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ABSTRACT

Chaotic systems have been widely applied in digital image encryption due to their complex properties such as er-
godicity, pseudo randomness and extreme sensitivity to their initial values and parameters. An image encryption
algorithm based on a hidden attractor chaos system and Knuth-Durstenfeld algorithm is proposed. First, a hidden
attractor chaos system is used to encrypt digital image. Compared to a self-excited attractor, the hidden attractor’s
attracting basin does not intersect with any small neighbourhoods of the equilibria. It is difficult for attackers
to reconstruct the attractor by finding equilibrium points. Therefore, the hidden attractor chaotic system is diffi-
cult to decrypt. Meanwhile, the hidden attractor chaos system is very sensitive to initial values and parameters.
Second, the Knuth-Durstenfeld algorithm has good randomness. In addition, the Knuth-Durstenfeld algorithm
can reduce the time complexity and the space complexity of the permutation while achieving good permutation
effects. Thus, Knuth-Durstenfeld algorithm is used to permutate the digital image. Finally, DNA sequence op-
erations are used to diffuse image pixels values. Some experimental analyses have been applied to measure the
new scheme, and the experimental results illustrate the scheme possesses better encryption performances. This
method can be applied in secure image communication fields.

1. Introduction

The rapid development of digital technology and the popularity of
the Internet have brought great convenience to people’s work and life.
Digital media as the carrier of works such as books, music, images and
videos, has greatly enriched people’s lives due to the easy access, conve-
nient copying, quick spread and other advantages. However, as we can
see, some of the malicious behaviors aiming to intercept useful informa-
tion by exploiting the characteristics of network openness and sharing,
have seriously damaged the interests of communication parties. There-
fore, it is urgent to develop technology for secure information commu-
nication.

Digital images with visual visibility are an important form of digital
media data and have been widely spread across the Internet. Therefore,
image encryption for secure transmission of digital images over the In-
ternet has become a widely used technology. Due to some special prop-
erties of images such as large data capacity, strong correlation of pixel
points and high redundancy, the developed data encryption algorithms
such as DES and AES [1,2], which require a considerable amount of time
to calculate, are not suitable for the secure transmission of real-time im-
ages, thus, a large number of algorithms dedicated to image encryption
have been designed based on chaotic system [3-14], deoxyribonucleic
acid(DNA) sequence [13,14], cellular automata [15,16], magic cube
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[17] and so on. In 1998, Fridrich [18] proposed the first general ar-
chitecture for chaos-based image encryption, and it was composed of
permutation and diffusion. Permutation is used to break the correlation
between adjacent pixels of the digital images by shuffling the positions
of the image pixels, and the histogram is not changed. Diffusion alters
the pixel values, so the histogram is changed.

A chaotic system possesses prominent features, including extremely
sensitive dependence on initial conditions and system parameters, er-
godicity and random-like behaviors, which is very suitable for image
encryption. Therefore, many articles [3-14] have recently applied dif-
ferent chaotic systems to image encryption. For example, in Ref. [11],
the researcher proposed an image encryption algorithm based on a high-
dimensional hyperchaotic system, pixel-level permutation and bit-level
permutation. Wu et al. [13] proposed an image encryption algorithm
based on two-dimensional Hénon-Sine map. The new map possesses ex-
cellent ergodicity and pseudo randomness, and the new mapping has
chaos in a wide range of parameters. Chai et al. [14] used a memris-
tive hyperchaotic system along with the cellular automata and DNA se-
quence operations to encrypt the image. In general, all chaotic systems
in the above image encryption algorithms are generated by self-excited
attractors. For a self-excited attractor, its attracting basin is associated
with an equilibrium point [20]. For chaotic systems generated by self-
excited attractors, the attractors can be reconstructed in phase space by
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finding equilibrium points. Thus, some attackers can reconstruct chaotic
signals by reconstructing the attractors of the original chaotic system,
which leads to the low security of the image encryption algorithm based
on self-excited attractor chaotic systems. Recently, researchers have dis-
covered hidden attractor chaotic systems [19-26]. The hidden attrac-
tor’s attracting basin does not intersect with any small neighborhoods
of the equilibria. Therefore, it is difficult for attackers to reconstruct the
attractors through equilibrium points. Hence, it is difficult for attack-
ers to decrypt the chaotic system by reconstructing the attractors in the
phase space. However, to date, image encryption schemes based on hid-
den attractor chaotic systems are rarely reported, and only one image
encryption based on hidden attractor chaotic systems is mentioned by
Cavusoglu U et al. [27]. However, in Ref. [27], the author focused on
the analysis of the generation of the new hidden attractor chaotic sys-
tem, the analysis of the image encryption algorithm based on the hidden
attractor chaotic system is very weak, and a simple image encryption is
only used as an application to prove correctness of the proposed new
hidden attractor chaotic system. In our paper, the image encryption al-
gorithm based on a hidden attractor chaotic system is studied in detail.
An image encryption scheme based on the hidden attractor chaotic sys-
tem, the Knuth-Durstenfeld algorithm and DNA is proposed, and de-
tailed performance analyses are performed.

Image encryption algorithms usually consist of permutation and dif-
fusion. The diffusion process extends the image portion information to
the full-text range. The permutation process can break the strong cor-
relation of adjacent pixels of a digital image by changing the pixel po-
sition, which is very important for digital image encryption. Many re-
searchers have performed considerable work on image permutation and
proposed many effective permutation algorithms [28-30,34], such as
Arnold transform, baker transform, and E-curve transform, etc. These
classical methods have greatly promoted research in the field of im-
age encryption, but some problems have been exposed in later research.
For example, Arnold transformation and Baker transformation have ob-
vious periodicity. In conclusion, the above methods proposed in [28-
30,34] have problems such as poor randomness. In contrast, the Knuth—
Durstenfeld algorithm has good randomness. Guvenoglu E [31] uses the
Knuth-Durstenfeld algorithm for image encryption. However, in Ref.
[31], the Knuth-Durstenfeld algorithm is only used to generate keys,
rather than permutate images. Moreover, it is a general image encryp-
tion algorithm, but not a chaotic-based image encryption algorithm. In
our paper, the Knuth-Durstenfeld algorithm is used to permutate im-
ages, and a hidden attractor chaotic system is used to generate keys.
Compared to other permutation algorithms in the papers of chaos-based
image encryption, this Knuth-Durstenfeld permutation algorithm in our
encryption scheme exhibits good randomness.

