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A Novel Adaptive Active Control
Projective Synchronization of
Chaotic Systems

This paper investigates adaptive active control projective synchronization scheme. A gen-
eral synchronization controller and parameter update laws are proposed to stabilize the
error system for the identical structural chaotic systems. It is the first time that the active
synchronization, the projective synchronization, and the adaptive synchronization are
combined to achieve the synchronization of chaotic systems, which extend the control
capability of achieving chaotic synchronization. By using a constant diagonal matrix, the
active control is developed. Especially, when designing the controller, we just need to
ensure that the diagonal elements of the diagonal matrix are less than or equal 0. So, the
synchronization of chaotic systems can be realized more easily. Furthermore, by propos-
ing an active controller, in combination with several different control schemes, we lower
the complexity of the design process of the controller. More importantly, the larger the
absolute value of product of the diagonal elements of diagonal matrix is, the smoother
the curve of chaotic synchronization is and the shorter the time of chaotic synchroniza-
tion is. In our paper, we take Lorenz system as an example to verify the effectiveness of
the proposed synchronization scheme. Theoretical analysis and numerical simulations
demonstrate the feasibility of this control method. [DOI: 10.1115/1.4039189]

Keywords: chaotic synchronization, active synchronization, projective synchronization,

adaptive synchronization, active control

1 Introduction

Synchronization is one of the hot parts of chaotic areas. Since
the seminal work of Pecora and Carroll [1], chaos synchronization
has received a great deal of interest among scientists from
various fields. Usually, when studying chaotic synchronization,
we use external signals to drive the responding chaotic system,
such as in Refs. [2] and [3]. Chaotic synchronization has been
successfully applied in secure communication, information proc-
essing, life science, etc. [4—6] In the past years, many synchroni-
zation techniques, including phase synchronization [7], adaptive
synchronization [8], lag synchronization [9], complete synchroni-
zation [10], coupling synchronization [11], fuzzy sliding mode
control synchronization [12,13], etc. have been studied. All of the
synchronization methods mentioned above have their own disad-
vantages. In phase synchronization method, one or more compo-
nents of the error system cannot converge to O at last, such as in
Ref. [14]. So, it will increase error between the drive system and
response system. In adaptive synchronization method, the control-
ler design and the parameter update laws design usually become
very complex [15]. Therefore, it will increase the difficulty to con-
trol synchronization. In lag synchronization, the time delay of
the state vector usually becomes difficult to control, such as in
Ref. [16]. So, it will increase error between the drive system and
response system. In complete synchronization, the synchroniza-
tion scheme has no universal conclusion such as in Ref. [17]. In
coupling synchronization, it is difficult to determine the coupling
factor, such as in Ref. [18].

Recently, projective synchronization has attracted a great
amount of attention [19-21] for its unpredictability of the scaling
factor or the scaling function. It can additionally enhance the
security of communication. In Ref. [15], Dibakar Ghosh proposed

ICorresponding author.

Contributed by the Design Engineering Division of ASME for publication in the
JourNAL OF COMPUTATIONAL AND NONLINEAR DyNamics. Manuscript received May 17,
2017; final manuscript received January 20, 2018; published online March 23, 2018.
Assoc. Editor: Bogdan I. Epureanu.

