated by the above

chaotic systems may have wider chaotic ranges. However, their LEs are still too

small and their systems are not able to improve the LE as much as possible. In

addition, their chaotic ranges are not wide enough.

Generally speaking, wide chaotic range, large LE and simple structure of hard-

ware implementations are all important aspects to be considered in designing a

chaotic system. Obviously, the above systems do not meet these design require-

ments. The previous contributions to the combined chaotic systems have two short-

comings: (1) chaotic behavior is limited and (2) better chaotic behavior is obtained

at the expense of hardware implementation. However, we find a more ingenious

method to overcome this deficiency by designing a Parallel Chaotic System (PCS).

Compared with the published combined models composed of consistent seed maps,

PCS can apparently improve LE as much as possible and obtain wider chaotic range

through a relatively simple hardware structure. The iterative function of any 1D

chaotic map that is always bounded can be used as a seed map of PCS. Setting

different controlled parameters, using different seed maps, or exchanging seed maps

can produce a series of chaotic systems with better chaotic performance. Here, we

mainly compare with cascade chaotic system, fusion model, parameter-modulated

chaotic system and modulo operation model.

The rest of the paper is organized as follows. Section 2 will illustrate the frame-

work of PCS and provide relevant proof. Section 3 will briefly reviews two tradi-

tional chaotic maps. Section 4 gives three specific examples. Section 5 will justify the

chaotic performance of PCS, including iteration function diagram, LE and Spectral

entropy (SE). Finally, conclusions are summarized in Sec. 6.

2. Proposed Parallel Chaotic System and Analysis

The PCS is shown in Fig. 1 where f1, f2, . . . , fk denote seed map functions and

ui(i ∈ [1, k]), ci(i ∈ [1, k]) are all parameters. Moreover, ui is inherent to the system

while ci (we call it the controlled parameters) can be freely set by the user. The

inputs are expanded by ci times, respectively, for each seed map functions and we

consider the sum of the all seed maps as output of the system so that each iteration

can be carried out. Clearly, it can be seen that the new system consists of several

seed maps in parallel.

From Fig. 1, the mathematical model can be obtained by

xn+1 = P (xn) =

k−1∑
i=0

fi(ui, cixn), (1)

where P (xn) denotes total map function of PCS.

As we all know, the LE indicates the numerical characteristics of the average

exponential divergence rate of adjacent trajectories in phase space. It is one of the
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...

nx 1+nx
2 2 2( , )nf u c x

1 1 1( , )nf u c x

( , )k k k nf u c x

Fig. 1. Structure of PCS.

features used to identify chaotic motion and is an important indicator for chaotic

dynamic performance. For a differentiable first-order difference equation xi+1 =

f(xi), its LE can be defined by

LEf(x) = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|. (2)

According to the iterative equation of PCS, its LE can be obtained by

LEP (x) = lim
n→∞

1

n

n−1∑
i=0

ln |P ′(xi)|

= lim
n→∞

1

n

n−1∑
i=0

ln

∣∣∣∣∣∣
k−1∑

j=0

fj(cjxi)

′∣∣∣∣∣∣
= lim

n→∞

1

n

n−1∑
i=0

k−1∑
j=0

ln|cjf ′j(cjxi)|

= lim
n→∞

1

n

n−1∑
i=0

k−1∑
j=0

ln|f ′j(cjxi)|+
k−1∑
j=0

ln|cj |

=

k−1∑
j=0

LEfj +

k−1∑
j=0

ln|cj |. (3)

A positive LE means that the phase volume of the system is expanding and

folding in this direction, and the adjacent orbits in the attractor are becoming

more and more irrelevant, making the initial state unpredictable for the long of

any uncertain system. That is chaotic behavior. Therefore, PCS is chaotic when

LEP(x) > 0. For the convenience of analysis, we assume cj > 0. It is obvious that

the LE of the original system fi(i ∈ [1, k]) can acquire gains to a certain extent

when

k−1∏
j=0

cj > 1. (4)

In theory, LE of PCS can be very large.
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nx 1+nx1 1 1( , )nf u c x

2 2 2( , )nf u c x

Fig. 2. Structure of PCS when k = 2.

PCS offers users a great deal of flexibility to choose seed maps to generate

chaotic systems with higher LE and wider chaotic range. In order to facilitate

further research, we just consider k = 1, k = 2 and k = 3.

(1) When k = 1, PCS has only one seed map. In this case, the user’s utilization

of the seed map is limited, but better chaotic behavior can still be obtained

compared to the original seed map.

(2) When k = 2, the corresponding block diagram of PCS is shown in Fig. 2.