Based on the above analyses, a new algorithm based on a hidden
attractor chaos system, the Knuth-Durstenfeld algorithm and DNA se-
quence operations is proposed. The algorithm proposed in this paper has
some advantages. First, the hidden attractor chaotic system is used to
encrypt images. Therefore, attacker cannot decrypt the chaotic system
by reconstructing the attractors in phase space. In addition, the hidden
attractor chaotic system is very sensitive to initial values and param-
eters, and a slight change in parameters or initial values may lead to
completely different chaotic dynamics. It is also very difficult to ob-
tain initial values and parameters by brute force attacks. Second, the
Knuth-Durstenfeld algorithm is used in permutation process. This is a
completely irregular random permutation algorithm. It has good ran-
domness. The Knuth-Durstenfeld algorithm is an in-place scrambling
algorithm, so it has low algorithmic space complexity, and its algorithm
time complexity is also low. We know that an image is the carrier of
large amounts of data, thus, in the case of limited computing resources,
low time complexity and low space complexity of algorithms are impor-
tant. Using the Knuth-Durstenfeld algorithm to permutate the image,
the time complexity and space complexity of algorithm can be greatly
reduced under the premise of ensuring the permutation effect. Third, in
the diffusion phase, uniform DNA rules are made by the scheme and a
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statistical characteristic of the plain image is embedded into diffusion
step to resist common attacks. In addition, to improve the ability to
resist known-plaintext and chosen-plaintext attacks, the SHA 256 hash
function of the plain image is used to generate the secret key.

The paper is organized as follows. In Section 2, we provide prelim-
inary works. In Section 3, we describe the proposed image encryption
algorithm in detail. In Section 4, simulation results are presented. In
Section 5, security analysis is presented, while conclusions are reported
in Section 6.

2. Preliminary works
2.1. Chaotic system

The paper adopts a new four-dimensional hidden attractor hyper-
chaotic system, which is developed by the extension of the generalized
non-diffusion Lorenz equation. The system does not have any equilib-
ria, but can exhibit two-scroll hyperchaotic, chaos, quasiperiodic and
periodic dynamics. For certain parameter values, coexisting hidden at-
tractors can be observed, for example hyperchaotic and periodic hidden
attractors.

The new 4-dimensional hidden attractor hyperchaotic system is de-
scribed as follows [22]:

x=a(y—x)

y=-xz—cy+kw )
z=-b+xy

w=—my

where a, b, ¢, m, k are the real parameters of the chaotic system, and
k x m#0. When b#0, system (1) has no equilibria.

2.1.1. Typical hidden hyperchaotic attractors in the hidden attractor
hyperchaotic system

Hyperchaotic theory states that for a four-dimensional hyperchaotic
autonomous system, it has at least two positive Lyapunov exponents.
When the parameters are set to a = 10,b = 25,c = —2.5,k = 1, and
m = 1 and the initial conditions are set to (0.2,0.1,0.75,—2), the Lya-
punov exponents of the system are L; = 0.9115, L, = 0.0224, L3 = 0,
and L, = 0.—-8.4330 and the system has a two-scroll hyperchaotic at-
tractor.

The strange attractors and phase portraits of the hidden attractor
hyperchaotic system (1) are shown in Fig. 1. System (1) has no equilib-
ria, and no homoclinic (heteroclinic) orbits but has a two-scroll hidden
hyperchaotic attractor that resembles the butterfly shape of the Chen
chaotic attractor, which as a whole form a singular tornado-like shape
with two inner holes (see Fig. 1).

2.1.2. Dynamical structure of the new hyperchaotic system

System (1) exhibits abundant complex chaotic dynamical behaviors
over a wide range of parameters. Of particular interest is the fact that
this nonlinear system can display periodic orbit, quasi-periodic orbit,
chaos, and hyperchaotic features under different conditions. Remark-
ably, this system can display different types of coexistence of attractors
with variations of only a single parameter but with no equilibria.

When we fixa=10,b =25,k =1, m =1, and ¢ = —4.66, for initial
values (0.2, 0.1, 0.75, —2), a hyperchaotic attractor with no equilibria
can be obtained, however, for initial values (0.2, 0.8, 0.75, —2), trajec-
tories of system (1) coverage to chaotic attractor. When we set a = 10,
b=25k=1,m=1, and c = 2, for initial values (0.2, 0.82, 0.75, —2), tra-
jectories of system (1) coverage to a stable period orbit. Minor change in
the initial condition of the system causes wide difference of trajectories.
Therefore, the system is very sensitively to initial values.

We fix a = 10, b = 25, k = 1, and m = 1, and the initial values
(0.2, 0.1, 0.75, —2). When ce[-8.5, —7.45], system (1) displays the pe-
riodic orbits, quasi-periodic orbit and periodic orbit alternately with
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Fig. 1. Different perspectives on two-scroll hyperchaotic attractor of the 4D system (1) with no equilibria; system parameters of a = 10, b =25,c=-2.5,k=1,

and m = 1; and initial values of (0.2, 0.1, 0.75, and —2).

different values of parameter c. For ce(-7.45, 4.96)u(—4.94, —4.68)
U(—4.66, —4.12) U(—0.46, 0.24], system (1) is chaotic. When ce(—4.96,
—4.94)u(-4.68, —4.66) U(—4.12, —0.46) U[1.83, 1.88], hyper-chaos of
system (1) occurs. When ce(-0.24,0.154], system (1) displays chaos,
quasi-periodic orbits and periodic orbits alternately with different val-
ues of parameter c. For c€[0.154,1.84) u(1.88,2.84), system (1) is
periodic. When c€[2.84,8.54], the system is quasi-periodic. When
c€(8.54,9], system (1) is chaotic. As the parameters change, the sys-
tem exhibits different dynamic characteristics. Therefore, system (1) is
very sensitive to parameters.

2.1.3. The effectiveness of the proposed chaotic system

To show that the hidden attractor chaos system is suitable for de-
signing an image encryption algorithm, we use the National Institute
of Standards and Technology (NIST) SP800-22 to test the randomness
of the output sequences of the hidden attractor chaos system. The NIST
SP800-22 has 15 sub-tests and each sub-test can generate a P-value. Bi-
nary streams are suggested as the input and the generated P-value is
expected to fall into the range [0.01,1] to pass the corresponding sub-
test. In our experiment, the double float data format is adopted for the
iterative outputs of the proposed hidden attractor chaos system. For each
output of the hidden attractor chaos system, we transform its fractional
part to be a binary stream with 49 bits. The input binary streams are
obtained by combining these binary streams from the outputs. Table 1
shows the test results, and it is clear that binary streams obtained from
the outputs of the proposed hidden attractor chaos system can pass all
the sub-tests. This finding indicates that the proposed hidden attractor
chaos system can generate a pseudo-randomness sequence. Therefore,
the hidden attractor chaos system is suitable for image encryption.