Journal of Computational and Nonlinear Dynamics

a projective scheme in multiple modulated time-delayed systems.
However, in that paper, the author did not analyze the design of
controller. In Ref. [22], Wang et al. proposed a high precision fast
projective synchronization method. It increases the speed of syn-
chronization compared to the general method. However, they did
not do any research about parameter adaption. And the mathemat-
ical reasoning process is also complex. In Ref. [19], Wang et al.
proposed a time-controllable projective synchronization scheme.
In that paper, the synchronization method can improve the speed
of synchronization by adjusting some parameters. Meanwhile, the
synchronization scheme can improve the ability of antidecipher-
ing information because of its unknown scaling matrix and
unknown convergence. However, the designing process of the
controller and the parameter update laws is also complex. In
Ref. [20], Li et al. proposed a unified method for projective syn-
chronization of chaotic system. In that paper, a versatile model of
chaotic projective synchronization was proposed by constructing
a generalized proportion matrix. So, all kinds of projective syn-
chronization schemes could be achieved by varying the general-
ized proportion matrix. And because of these characteristics, this
synchronization scheme extended the applicability of projective
synchronization. However, the response system of the paper was
constructed artificially. Therefore, they were not suitable to the
application of arbitrary response system. Moreover, they did not
also consider the case of parameter adaptation. In Ref. [21], Li
et al. proposed a new projective scheme. In their paper, they put
forward a novel design scheme of controller. It is independent of
the Routh—Hurwitz criterion. That meant the complexity of active
control was simplified. However, the paper did not consider the
case of parameter adaption. In conclusion, for the above men-
tioned papers, most of the controller design of them is complex.
Therefore, the synchronization between the drive system and the
response system is difficult to be controlled. Meanwhile, the tuna-
bility of the synchronization scheme is poor. Moreover, almost
none of the papers mentioned above did study how to shorten the
time of synchronization and make the curves of chaotic synchroni-
zation smoother.
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To overcome the weaknesses above, we propose an adaptive
active control projective scheme and the scheme of shortening
synchronized time and making the curves of chaotic synchroniza-
tion smoother than the ones in other synchronization methods.
Compared with the articles above, the proposed control scheme
has the following advantages. First, we proposed a general syn-
chronization controlling scheme and parameters update laws. It
extends the scope of application of the synchronization control
scheme and parameters update laws. Second, a new method of
combining the active control, the adaptive control with projective
control is proposed. This synchronization scheme pioneered the
mutual combination of these three methods. Therefore, it has
extended the scope of application of the synchronization scheme.
Third, the proposed synchronization scheme can make chaotic
synchronization easier to be realized by adjusting the constant
diagonal matrix. Last, but not least, by using different constant
diagonal matrix in our paper, the synchronization between the
drive system and the response system can also be achieved. That
means that we have extended the adjustable range of synchroniza-
tion of chaotic system. Meanwhile, we can shorten the time of
synchronization and make the curves of chaotic synchronization
smoother than the ones in other synchronization methods by
enlarging the absolute value of product of the diagonal elements
of diagonal matrix C.

This paper is organized as follows: In Sec. 2, we introduce our
analysis of our synchronization principle and prove it. In Sec. 3,
we take Lorenz system as an example to verify effectiveness of
the proposed synchronization scheme. Meanwhile, we take differ-
ent constant diagonal matrix C to indicate that we have extended
the adjustable range of synchronization of chaotic system. In
Sec. 4, we analyze the advantages of our synchronization method
in detail and give comparative results as well. Finally, the conclu-
sions are drawn in Sec. 5.

2 Analysis of Synchronization Principle

2.1 The General Mathematical Model of Synchronization
of Chaotic Systems. In Ref. [5], the mathematical model of the
drive system and the response can be described as follows:

x=f(x)+F(x)0 (1)
y=f)+F)0 +u ©)
u=—f —FO + Ae 3)

where x,y € R" are the state variables of the drive and response
systems, respectively, f : R” — R" are the continuous vector func-
tion and, F € R"*P is the function matrix, 0 ¢ R’ is an unknown
parameter vector, 0 = 0—-0 represents the estimate vector of
unknown parameter vector 0, u € R’ is controller to be determined,
A€ R" is the coefficient matrix of the vector error state e,
f =f(y) — Hf (%), F = F(y) —HF(x), H is a n-order diagonal
matrix. A is chosen such that it has all its eigenvalues on the left-
hand side of the complex plane. To make the drive system (1) and
the response system (2) realize adaptive projective synchroniza-
tion, there must exist a positive symmetric matrix P such that

ATP+PA=-Q “)

where Q denotes a positive symmetric matrix. Meanwhile, A is
chosen such that it has all its eigenvalues on the left-hand side of
the complex plane. However, the two above-mentioned conditions
are not easy to be realized. Therefore, it makes the controller not
flexible to be adjusted. That is to say, it makes the synchronization
between the drive system (1) and the response system (2) not easy
to be realized. To overcome weaknesses above mentioned, in
Sec. 2.2, we propose the active synchronization scheme. Accord-
ing to the active synchronization scheme, we just ensure the
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diagonal elements of the diagonal matrix less than or equal 0. The
design of the controller is very easy. Meanwhile, the controller is
flexible to be adjusted.