In this case, PCS can be defined as

xn+1 = P (xn) = f1(u1, c1xn) + f2(u2, c2xn), (5)

where f1 and f2 may be same, or different. At this time, if f1 and f2 are

exchanged each other, they are two completely different chaotic systems shown

in Eq. (6),

xn+1 = P (xn) = f2(u2, c1xn) + f1(u1, c2xn). (6)

(3) When k = 3, our main purpose is to verify the influence of the increase of k on

the entire chaotic system based on the original map. The relevant system are

shown in Fig. 3. In this case we can find the superiority when k increases, but

the structure of system will be more complicated.

In short, PCS can produce a series of new maps with higher LE and wider

chaotic range by selecting different seed map or exchanging the positions of seed

map. By setting ci, our system can apparently improve its LE. This is going to be

validated in Sec. 4.

Moreover, when the structure of PCS is further extended, it offers users even

more flexibility of selecting seed maps. The resulting chaotic maps have much more

complicated chaotic behaviors and more parameter settings, and thus they may have

nx
1+nx

3 3 3( , )nf u c x

2 2 2( , )nf u c x

1 1 1( , )nf u c x

Fig. 3. Structure of PCS when k =3.
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much better chaotic performance and generate more random and unpredictable out-

put sequences. Once a chaotic map generated by PCS is expanded, its LE will in-

evitably increase. On the other hand, however, multilayer parallel connections may

result in many side effects including significant time delay, difficulty in hardware

implementation, and complexity of performance analysis.

3. 1D Seed Maps

In this section, we will focus on two classical maps that will be considered as the

seed map of the PCS to produce a series of new maps.

3.1. Sine map (SM)

It is well-known that sine functions are always bounded, which satisfy the condition

of the PCS. SM is defined as

xn+1 = S(xn) = u sin(πxn), u ∈ [0, 1], (7)

(a) (b)

Fig. 4. (Color online) The bifurcation diagrams and corresponding LEs of the (a) SM and

(b) GM.
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where S(xn) is SM function, u ∈ [0, 1] denotes inherent parameter. Its bifurcation

diagram and its corresponding LE are shown in Fig. 4(a). SM has chaotic behavior

when the parameter u is around [0.867, 1]. In addition, the closer the u is to 1, the

better chaotic behavior is.

3.2. Gauss map (GM)

GM comes from the Gaussian function named after Carl Friedrich Gauss. GM is

defined as follows:

xn+1 = G(xn) = e−ax
2
n − b, b ∈ [0, 1], (8)

where G(xn) is GM function, a ∈ [0, 8] and b ∈ [0, 1] are inherent parameters that

control the width and height of the Gauss curve, respectively.29 It can be concluded

from (8) that the GM is still bounded and x is in the range of [−1, 1]. The bifurcation

diagram and the corresponding LE are given in Fig. 4(b) when a = 8.

4. Examples of Parallel Chaotic System

Using different 1D chaotic maps as seed maps, PCS is able to generate a large

number of new maps. This section provides three examples to show the availability

of the PCS.

4.1. Enhanced-sine map (ESM)

When the PCS has only one seed map (k = 1), the example is

xn+1 = u∗ sin(π∗c∗xn), u ∈ [0, 1], (9)

where u is an inherent parameter and c is a controlled parameter.

(a) (b)

Fig. 5. (Color online) The bifurcation diagram of ESM when (a) c = 5.56 and (b) c = 20.56.
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(a) (b)

Fig. 6. (Color online) The bifurcation diagram of SSM when (a) c1 = 2.96, c2 = 2.32 and

(b) c1 = 50.96, c2 = 50.32.

We get its bifurcation diagram separately when c is 5.56 in Fig. 5(a) and 20.56

in Fig. 5(b). It is obvious that the chaotic range increases significantly as c be-

comes larger. This means that the controlled parameter c can enhance chaotic

performance.

4.2. Sine-sine map (SSM)

In Eq. (5), when f1 and f2 are the same (k = 2, both f1 and f2 are SM), the

iteration of PCS is

xn+1 = u∗ sin(π∗c∗1xn) + (1− u)∗ sin(π∗c∗2xn), u ∈ [0, 1], (10)

where u is an inherent parameter and ci(i ∈ [1, 2]) is a controlled parameter.

It is clear that x is still bounded. We can observe its bifurcation diagram when

c1 = 2.96 and c2 = 2.32 in Fig. 6(a) and when c1 = 50.96 and c2 = 50.32 in

Fig. 6(b). More worth mentioning is that Fig. 6(b) has no periodic window, in this

way, chaotic map is generated in the whole region.30,31 This is called as robust

Sine-Sine Map (RSSM).