2.2. Knuth-Durstenfeld shuffle algorithm

The shuffling of playing cards involves three methods, such as ex-
tract, exchange and insert. Three shuffling algorithms are derived from

Table 1
NIST SP800-22 test results of binary sequences generated using
hidden attractor chaos system.

P-value Result

Sub-tests >0.01

0.621305 Pass

0.955336  Pass
Forward 0.079280  Pass
Reverse 0.084353 Pass
FFT 0.765214 Pass
Frequency 0.747075 Pass
Linear Complexity 0.846726 Pass
Longest Run 0.445214 Pass
Non-Overlapping Template 0.223465  Pass
Overlapping Template 0.936519 Pass
Random Excursions 0.217525 Pass
Random Excursions Variant 0.427786 Pass

Approximate Entropy
Block Frequency
Cumulative Sums

Rank 0.154121 Pass
Runs 0.755034 Pass
Serial P-valuel 0.178383 Pass

0.422304  Pass
0.969388  Pass

P-value2
Universal

extract, exchange and insert. Here, extract and exchange correspond
to the Fisher-Yates Shuffle and Knuth-Durstenfeld algorithms, respec-
tively.

2.2.1. Fisher-Yates shuffle algorithms

The Fisher-Yates shuffle algorithm was proposed by Ronald A. Fisher
and Frank Yates. The basic idea is to randomly take a number from the
original array and place it into a new array; The details are as follows:

Step 1: Initialize the original array and the new array; The original
array length is n.

Step 2: Assuming that there are still k number left in the array, then
a number p between [1,k) is randomly generated.
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Step 3: Take the pth number from the remaining k numbers. Then,
place it in a new array.

Step 4: Repeat steps 2 and 3 until the numbers are all taken.

The new sequence taken from step3 is a scrambled sequence. The
time complexity of this algorithm is O (n x n), and the space complexity
is O (n).

2.2.2. Knuth-Durstenfeld shuffle algorithm

Knuth and Durstenfeld improved the algorithm based on the Fisher-
Yates shuffle algorithm, by interacting with numbers on the original
array, and eliminating the extra O (n) space. The basic idea of the al-
gorithm is similar to the Fisher-Yates shuffle algorithm. We randomly
take a number out of the unprocessed data, and then place the number
in the end of the array. Thus, the number stored in the end of the array
is already processed. The details are as follows:

Step 1: Create an array arr with an array size of n to store the values.

Step 2: Generate a random number x from O to n-1.

Step 3: Output the value of arr subscripted as x.

Step 4: Exchange the element subscripted with x with the element at
the end.

Step 5: Similar to step2, generate a random number from O to n-2.

Step 6: Output the value of arr subscripted as x.

Step 7: Exchange the element subscripted with x with the second-to-
last element.

Repeat as noted above, until n elements are processed.

The time complexity is O(n) and the space complexity is O (1). This is
an in-situ disordered algorithm. The space complexity of the algorithm
is improved from O(n) of the Fisher-Yates shuffle algorithm to O (1), and
the time complexity of the algorithm is also improved from O(n x n) of
the Fisher-Yates shuffle algorithm to O(n).

2.3. DNA sequence operations

2.3.1. DNA encoding and decoding rules

A DNA sequence consists of four nucleic acid bases: A(adenine),
C(cytosine), G(guanine) and T(thymine). A and T as well as G and C
are complementary. Because 0 and 1 are complementary in the binary
system, 00 and 11 are complementary. In addition, 01 and 10 are also
complementary. There are 24 types of encoding rules using the four nu-
cleic acid bases (A, C, G, and T) to encode 00,01,10 and 11. However,
only 8 of them satisfy the Watson-Crick complementary rule [32] as

Parameters and
initial values

|
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Table 2
DNA encoding rules.

Rule 1 2 3 4 5 6 7 8

A 00 00 01 01 10 10 11 11
T 11 11 10 10 01 01 00 00
C 01 10 00 11 00 11 01 10
G 10 01 11 00 11 00 10 01

Table 3
DNA XOR operation.

XOR A G C T
A A G C T
G G A T C
C C T A G
T T C G A

shown in Table 2. Note that DNA decoding rule is the reverse operation
of the DNA encoding rule.

For example, the greyscale value of a pixel is “126”, and the corre-
sponding binary number is “01111110”. The DNA sequence “GTTC” is
obtained using DNA encoding rule 2. Inversely, if the DNA sequence is
“TGCA?”, the binary number can be obtained by rule 8(the decoding rule
is 8), that is “00011011”, the decimal number is “78”, and this is the
decoding process of the DNA sequence

2.3.2. DNA XOR algebraic operation

The DNA XOR operation is manipulated according to traditional XOR
in the binary format. Eight types of DNA encoding rules exist, and eight
types of DNA XOR rules correspondingly appear. In this paper, XOR
operation is used in the diffusion process. One type of XOR operation is
used in the diffusion process. One type of XOR operation is used in the
diffusion process. One type of XOR operation is shown in Table 3. An
example of a DNA XOR operation is provided. Using Table 3, the XOR
result of DNA sequence “AGCT” and “TGAC” is TACG.

3. Encryption scheme

The encryption process in the paper is shown in Fig. 2. First, mul-
tiple chaotic sequences are generated by the chaotic system, and two

A
Chaotic system
A

A

.

Chaotic sequence

256-bit secret
key
4

‘ Chaotic sequence 1 ‘

‘ Chaotic sequence 2

4 v vy
Plain image Horlzoqtal » Vertical scrambling »  DNA diffusion ——® Cipher-image
scrambling

A

Fig. 2. The encryption processes.
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chaotic sequences are selected according to the hash value of the origi-
nal image. Next, the original image is permutated based on the Knuth—
Durstenfeld algorithm using the selected two chaotic sequences. Finally,
a cipher-image is obtained by a DNA diffusion operation. In the encryp-
tion scheme of the paper, since the parameters and initial values of the
chaotic system are fixed, the method of determining the parameters and
initial values of the chaotic system through plain text is not feasible. In
this paper, we apply the SHA 256 function to enhance the relevance of
plaintext and encryption.