2.2 Proposed Mathematical Model of Synchronization.
The proposed mathematical model of drive system and response
system in our paper can be described as follows:

X =f(X) + F(X)0 + AX )
Y =f(Y)+F(Y)0+BY +U (6)

where X and Y € R" are the state vectors, f : R" — R" is continu-
ous nonlinear vector functions U € R" is the vector controller,
F € R™" is the function matrix, A,B € R"*" is the constant
matrix, 0 eR" is the control parameter vector, and 0 ER" is the
unknown parameter vector that needs to be distinguished during
the process of the synchronization of the drive-response system.
In fact, Eq. (5) can be changed into Eq. (1). Meanwhile, Eq. (6)
can be changed into Eq. (2). In Eq. (5), AX and f{(X) denote linear
part and nonlinear part of f(x) in Eq. (1), and F(X)0 represents
F(x)0 in Eq. (1). Similarly, in Eq. (6), BY and f(Y) denote linear
part and nonlinear part of f(y) in Eq. (2), and F(Y)0 represents
F(y)0 in Eq. (2), and U represents u in Eq. (2). However, the con-

troller U and 0, whose expressions in Eq. (6) are unlike as the

ones of 1 and 0 in Eq. (2), are to be designed in this paper.
Define the error system

e(t) =Y — oX 7

where o € R is the scaling factor, which is a real constant.

_ Our goal is to design the active controller and the update law
Osuch that the controlled response system (6) could be adaptive
projective synchronization to the drive system (5).

2.3 Design of Active Controller and Parameter Update
Law. In this section, we introduce the design scheme of controller
and the parameter update laws. Compared with the synchroniza-
tion schemes in Sec. 2.2, we propose a novel adaptive active con-
trol projective synchronization. By using active control scheme,
we introduce a constant diagonal matrix C. On one hand, the syn-
chronization of the chaotic system is easier to achieve because we
just need to adjust the C that ensures the diagonal elements of the
diagonal matrix are less than or equal 0. Therefore, the synchroni-
zation between the drive system and the response system is more
flexible to be achieved. On the other hand, the controller in our
paper is universal. Therefore, it extended the scope of application
of the synchronization control scheme and parameters update
laws.

DermNITION 1. In Eq. (7), if there exists a real constant o € R
such that lim,_., ||e|| = 0, then we regard that the system (5) and
the system (6) are synchronized, which is called “generalized pro-
Jjective synchronization.”

DEerNITION 2. V(X) is a scalar function, where x is the system
state vector, and if V(x) has the following properties: (1) V(x) is a
continuous function (2) V(x) is a positive function (3) When
IX|| = oo, ||V|| — oo. Then V(x) is Lyapunov function.

Lemva 1V (x) is negative semidefinite in the neighborhood of
the equilibrium point, and with the movement of the system state,
V(x) is less than or equal to 0, then the system is stable at the
equilibrium point. V (x) is the derivative of V(x), Ref. [23].

THEOREM 1. For given a projective scaling factora, and any ini-
tial conditions X(0), Y(0),0(0), the drive system (5) and the
response system (6) can realize active adaptive projective syn-
chronization with the active controller (10) and the parameter
update law (11) as below:

h(X,Y,0,0) =f(Y) +BY — aF (X)0 — 0AX (8)
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V(1) = Ce )

U=—h(X,Y,0,0)+ V() — F(Y)0 (10)

0 =—(F(x)e (11

where 0 represents the time derivative of 0, C is a constant
diagonal matrix, and the diagonal elements of C is less than or
equal 0.
Proof. The time derivative of the error system (7) is
é(n)=Y —aX (12)
Substituting Egs. (5) and (6) into Eq. (12), we have
é() =F(Y)0 +f(Y) +BY + U — aF(X)0 — of (X) — 0AX (13)