4.3. Gauss-sine map (GSM) and sine-gauss map (SGM)

When f1 and f2 are different (k = 2, f1 is a GM and f2 is a SM), we get Gauss-Sine

Map (GSM). Its mathematical equation is shown in Eq. (11)

xn+1 = e−a
∗(c∗1xn)

2

− u+ (1− u)∗ sin(π∗c∗2xn), a = 8, u ∈ [0, 1], (11)

where u is an inherent parameter and ci(i ∈ [1, 2]) is a controlled parameter.

Mathematically, the result of the addition of bounded functions is still bounded

and thus x is still always bounded. We set c1 = 12.86, c2 = 5.56 to obtain its

bifurcation diagram shown in Fig. 7(a). Then, in Eq. (6), we simply exchange the

2050048-8
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(a) (b)

Fig. 7. (Color online) the bifurcation diagram of GSM when (a) c1 = 12.86, c2 = 5.56 and SGM

when and (b) c1 = 5.56, c2 = 12.86.

two seed maps of GSM to get a new map called Sine-Gauss Map (SGM). Its iterative

equation is shown in Eq. (12) and its bifurcation diagram is shown in Fig. 7(b).

xn+1 = e−a
∗(c∗2xn)

2

− u+ (1− u)∗ sin(π∗c∗1xn), a = 8, u ∈ [0, 1]. (12)

Similarly, u is an inherent parameter and ci(i ∈ [1, 2]) is a controlled parameter.

From Fig. 7 we can observe that exchanging the position of the seed map will

have totally different chaotic behavior. This is consistent with our previous inference

in Sec. 2.

In addition, in order to verify the effect of extended PCS (k = 3) on chaotic

performance, we expand on GSM and SGM. We give the relevant mathematical

definition of new chaotic maps.

(1) When expanding on GSM, the new map is

xn+1 = e−a
∗(c∗1xn)

2

− u+ (1− u)∗ sin(π∗c∗2xn)

+u∗ sin(π∗c∗3xn), a = 8, u ∈ [0, 1], (13)

where ci (i ∈ [1, 3]) are all controlled parameters (c1 = 12.86, c2 = 5.56,

c3 = 12.23) and u is an inherent parameter. We get the bifurcation diagram of

extended GSM in Fig. 8(a).

(2) When expanding on SGM, we get approximately the same map as the extended

GSM. Its iterative equation is

xn+1 = e−a
∗(c∗2xn)

2

− u+ (1− u)∗ sin(π∗c∗1xn)

+u∗ sin(π∗c∗3xn), a = 8, u ∈ [0, 1]. (14)

We get the bifurcation diagram of extended SGM in Fig. 8(b).

From Figs. 7 and 8, we can find that Figs. 7(a) and 7(b) has many obvious

periodic windows whereby specific values of u will cause the chaotic map to behave
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(a) (b)

Fig. 8. (Color online) The bifurcation diagram of extended GSM when (a) c1 = 12.86, c2 = 5.56,

c3 = 12.23 and extended SGM when and (b) c1 = 5.56, c2 = 12.86, c3 = 12.23.

in a periodic manner. However, there are small periodic regions in Figs. 8(a) and

8(b). In addition, the bifurcation diagram of extended GSM and extended SGM can

cover all possible points in the phase space under the same chaotic range, which

will lead to a better ergodicity. This means that the extended GSM and extended

SGM have better chaotic performances.

5. Performance Evaluations and Comparisons

In order to further prove the chaotic performance and further highlight the advan-

tages of PCS, we first perform iteration function diagram and then compare the

new chaotic maps with their seed maps and other chaotic systems by LE and SE

in this section.

5.1. Iteration function diagram

For an iterative dynamical system like xn+1 = f(xn), the iteration function diagram

describes the output xn+1 along with the input xn.

Obviously, the iteration function diagram of new maps generated by PCS in

Fig. 9 have more complex patterns than their seed maps. This is because the con-

trolled parameters are added and their outputs are combinations of chaotic orbits

of seed maps. These new maps are so difficult to predict that they are more secure

and more suitable for security applications.

5.2. LEs

A dynamic system with a positive LE is considered to have chaotic behavior, and a

bigger LE means a better chaotic behavior. Clearly, the new maps generated by PCS

is larger than its seed maps under the same chaotic range in Fig. 10. Simultaneously,

if we increase controlled parameter, the LE corresponding to the new map will
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(a) (b)

Fig. 9. (Color online) The iteration function diagram of (a) SM, GM and (b) ESM, SSM, GSM.

(a) (b) (c)

Fig. 10. (Color online) LE comparisons of (a) SM, ESM, (b) SSM, RSSM, SM and (c) extended

SGM, GSM, SGM, GM.

also become larger. Although GSM and SGM have the same seed maps, they are

completely different chaotic systems which coincides with the previous proof in

Secs. 2 and 4.3. In addition, the expanded SGM has a higher LE.