3.1. Permutation process

In the permutation process, the SHA-256 hash function of the plain
image is used to produce the index of the grouped chaotic sequence.
For the SHA-256 function, if there is one-bit difference between two
original images, their hash values will be completely different. Suppose
the size of the plain greyscale image is M x N, the permutation steps are
as follows.

Step 1: According to the different dynamic characteristics of the hid-
den attractor chaotic system under different parameters and initial val-
ues, we can reasonably choose the parameters and initial values of the
hidden attractor chaotic system. The hash value of the original image
is calculated according to the SHA-256 algorithm. Therefore, the secret
key of the encryption algorithm proposed in this paper consists of the
hash value of the original image and the chaotic system’s parameters
and the chaotic system’s initial values. The parameters selected in this
paper are: a = 10, b = 25, ¢ = 2.5, k = 1, m = 1; the initial value is:
x0 = 0.2, y0 = 0.1, z0 = 0.75, w0 = —2. It can be seen from the dynamic
characteristics of the hidden attractor chaos that the system has hidden
hyperchaotic attractors when the parameters and initial values are set
to the above.

Step 2: Iterate the chaotic system 1000 times with x0, y0, z0, w0,
and a, b, ¢, k, m to avoid the transient effect. Continue to iterate the
chaotic system M x N — 1times to get four sequences X, Y, Z, W.

Step 3: To strengthen the correlation between the encryption scheme
and the plaintext, the generated four chaotic sequences are divided into
six groups, namely:Al = (X,Y), A2 = (X,Z), A3 = (X,W), A4 = (Y,2),
A5 = (Y,W), A6 = (Z,W). Additionally, we define two vectors R1, R2.
Moreover R1 = Ai (1), R2 = Ai (2),i=1,2,3,4,5,6.

Step 4: First, we define two variables h_sum and index. According
to the hash value of the original image obtained by the SHA-256 algo-
rithm, each hexadecimal character in the hash value is converted into a
decimal number, and we add all the decimal numbers converted from
the hexadecimal hash value to get the h_ sum value. We perform the
following operations on h_sum:

Find the index according to the following equation: in-
dex = mod(h sum,6) + 1;

When index =1, theni=1,A; =A;, then we getR; =X and R, = Y;
When index = 2, theni=2,A; =A,, thenwe get R; =X and R, = Z;
When index = 3, theni= 3, A; =Aj3, then we get R; =X and R, = W;
When index = 4, theni=4,A; =A,, thenwe getR; =Yand R, = Z;
When index = 5, theni= 5, A; = A;, then we getR; = Yand R, = W;
When index = 6, theni= 6, A; = Ag, thenwe getR; =Zand R, = W,
Step 5: Define two vectors Row and Column. Then, according to the
characteristics of the scrambling of the Knuth-Durstenfeld algo-
rithm, R; and R, are processed as Algorithm 1:

Algorithm 1

Input: R;, R,

Output: Row, Column

lfori=1T:MxN-1

2. Row(i) = mod(floor((R;(i)+100) x10°10), M x N-i + 1) +1;

3. Column(i) = mod(floor((R,(i)+100) x10°10), M x N-i + 1) +1;
4.end
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Algorithm 2

Input: P_Row, and R,

Output: Scrambled vector P_Row

1.for i = 1:M x N-1

2.t =P_Row(M x N-i + 1);

3. P_Row(M x N-i + 1) = P_Row(R,(i));
4. P_Row(R,(i)) =¢;

5.end

Step 6: Expand the original image matrix P into a one-dimensional
vector P Row. Then, P_Row is scrambled according to the Knuth-
Durstenfeld algorithm by the processed chaotic sequence R;. Detailed
steps are shown in Algorithm 2.

Step 7: Convert the scrambled vector P_ Row into a matrix of M x N,
and transpose the matrix. Then, the transposed matrix is expanded to
get the one-dimensional vector P_Column.

Step 8: P_Column is scrambled according to Algorithm 2 by the
processed chaotic sequence R,. The sequence P_Column obtained after
scrambling is converted into a matrix P1 of M X N.

3.2. Diffusion process

Diffusion process can enhance the resistance to statistical attack and
differential attack greatly, in which the histogram of the cipher-image is
fairly uniform and is significantly different from histogram of the orig-
inal image. To a good diffusion process, a key stream strongly related
to plain-image should be used. When encrypting different plain-images,
we can get completely different result in the encryption algorithm. The
diffusion process is outlined as follows.

Step 1: According to the parameters and initial values of the chaotic
system during the scrambling process, we iterate the chaotic system
1000 times to avoid the transient effects of the chaotic system.

Step 2: Continue to iterate the chaotic system M x N times, and store
the values in the sequence X1, Y1, Z1, W1 to get four chaotic sequences
X1, Y1, Z1, W1.

Step 3: By implementing the following operations to every element
of X1, Y1, Z1, W1 as described by Eq. (2)-(5), four vectors Ry, Ry, R;,
and R may be obtained.

R, (i) = mod (X1()'10'°,8) + 1 )
R,(i) = mod(Y1(i)'10'°,8) + 1 3)
R_(i) = mod (Z1(iY'10'°,8) + 1 )
R()) = mod (W13 10'°,256) Q)

Here, X1(i), Y1(i), Z1(i), and W1(i) denote the ith element of X1, Y1,
Z1, and W1, i€e[1, M x N], and mod (a, b) returns the remainder of a
divided by b.

Step 4: Expanding the scrambled matrix P1 into a one-dimensional
vector E(i), i€[1, M x N], we get a vector of M x N. A variable temp is
defined as Eq (6). In addition, we define a variable i = 1.

MXN
temp = mod< > P1,.,256> ()

Jj=1

Step 5: According to the coding rule corresponding to R,(i), R(i)
is DNA-encoded to obtain DNA R(i). At the same time, according to
the coding rule corresponding to Ry(i), E(i) is DNA-encoded to obtain
DNA_E(i). Then, by XORing DNA_R(i) and DNA_E(i), we can get New_E(i).

Step 6: According to the rule corresponding to Rx(i), New E(i) is
decoded to obtain de New_E(i). XOR the de New E(i) and temp to get
C_New E(i). Then, we modify the temp value to C New_E(i).

Step 7: Seti=1i+ 1, do step 5-6 in a loop, until all the element of the
plain image has been encrypted. Then, transform the vector to a M x N
matrix, we can obtain the cipher image.
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Algorithm 3
The proposed diffusion decryption algorithm.