Substituting Eq. (8) into Eq. (13), we have

é()=F(Y)0+HX,Y,0,0)+U 14)
Substituting Eq. (10) into Eq. (14), we have
é() =F(Y)0 + V(1) — F(Y)0 (15)
Let 0 = 0 — 0, we have
é(t) =F(Y)0 + V() (16)

We proceed next with a quadratic Lyapunov function candidate
for ensuring asymptotic stability of the error system (7) as
follows:

Yo @ ol
w() = 2(0) (0) +ele a7
The time derivative of the w(z) is
W (t) :% @ (@) + (@)Té'] +% [(é)Te + eTé} (18)

where () represents the time derivative of —0, and é represents
the time derivative of e and thg constant diagonal matrix C = diag
{kika,....kn}, e = [erez...e,] .

Substituting Egs. (15) and (11) into Eq. (18), we have

. 1 1
W(f) = EGTCG + EeTCe

=¢TCe

= [elez...en}diag{kl‘kg, ...,k,,}[elez...en]T
= kel <0
i=0

According to Lemma 1, the error system (7) is asymptotic stable,
so the error system (7) achieves asymptotic stability under the
chosen active controller (10) and the parameter update law (11).
This completes the proof, and that is to say, the drive system (5)
and the response system (6) realize active adaptive projective
synchronization.

19)

3 Synchronization Simulations

In this section, we will take Lorenz system as an example to
verify the effectiveness of the proposed synchronization scheme
and take different values of matrix C to verify the tunability and
flexibility of the chaotic synchronization. All of the simulations
are carried out using MATLAB software and the Runge—Kutta

Journal of Computational and Nonlinear Dynamics

method. Numerical simulations are performed to demonstrate the
effectiveness of the proposed method.

3.1 System Description. The Lorenz system was proposed
by the mathematician Lorenz [24], which can be described as
follows:

%= aly —x)
y=cx—xz—y (20)

Z=—xy—bz
Now, we replace b with ¢, and ¢ with b, and we have

%= aly =)
y=bx—xz—y 2D

I=Xxy—cz
Then we choose the drive system as follows:

Xl = a(x2 *xl)

sz B bx1 — X2 — X1X3 (22)

X3 = X1Xp — CX3
The response system is given by

Vi =ai(y2 —y1)+um
Yo =Dbiyi —y2 —y1y3 tu2
V3 =Yy1y2 —C1ys + us

(23)

The error system is described as below:

e =y —oux
€ =Yy — Xy
€3 = y3 — X3

(24)

Comparing Eq. (22) with Eq. (5), and Eq. (23) with Eq. (6), we
have

Xy — x 0 0 0O 0 0
F(X) = 0 S A=10 -1 0O
0 0 —x3 0O 0 O
- (25)
0 a
f(X) = —X1X3 0= 1|b
L X1X2 C

Comparing Eq. (22) with Eq. (5), and Eq. (23) with Eq. (6), we
have

(y2—y1 O 0 0O 0 O
F(Y) = 0 -y 0 B=1]0 -1 0
! 0 0 —» 0 0 O 26)
0 a, u
W) =|=yys| O0=|b1| U=
Yiy2 Cl u3

And let C:diag {kl,kz,/@ 1.

3.2 The Design of Adaptive Active Projective Controller.
According to Theorem 1, we choose the controller laws and the
parameter update law as below:
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(@ sp (060 uy = aa(x, —xy) + kie; — ae;
up = bax) —oxjx3 —oxy + yi1y2 +y2 +kaea —byr - (27)
= 40 uz = —oexs + ox1x — y1y2 + kzez +cy3
0 N
20 ar =y —ye
50 0 by = —yie (28)
220 0 20 20 ¢1 = yses
(©) a
60 @, 33 Phase Diagram. When a=10, h=28, c=8/3, the
system (21) is chaotic, and the phase diagrams are shown in
40 - Figs. 1(a)-1(d).
N
20 0 3.4 The Verification of the Tunability of the Chaotic
50 20 Synchronization. In this section, we take several different matri-
0 0 ces C to verify the tenability of the flexibility of the chaotic syn-
-50 y 0 50 y =50 -20 X chronization. We set the scaling factor o = 2. The initial values of
the drive system (22) are set to be x;(0) = 1,x2(0) = 2,x3 = 3,
Fig.1 The phase diagram of system (21): (a) the projection of and the initial values of the response system (23) are set to be