Furthermore, to facilitate the observation of the superiority of our system

over other systems including the aforementioned cascade chaotic system, fusion

model, parameter-modulated chaotic system and modulo operation model, we list

a Table 1. GM and SM are selected as seed maps for each system, respectively. we

take u, a, or b as the inherent parameters of each system. As a result, under the

condition of same seed maps, our system is able to have larger LE and wider chaotic

ranges compared with other combined systems.

When a chaotic map generated by PCS expands, his LE will inevitably become

larger. In order to verify that its LE changes with the number of parallel layers k, we

take the Sine map as a seed map (refer to Eqs. (9) and (10)) and choose significant

controlled parameters, respectively. Table 2 means that when a new map is further

expanded, its LE will certainly increase.
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Table 1. The comparisons of the largest LE and chaotic range.

Chaotic range
Systems Definition of maps LE in [0, 1]

Cascade:

( )F x G( )x
1+nx 1nx

xn+1 = u∗ sin(π∗(e−a∗x2
n − b))

where a = 8, b = 0.62.
0.554 [0.328, 0.456]

Fusion:

(a, )nF x

G(b, )nx

nx 1+nx xn+1 =

{
u∗ sin(π∗xn), yn < 0.5,

e−a∗x2
n − u, yn ≥ 0.5,

where yn+1 = 4∗u∗y∗n(1− yn), a = 8.

0.504
[0.499, 0.631]∪
[0.952, 0.961]

Modulation:

nx 1+nx

ny

1ny +

( )F x

G( )x

Transformation

xn+1 = (1− 0.13∗yn)∗ sin(π∗xn)

where yn+1 = e−a∗y2
n − b, a = 8.

0.651 [0.049, 1]

Modulo operation:

nx nx 1+
(a, )nF x

G(b, )nx

mod

xn+1 = (e−a∗x2
n − u

+(1− u)∗ sin(π∗xn))mod 1

where a = 8.

0.761
[0.112, 0.324]∪
[0.613, 0.757]

Our work (SGM) Eq. (11) 2.995 [0, 0.935]
where a = 8, c1 = 5.56,

c2 = 12.86.

Our work (SGM) Eq. (11)
where a = 8, c1 = 125.56, 7.831 [0, 0.992]

c2 = 150.86.

Our work Eq. (13) where a = 8, c1 = 5.56, 3.054 [0, 1]

(extended SGM) c2 = 12.86, c3 = 12.23.

Table 2. LE of extended new map varies with k.

k 1 2 3 5 7

Controlled parameters c1 = 5.56 c1 = 5.56 c1 = 5.56 c1 = 5.56 c1 = 5.56

ci(i ∈ [1, k]) c2 = 12.86 c2 = 12.86 c2 = 12.86 c2 = 12.86
c3 = 20.32 c3 = 20.32 c3 = 20.32

c4 = 34.56 c4 = 34.56

c5 = 46.86 c5 = 46.86
c6 = 52.32

c7 = 65.56

LE 2.263 3.029 3.545 4.322 6.827

5.3. Complexity analysis

The complexity of a chaotic system refers to the use of related algorithms to measure

the extent of its chaotic sequence approaching random sequence. The greater the

complexity is, the closer the sequence is to the random sequence and the higher the

corresponding security is. Here, we use a SE, an algorithm of structural complexity,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. (Color online) The SE of (a) SM (b) GM, (c) ESM, (d) SSM, (e) GSM, (f) modulo,
(g) cascade, (h) fusion and (i) modulation.

based on Fourier transform for complexity analysis.32 A larger SE means that the

corresponding dynamic system is more complex.

Figure 11 simulates the situation when the complexity of each map in Table 1

changes with the parameters. It is obvious that the SE increases obviously under the

corresponding chaotic range, but the SE is very small even close to 0 in conditions

of the periodic state. It is worth mentioning that the complexity of each new maps

in Figs. 9(c)–9(e) is larger than 0.9 almost on the total parameter range. On the

premise of parameter variation, the SE of our system can still remain a high level.

In other words, our system has a better dynamic complexity and the new maps

generated by PCS are closer to a random sequence.

6. Conclusions

In view of the defects of 1D simple chaotic maps, such as small LE and narrow

chaotic range, this paper have proposed a novel PCS based on the existing combined
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chaotic systems. Under the condition of same seed maps, our system has obvious

advantages compared with the existing combined chaotic systems. PCS can improve

LE as much as possible and the chaotic range is wider at the same time. Whats more

significant is that we can get a better chaotic behavior through a simple structure.

In addition, we have evaluated and further highlighted the advantages of our system

through iteration function diagram, the comparisions of LE and SE in the end.
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