Input: The cipher image I, the decryption sequence R, Ry, R,, and R.
Output: Diffused decrypted sequence Dy.
1. A vector C <Reshape I,.

2.DNA; <Encode R with Rule R,.

3.D4 1) <C((1).

4, FORifrom 2 tom x n

temp<C(i-1)

Dy(i) «C(i) XOR temp

Dy(i) < Encode Dy(i) with Rule R, (i)
Dy(i) < Dg4(i) XOR DNAg(i)

Dgy(i) «<Decode Dgy(i) with Rule Ry (i)
5.END FOR

Algorithm 4
The proposed permutate decryption algorithm.

Input: the decryption sequence X, Y. Diffused decrypted sequence D,.
Output: The decrypted image I;.

1.X1 « fliplr(X), Y1 < flipIr(Y)

2.FOR i from 1 to m x n-1

temp = Dy(i + 1)

Dy(i + 1) = Dy(Y1(i))

D4(Y1(i)) = temp

3.END FOR

4.FOR i from 1 to m x n-1

temp = Dy(i + 1)

Dy(i + 1) = Dy(X1(i))

Dy(X1(i)) = temp

5.END FOR

6.I; < Reshape Dy, to a matrix of size m x n

3.3. Decryption

The decryption process is the inverse of the encryption process, and
the key must be transmitted to the decryption side over a secure channel
before decrypting image. The key includes the hash value of the plain
image generated by the SHA-256 algorithm and the hidden attractor
chaotic system’s parameters and the initial values. Since in image en-
cryption phase, we first permutate the image and then diffuse the image.
Therefore, in the decryption phase, we first decrypt the diffusion, and
then decrypt permutation. Prior to decryption, decryption sequences are
generated using the same method as the encryption phase. The detailed
diffusion decryption is presented in Algorithm 3, and the detailed per-
mutate decryption is presented in Algorithm 4.

4. Experimental results

In this section, the standard 512x512 image of “Lena” (shown in
Fig. 3(a)) is employed as the test image. All experiments are manipu-
lated by MATLAB R2014a and we run the encryption and decryption
process using a computer with a 3.3 GHz CPU, 4GB memory and Win-
dows 10 operating system. The experiment parameters are presented
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Table 4
Experiment parameters.

Items Parameter values

Parameters of the hidden a=10,b =25, ¢c =46, k =25,

attractor hyperchaotic system m=1
The initial values of the hidden Xy =02, Yy, = 0.1, Z, = 0.75,
attractors chaotic system Wy = -2

EDD1BBASOB8EG6O047
371508A2455357BE
63E7CB7FABOOFEFB
D620F4CA76014554

256-bit secret key (in
hexadecimal form)

in Table 4. The cipher image is shown in Fig. 3(b), and the decrypted
image is illustrated in Fig. 3(c).

The figures show that the cipher image is a noise-like image, and
there is no relationship between the original image and the cipher im-
age. By visual observation, the decrypted image is the same as the origi-
nal image. These findings show that our algorithm has good encryption
and decryption effect.

5. Performance analysis

In this section, we analyse the performances of the proposed scheme,
including histograms, correlation coefficients, entropy, key space anal-
ysis, key sensitivity analysis, differential analysis and known-plaintext
and chosen-plaintext attacks analysis.

5.1. Key space

The key space of a good encryption algorithm should be large enough
that it can resist all types of brute-force attacks from information eaves-
droppers. In the proposed algorithm, the secret keys include the follow-
ing:

(1) The 256-bit hash value generated by the hash function of the plain
image,

(2) The parameter and the initial value of the hidden attractors chaotic
system.

The key space of the SHA 256 hash function with complexity of the
best attack is 2128 larger than 219°[33], and this finding indicates that
our algorithm is sufficient to prevent the exhaustive search and any
brute force attack.

5.2. Statistical attack analysis

Correlation coefficient, histogram and entropy depicted in the fol-
lowing subsections are the three most important evaluation criteria for
statistical attack analysis.

Fig. 3. Simulation results. (a) Plain image of
Lena (512x512), (b) corresponding cipher im-
age, (c) decrypted image.



S. Wang, C. Wang and C. Xu

Optics and Lasers in Engineering 128 (2019) 105995

Fig. 4. Correlation of two adjacent pixels of the plain image Lena (256x256) and its cipher image. (a) Horizontal direction in plain image. (b) Horizontal direction
in cipher image. (c) Vertical direction in plain image (d) Vertical direction in cipher image. (e) Diagonal direction in plain image (f) Diagonal direction in cipher

image.

5.2.1. Correlation coefficient analysis

The adjacent pixels of the original image have a high correlation
in the horizontal, vertical and diagonal directions. An ideal encryption
algorithm can make the correlation coefficients of the pixels in the en-
crypted image have a sufficiently low correlation to resist statistical at-
tacks. To analyse and compare the correlation of the adjacent pixels
in the plain and cipher images, 10,000 pairs of adjacent pixels in each
direction are randomly chosen from the plain image and its encrypted
image. The correlation distribution of two adjacent pixels in three di-
rections is shown in Fig. 4. As observed, the distributions of adjacent
pixels in the original image are highly concentrated, which means that
the original image has a strong correlation. However, the distributions
of the adjacent pixels in the original image’s ciphered image are random,
which means that the ciphered image has a low correlation.

Moreover, we used the following formulas [34] to calculate the cor-
relation coefficient r,,, of each pair:

N
1
E(x) = ~ ; X; 7
D) = - i(» - E)P ®)
N i=1 ’
1 N
cov(x.) = Zl (x; — EQ))y; — E() )
cov(x, y)

Fop = ———— (10
vV D(x) x D(y)
where x and y are the greyscale values of two adjacent pixels in the
image, N is the total number of pixels selected from the image, and E(x)
and D(x) denote the expectation and variance of variable x, respectively.
Fig. 4 plots the correlation of two adjacent pixels of the plain im-
age “Lena (256x256)” and its cipher image in the horizontal, vertical

and diagonal directions. Table 5 illustrates the correlation coefficients
of two adjacent pixels in the plain images (shown in Fig. 5) and their
corresponding cipher images. The results clearly demonstrate that the
correlations between adjacent pixels in the original images are strong,
and the correlation coefficients are all close to 1. However, correlation
coefficients of cipher images are all less than 0.02. These findings indi-
cate greatly reduced correlation in the cipher images. In addition, the
opponents cannot obtain useful information from the cipher images by
statistical attack.