the attractor of x—y plane, and (b) the projection of the attractor
of x-z plane, and (c) the projection of the attractor of y-z plane,
and (d) The projection of the attractor of x-y-z plane

v1(0) =4, y,(0) =5, y3 =6, and the initial of the unknown
parameters that needs to be distinguished are set to be a; (0) =
0.1, ,(0) = 0.2, ¢; = 0.3. Figures 2—4 show that the state trajec-
tories of the response system asymptotically approach the drive
system up to the given scaling factor. From Figs. 5-7, we can see

(a) E— (b) (c) [— 2x,(1)
50 X, N 100,
— 0 100 [{— 2x, (1) I—»® |
so|— @
0 50
0
-0 50 0
0 ; 10 20 50, T %0 0 0 20
t

Fig. 2 The simulations of the synchronization between the drive system (22) and
the response system (23) when C=diag{—1, —2, —3}: (a) the synchronization
between y;(t) and 2x;(t), and (b) the synchronization between y»(t) and 2x,(t), and
(c) the synchronization between y;(t) and 2x3(t)

(a)

()

— 2,9 == 2,00
s0d— 2, 100 o 100~ ¥5(V
—»,® Z
0 0 50
#0 1005 10 0 0 10 20
0 10 20
t t t

Fig. 3 The simulations of the synchronization between the drive system (22) and
the response system (23) when C=diag{—2, —2, —2}: (a) the synchronization
between y;(t) and 2x;(t), and (b) the synchronization between y;(t) and 2x,(t), and
(¢) the synchronization between y;3(t) and 2x3(t)

(a)

(b)

()

— 2,09
50— 2x,(2) 100 | 3
" — 25,(1) 1000 —»,0
—y T
N | — 04—,
50
0
—500 20 -50 0
0 10 20
¢ ¢ 0 : 10 20
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Fig. 4 The simulations of the synchronization between the drive system (22) and
the response system (23) when C=diag{—3, —3, —3}: (a) the synchronization
between y;(t) and 2x;(t), and (b) the synchronization between y,(t) and 2x,(t), and
(c) the synchronization between y;(t) and 2x3(t)
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(@) 4 (b) 5 (©) 5

< S S

\’NO\"" N moV»__
1 -50 -5
012345678910 012345678910 012345678910

t t

Fig. 5 The simulations of the errors between the drive system (22) and the
response system (23) when C=diag{—1, —2, —3}: (a) the evolution of ey, (b) the
evolution of e,, and (c) the evolution of e;

e,

=) —_
; e,

o 3

et

= n

UV\NWM.__.W

-1 50 -
012345678910 012345678910 012345678910
t t

Fig. 6 The simulations of the errors between the drive system (22) and the
response system (23) when C=diag{—2, —2, —2}: (a) the evolution of ey, (b) the
evolution of e;, and (c) the evolution of e;

(a)l (b) 50 (C)S
S L = D
o O i'\ovv\,wi :m()%_
-1 -50 -5
012345678910 012345678910 012345678910
t t t

Fig. 7 The simulations of the errors between the drive system (22) and the
response system (23) when C=diag{—3, —3, —3}: (a) the evolution of ey, (b) the
evolution of e;, and (c) the evolution of e;

(a) 0.5 (b) 100, (c)
b —

b,@
=
e,

0 0
012345678910 012345678910 012345678910

t t t

Fig. 8 The identifications of ai(t), bi(t), c¢1(t) when C=diag{—1, —2, —3}: (a) the
identification of a;(t), (b) the identification of b;(t), and (c) the identification of c;(t)