5.2.2. Histogram analysis

An image histogram represents the distribution of the pixel intensity
values within an image. A secure encryption system can make the en-
crypted image have a uniform histogram to resist any statistical attacks.
The histograms of plain images and its cipher images by the proposed
algorithm are shown in Fig. 6. It is clear that histogram of the cipher
image is uniform and significantly different compared with the plain
image. Thus, our algorithm can make the statistical attack invalid.

For quantity analyses of each key, we calculate variances of his-
tograms to evaluate the uniformity of the distribution of the ciphered
image. The lower value of variances indicates higher uniformity of the
ciphered image. We also calculate the two variances of ciphered images
that are encrypted by different secret keys on the same plaintext image.
The closer of the two values of variances indicates the higher unifor-
mity of ciphered images when the secret keys are varied. The variance
of histograms is presented as follows:

n n
1 1 )
var(z)—ﬁzzz(zi—zj) an
i=1 j=1
where Z is the vector of the histogram values, and Z = {Z;, Z,, Z3,
Z4...Zys6}- Z; and Z; are the numbers of pixels whose grey values are
equal to i and j, respectively. In simulation experiments, we calculate
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Correlation coefficients of two adjacent pixels in the plain image and cipher image.

Images Correlation coefficients
Horizontal Vertical Diagonal
Lena (256x256) Plain image 0.9588 0.9260 0.9291
cipher image 0.0004 0.0013 -0.0023
Brain (256x256) Plain image 0.9872 0.9824 0.9768
cipher image 0.0011 0.0029 0.0001
Baboon (256x256) Plain image 0.8901 0.9081 0.8508
cipher image 0.0138 0.0113 0.0053
Cman (256x256) Plain image 0.9533 0.9199 0.8995
cipher image -0.0105 0.0033 -0.0037
Girl (256x256) Plain image 0.9771 0.9715 0.9636
cipher image 0.0030 0.0001 0.0030

Fig. 5. Test images (a) Lena (256x256) (b) Brain (256x256) (c) Baboon (256x256) (d) Cman(256x256) (e) Girl (256x256).

two variances of histograms of two ciphered images using Eq. (11) from
the same plaintext image with different secret keys. Only one parameter
of the secret keys is changed in such different secret keys. The variances
are obtained by the initial key (xy, yo, Wy, 2p). The variance values are
approximately 250, which indicates that the average fluctuation in num-
ber of pixels in each grey value is approximately 13 pixels. However, the
variance value is 33,860.0547 for the histogram of the plaintext image
Lena. It is clear that the histograms of the cipher images are fairly uni-
form and significantly different from that of the plain images. Therefore,
it does not provide any information to the attackers.

In addition to the histogram graphic analysis, we use the chi-square
test to verify the uniform histogram distribution via quantification of the
cipher image. The chi-square test verifies that the statistic magnitude y?2
obeys the chi-square distribution [35]:

2
7= 2 Yi—npy 12)
=P
where f; is the number of pixels in i interval, n is the total number of
pixels, and p = 1/k.

In the simulation, we set a significant level of « = 0.05 and calcu-
late the chi-square values and P-values of the test images. Table 6 lists
the experimental results of chi-square tests for all test images and corre-
sponding encrypted images. Table 6 shows that the P-values are greater
than 0.05 for the encrypted images, and the pixel distribution is uni-
form. Thus, the encryption scheme does not provide useful information
for attackers and can resist any statistical attacks.

5.2.3. Information entropy analysis

Information entropy is the most important measure of randomness.
The source of information is defined as m, and we can obtain the fol-
lowing formula [34] to calculate information entropy:

M-1
1
H(m) = (m;)log —— (13)
; P08 Dmy)
where M is the total number of symbols m;em; p(m;) denotes the prob-
ability of symbols, and the theoretical value H(m) = 8 is obtained using
Eq. (13). The closer the number is to 8, the less possible it is for attack-
ers to decode cipher images. Table 6 shows the information entropy.

Table 7 reveals that entropies are close to 8, thus indicating that the
proposed algorithm has a good property of information entropy.

Recently, by computing the sample mean of conventional informa-
tion entropy over a number of non-overlapping and randomly selected
image blocks, the local Shannon entropy was proposed to measure the
image randomness. Local Shannon entropy may overcome some known
weaknesses of conventional information entropy. Local Shannon en-
tropy has some advantages. First, it can capture local image block ran-
domness that may not be correctly obtained by information entropy.
Second, it is able to assess image randomness using the same set of pa-
rameters regardless of the various sizes of the test images. Finally, only
a portion of the pixel information is needed to measure the image, and
it has higher efficiency. Next, local Shannon entropy is used to measure
the randomness of our encryption algorithm.

The (k,Tp)-local Shannon entropy with respect to local image blocks
may be computed by the following steps. First, non-overlapping im-
age blocks S;, S,, ..., Si with Ty pixels for a test image S are ran-
domly selected. Then, information entropy H(S;) for all image blocks
via Eq. (13) may be obtained. Finally, the local Shannon entropy over
these k image blocks is computed using the following equation [36]:

& H(S)

Hk,TB (m) = .

(14)
i=1

In the experiment, for three test images, we select k = 30 and
Tp = 1936, and the results are presented in Table 7. Table 8 demon-
strates that the local Shannon entropies of the cipher images are close to
8.0. The local image blocks are chosen randomly in the local Shannon
entropy measure. Thus, the cipher images generated by the proposed
encryption algorithm have good local randomness, and our algorithm is

sufficiently secure to resist entropy attacks.

5.3. Key sensitivity analysis

To guarantee the security of the cryptosystem, a good cryptosystem
should be sensitive to the key. The key sensitivity must be analysed. The
incorrect plain image will be produced when different keys are used to
decrypt the cipher image. We use the original key to encrypt the plain
image and the modified key to decrypt the cipher image. Their differ-
ence lies in the last digit after the decimal point of the first parameter.
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Table 6
Chi-square (y?) test analysis.
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Fig. 6. Histogram analysis. (a) Histogram of the
Lena image (256x256); (b) histogram of the Lena
(256x256)’s encrypted image; (c) histogram of the
Brain image (256x256); (d) histogram of the Brain
(256x256)’s encrypted image; (e) histogram of the
Baboon image (256x256); (f) histogram of the Ba-
boon (256x256)’s encrypted image; (g) histogram
of the Cman image (256x256); (h) histogram of the
Cman (256x256)’s encrypted image; (i) histogram
of the Girl image (256x256); (j) histogram of the
Girl (256x256)’s encrypted image.

Image Lena (256x256)  Brain (256x256)  Baboon (256x256)  Cman (256x256)  Girl (256x256)
72 279.3040 225.9531 264.6797 269.3672 259.1016
P-values  0.7942 0.0953 0.6746 0.7434 0.5832
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Table 7
The result of information entropy.
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Image Lena (256%256)

Brain (256x256)

Baboon (256x256) Cman (256x256) Girl (256x256)

Information entropy ~ 7.9978 7.9973

7.9971 7.9970 7.9971

Table 8
Local entropies for the cipher images.

Images Lena (256x256) Brain (256x256)

Baboon (256x256)

Cman (256x256) Girl (256x256)

Local entropies ~ 7.9078 7.9081

7.9085

7.9089 7.9053

Fig. 7. Key sensitivity analysis. (a) The Lena image; (b) the encrypted image using the original key; (c) the decrypted image with an incorrect security key; and (d)
the decrypted image with the correct security key. (e) The Peppers image; (f) the encrypted image using the original key; (g) the decrypted image with an incorrect

security key; and (h) the decrypted image with the correct security key.

The original key is (0.2, 0.1, 0.75, —2), and the modified key is (0.2 + 10"
(-13), 0.1, 0.75, —2). The original images are shown in Fig. 7(a) and
Fig. 7(e), and the corresponding cipher images of the original key are
shown in Fig. 7(b) and Fig. 7(f). The decrypted images for the incorrect
decryption key are shown in Fig. 7(c) and Fig. 7(g), and the decrypted
images for the correct decryption key is shown in Fig. 7(d) and Fig. 7(h).
It is clear that the slightly different decryption key cannot decrypt the
cipher-image. Therefore, the key sensitivity test shows that the proposed
cryptosystem has perfect sensitivity to the key.

5.4. Differential analysis

To resist a differential attack, a good cryptosystem should ensure
that any small modification in the plain-image should cause a signifi-
cant difference in the cipher-image. The NPCR (number of pixels change
rate) and UACI (unified average changing intensity) [37] are usually
used for differential attack analysis. The ideal values of NPCR and UACI
are 99.61% and 33.46%, respectively. These concepts are defined by
Egs. (15) and 16 below:

M N
1
NPCR = D(, j) x 100% (15)
M N .. ..
1 | €16, ) = GG D)
UACI = MXNZZTXIOO% (16)

I
~.
I

where C; and C, are two cipher-images whose plaintext has only a dif-
ferent pixel, and D (i, j) is defined as:

O GG =Ca))
P = {1 1)) # )

NPCR and UACI for different images are presented in Table 9.
Table 10 presents the results for a Lena (512x512) image when the
pixel values at different positions have changed. From the two tables,
we can see that UACI is greater than 0.33, and NPCR is greater than
0.99. Thus, the encryption scheme is highly sensitive to the change in
the plain images, and two completely different cipher images may be
gotten obtained despite a minimal change in the original images. Thus,
our algorithm can effectively resist differential attacks.

an

5.5. Known-plaintext and chosen-plaintext attacks

In the encryption process, some methods are used to enhance the
ability of the encryption scheme to resist known-plaintext and chosen-
plaintext attacks. First, we use the SHA 256 hash function to compute
the secret key of the encryption scheme, so our algorithm has high sen-
sitivity to changes in the plain image. Second, in the diffusion phase,
we diffuse the information of the original image to each pixel of the
cipher image, which strengthens the correlation between the original
image and the diffusion operation. In our algorithm, the permutation
and diffusion of the image are strongly correlated with the original im-
age. Therefore, the algorithm is highly sensitive to small changes in the
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Table 9
NPCR and UACI for different images.
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Images Lena (256x256) Brain (256x256) Baboon (256%256) Cman (256x256) Girl (256x256)
UACI 0.3350 0.3358 0.3374 0.3367 0.3386
NPCR 0.9959 0.9963 0.9962 0.9963 0.9956
Table 10 efficients, NPCR, UACI and local entropy are provided in Table 11. The
The Lena (512x512) image for different po- chi-square test is used to illustrate the uniform distribution of the his-
sitions. tograms. Table 12 presents the chi-square test results. Table 12 demon-
Images  (1,1) (10,33)  (203,155) strates that all P-values are greater than 0.05 (significant level), so the
pixel distribution is uniform. NPCR and UACI are used to prove that
UACI 0.3344  0.3344 0.3351 .. . . . .
NPCR 09962 09962 09961 the original image and the encrypted image are two different images.

original image. Therefore, the proposed algorithm could resist known-
plaintext and chosen-plaintext attacks.

Some attackers always use all-white and all-black to make the per-
mutation process of encryption methods invalid and then try to obtain
some useful information. However, in our encryption scheme, the per-
mutation and diffusion have strong correlations with the original image.
It remains difficult for the attacker to crack the encryption algorithm
using an all-white and all-black image method. All-white and all-black
images are used as test images, and their cipher images and histograms
of cipher images are illustrated in Fig. 8. Their entropies, correlation co-

The results demonstrate that the original image is different from the
encrypted image. In general, the cipher images are noisy and different
from the original images, and their histograms distribute uniformly. No
useful information can be obtained from analysing the cipher images.
Moreover, entropies and local entropies of the cipher images are greater
than 7.90, and correlation coefficients in three directions are close to 0.
These findings indicate that our algorithm has good encryption effect
for all-white and all-black images and a high security level.

5.6. Computational complexity of the proposed scheme

The size of the plain image is denoted as m x n. The time consumed
by the proposed scheme is mainly divided into three parts. The first part

Fig. 8. Experimental results of all-white and black images. (a) All-white, (b) cipher image of the all-white image, (c) histogram of the cipher image, (d) all-black

image, (e) cipher image of all-black image, and (f) histogram of the cipher image.
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Table 11
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The entropies, NPCR, UACI, local entropy and correlation coefficients of the plain, cipher images of all-white and

all-black images.

Images Entropies NPCR UACI Local entropies Correlation coefficients
Horizontal ~ Vertical = Diagonal
Cipher image of all white  7.9971 0.9959  0.3348 7.9053 0.0051 0.0026 0.0020
Cipher image of all black 7.9972 0.9960  0.3337 7.9062 0.0035 0.0060 0.0028
Table 12 Table 15

Chi-square (y?) test analysis.