@ o5 (b) 100 () 5
S S =
QNO{L—— o tNE
0.5 0 o
012345678910 012345678910 012345678910
t t t

Fig. 9 The identifications of ay(t), bi(t), c1(t) when C=diag{—2, —2, —2}: (a) the
identification of a;(t), (b) the identification of b;(t), and (c) the identification of c;(t)
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(@, 5 (b) 5, ©
S =~ =
QN 0 ~ Q Zir—————————\
- 0

0.5
012345678910
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0123456728910
t
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(@ 1 (b) s0
) S
™ 0 (O}

i

012345678910
t

-1

t

-50
012345678910

(¢

10

KD

N} |
-10

012345678910
t

Fig. 13 The simulations of the errors between the drive system (22) and the
response system (23) when C=diag{—1, —2, —3}, and the scaling factor « = 4: (a)
the evolution of ey, (b) the evolution of, e,, and (c) the evolution of e3

that the errors indeed are close to 0. From Figs. 8-10, we can see
that the unknown parameters of system (23), which need to be dis-
tinguished finally, adapt themselves to the true values by using
the parameters update law (28). The results imply that the two
identical chaotic systems realize adaptive active control projective
synchronization. More importantly, in the above simulations, the
synchronization between the drive system and the response sys-
tem can be achieved by taking different constant matrix C. There-
fore, the tunability of the chaotic synchronization is verified. In
addition, the synchronization is easy to achieve because we just
need to the diagonal elements of the diagonal matrix C less than
or equal 0.

3.5 Simulations With Different Scaling Factor «. In this
section, we take different scaling factor a to show that the syn-
chronization of chaotic system can be achieved. We just take
o =2, =3, and o =4 for example for simulation in this paper.

051001-6 / Vol. 13, MAY 2018

Figures 11-13 show that the synchronization between the drive
system and the response system can be achieved with different
scaling factor o

4 Discussion

In this section, we will introduce our advantages of synchroni-
zation in detail and then propose our scheme of controlling the
time of chaotic synchronization and how to make the curve of
chaotic synchronization smoother than the ones in other synchro-
nization methods.

4.1 Our Advantages of Synchronized Method. Tahereh
Binazadeh, etc. proposed adaptive synchronization in Ref. [25].
Hong-juan Liu, etc. proposed projective synchronization in
Ref. [26]. Rong-An Tang proposed active control synchronization
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Table 1 The approximate time of chaotic synchronization com-
pared with other papers, and “—” denotes that the current error
component does not exist

Papers [28] [29] [30] [31] [32] This paper
The time of el tending zero(s) 10 2.5 17 1 6 0.4
The time of e2 tending zero(s) 14 2.5 — 7 — 0.5
The time of e3 tending zero(s) 1 25 — — — 0.4

in Ref. [27]. However, all of them did not put forward a synchro-
nization method combining these three methods. So, first, we
present a combination of adaptive control, active control, and pro-
jective scheme for synchronization for the first time. Second, the
synchronization method we present in our paper follows the logic
order that is from general to specific. In our paper, from Eq. (5) to
Eq. (19), we derive general equations about the synchronization
scheme. And from Eq. (20) to Eq. (28), we take an example to
illustrate our method. That is to say, we propose a general syn-
chronization control scheme, which extends the scope of applica-
tion of the synchronization control scheme and parameters update
laws. Third, in Eq. (10), the constant matrix C is easy to adjust.
We just need to ensure the diagonal elements of the diagonal
matrix less than or equal 0.Then the synchronization of chaotic
system can be achieved. Therefore, the synchronization of chaotic
systems can be achieved more easily. More importantly, we can
extend the adjustable range of synchronization of chaotic system
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Fig. 17 The simulations of the errors between the drive system
(22) and the response system (23) when C = diag{—200, —200,
—200} and « = 10: (a) the evolution of ey, (b) the evolution of e,,
(c) the evolution of e3, and (d) the simulations of the errors [28]
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Fig. 14 The simulations of the errors between the drive system (22) and the
response system (23) when C=diag{—1, —1, —1} and « = 2: (a) the evolution of, e,
(b) the evolution of, e,, and (c) the evolution of e3
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Fig. 15 The simulations of the errors between the drive system (22) and the
response system (23) when C = diag{—4, —4, —4} and « = 2: (a) the evolution of, e,
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Fig. 16 The simulations of the errors between the drive system (22) and the
response system (23) when C=diag{—25, —25, —25} and « = 2: (a) the evolution of
e4, (b) the evolution of e,, and (c) the evolution of e;
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Fig. 18 The simulations of the errors between the drive system
(22) and the response system (23) when C = diag{—200, —200,
—200} and « = 10: (a) the evolution of e4, (b) the evolution of e,,
(c) the evolution of e3, and (d) the simulations of the errors [29]

by setting different constant matrix C. Last but not least, compar-
ing with other papers mentioned above in our paper, by enlarging
the absolute value of product of the diagonal elements of diagonal
matrix C, we can shorten the time of synchronization in this paper.
Meanwhile, the curves of chaotic synchronization are smoother
than the ones in other synchronization methods.

4.2 Comparative Results With Other Methods. In the
section, first, we will verify that the larger the absolute value of
product of the diagonal elements of diagonal matrix is, the
smoother the curve of chaotic synchronization is and the shorter
the time of chaotic synchronization is in this paper. Second, we
will compare the time of chaotic synchronization with adaptive
synchronization [28], complete synchronization [29], coupled syn-
chronization [30], function projective synchronization [31], and
phase synchronization [32]. Table 1 is drawn to show the approxi-
mate time of errors systems tending to zero compared with other
papers.
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Fig. 19 The simulations of the errors between the drive sys-
tem (22) and the response system (23) when C=diag{—200,
—200, —200} and « =10: (a) the evolution of e;, (b) the evolu-
tion of e, (¢) the evolution of e;, and (d) The simulations of
the errors [30]
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Fig. 20 The simulations of the errors between the drive system
(22) and the response system (23) when C = diag{—200, —200,
—200} and « = 10: (a) the evolution of e4, (b) the evolution of e,,
(c) the evolution of e;, and (d) the simulations of the errors [31]

Figures 14—16 show the larger the absolute value of product of
the diagonal elements of diagonal matrix is, the smoother the
curve of chaotic synchronization is and the shorter the time of
synchronization is in this paper. Figures 17-21 show that the syn-
chronization time of chaotic system is shorter, and the curve of
chaotic synchronization in this paper is smoother than the ones in
other methods.

5 Conclusion

In this paper, we have proposed the active adaptive projective
synchronization scheme for the identical chaotic synchronization
and applied it to adaptive projective-synchronize two identical
chaotic systems. In our active controlling scheme, we expand the
controlling capability by using a constant diagonal matrix, which
can be adjustable. So, we can control the synchronization more
flexibly. Based on our synchronization, we have designed a feed-
back controller and the parameters update laws. Feasibility of the
technique is illustrated for the Lorenz system. It implies that the

two identical chaotic systems achieve adaptive projective
b
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Fig. 21 The simulations of the errors between the drive sys-
tem (22) and the response system (23) when C=diag{—200,
—200, —200} and « =10: (a) the evolution of e;, (b) the evolu-
tion of e,, (¢) the evolution of e;, and (d) the simulations of the
errors [32]
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synchronization based on active control. More importantly, in the
above simulations, the synchronization between the drive system
and the response system can be achieved by taking different con-
stant matrix C. Therefore, the tunability of the chaotic synchroni-
zation is verified. Moreover, in Sec. 4.2, comparative results show
that we can shorten the time of chaotic synchronization and make
the curve of chaotic synchronization smoother than the ones in
other synchronization methods by enlarging the absolute value of
product of the diagonal elements of diagonal matrix C.

Furthermore, with the help of feedback control and the parame-
ters update laws, the drive system (22) and the response system
(23) realize active adaptive projective synchronization and the
response system (23) adapt themselves to the true values. Numeri-
cal MATLAB simulations verify the effectiveness of the proposed
synchronization scheme.
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