Images Cipher image of all white  Cipher image of all black
Ve 263.4922 249.8672
p-values 0.6559 0.4210
Table 13
Time complexity of different schemes.
Algorithm Computation
Chaotic sequence Confusion Diffusion
Ref. [38] 0(8mxn) + O(m x n)  O(4mxn) O(4mxn)
Ref. [39] 0(8mxn) 0(8mxnxlog(8mxn)) O(m x n)
Ref. [40] O(m x n) O(m x nxlog(m x n)) o(m x n)
Ref. [41] 20(4mxn) O(m x nxlog(m x n)) 0(4mxn)
+0(4mxnxlog(4mxn))
Ref. [42] 0(2mxn) 0(2mxn) + 0(3mxn) 0(4mxn)
Our scheme  O(m x n) O(m x n) O(m x n)
Table 14
Performance of the proposed scheme and other methods.
Correlation coefficient
N " - Entropy
Horizontal Vertical Diagonal
Ref. [38] -0.0230 0.0019 -0.0034  7.9974
Ref. [39] 0.0102 -0.0053  -0.0161 -
Ref. [40] —-0.0038 -0.0026  0.0017 -
Ref. [41] 0.0241 -0.0194  0.0243 7.9974
Ref. [42] 0.0000 -0.0011  0.0074 7.9973
Our scheme  0.0004 0.0013 -0.0023  7.9978

is the key streams generation. This part generates four key streams X, Y,
Z, and W, and the lengths are all m x n. The complexity of the generation
algorithm is O(m x n). The second part is the permutation, which is the
simplest part and has the same complexity of O(m x n). The third part
is the diffusion part, which contains two DNA encoding steps and one
XOR operation step, and its complexity is also O(m x n). The algorithm
time complexity is arranged from low to high of O (1), O(log(n)), O(n),
O(nlog(n)), and O(n?). Here, O (1) is the lowest time complexity, and
O(n?) is the highest time complexity. Table 13 demonstrates that our
encryption algorithm has low algorithm time complexity compared to
the existing technology in Refs. [38,39,40,41,42]. In addition, algorithm
space complexity is also an important criterion for measuring computa-
tional complexity. The Knuth-Durstenfeld algorithm is applied to image
scrambling, which is an in-place scrambling algorithm, so its algorithm
space complexity is O (1). The algorithm space complexity O (1) means
that our encryption algorithm does not need to occupy extra memory re-
sources for calculation during the scrambling stage, but many existing
encryption schemes [12,14,15] need to occupy extra memory resources
for calculation in the scrambling stage. The algorithm space complex-
ity is greater than O (1). In addition, Table 14 demonstrates that the
encryption effect of the proposed encryption algorithm can achieve the
encryption effect of the encryption algorithm in Refs. [38-42]. There-
fore, the Knuth-Durstenfeld algorithm can effectively reduce the time
complexity and the space complexity of the algorithm while ensuring the
encryption effect, thereby improving the efficiency of the algorithm.

Performance of the proposed scheme and other methods.

Correlation coefficient

" " " Entropy
Horizontal ~ Vertical Diagonal

Ours 0.0004 0.0013 -0.0023 7.9978
Our scheme only 0.0031 0.0035 0.0025 -
with permutation
Ref. [43] 0.0030 -0.0024 -0.0034  7.9976
Ref. [44] —-0.0098 -0.0050  -0.0013 7.9974
Ref. [45] —-0.0230 0.0019 —-0.0034  7.9974
Ref. [46] —-0.0226 0.0041 0.0368 7.9973

5.7. Performance comparison

In Table 15, Lena (256x256) is as the test image, and the correlation
coefficient and entropy of the cipher image generated from the pro-
posed method and other methods are calculated and listed. In addition,
to prove the permutation algorithm has good randomness, the correla-
tion coefficient of the cipher image generated from the proposed method
exclusively with permutation is also listed. The plain image and the im-
age obtained after permutation process are also shown in Fig. 9(a, b).
The correlation distribution of two adjacent pixels in three directions
of the image obtained after permutation process is shown in Fig. 9(c-
e). Table 15 clearly demonstrates that the horizontal correlation coeffi-
cient of image generated from proposed permutation method is less than
the horizontal correlation coefficient of image generated from proposed
method in Refs. [44,45,46] and close to that in Ref. [43], the verti-
cal correlation coefficient of image generated from proposed permuta-
tion method is less than that in Refs. [44,46] and close to that in Refs.
[43,45], and the diagonal correlation coefficient of image generated
from proposed permutation method is less than that in Refs. [43,45,46]
and close to that in Refs. [44]. These results demonstrate that our per-
mutation algorithm has better ability to disrupt the correlation between
adjacent pixels of an image. Table 15 demonstrates that the horizon-
tal, vertical, and diagonal correlation coefficients of an image generated
from the proposed permutation method are all greater than the horizon-
tal, vertical, and diagonal correlation coefficients of images generated
from the proposed method. These results demonstrate that the diffu-
sion would reduce the correlation coefficient. According to the above
analysis, the proposed permutation algorithm can still achieve the per-
mutation effect of other encryption methods. In this paper, the Knuth-
Durstenfeld algorithm is used for image permutation. Thus, the Knuth—
Durstenfeld algorithm has good randomness. Additionally, regarding en-
tropy, our result is greater than that reported in Refs. [43,44,45,46].3

6. Conclusion

This paper proposed a new image encryption scheme based on a
hidden attractor chaos system, Knuth-Durstenfeld algorithm and DNA
sequence operation. To overcome the common weaknesses of image en-
cryption using self-excited attractor chaotic systems, the hidden attrac-
tor chaotic system is used to generate the chaotic sequences needed for
image encryption. The NIST test of the chaotic sequence generated by
the hidden attractor chaotic system proves that the hidden attractor
chaotic system is suitable for image encryption. Because the Knuth-
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Fig. 9. (a) Plain image, (b) image obtained after the permutation process, (c) horizontal direction, (d) vertical direction, and (e) diagonal direction.

Durstenfeld algorithm has good randomness, this paper uses Knuth—
Durstenfeld algorithms to better disrupt the correlation between adja-
cent pixels of the image. A DNA approach is used for diffusion oper-
ations. Experimental simulations and comparisons have also verified
the security of the proposed scheme from four aspects: the exhaus-
tive attack, the statistical attack, the differential attack and the known-
plaintext and chosen-plaintext attacks. The scheme has a large key space
and is extremely sensitive to its keys. Thus, it can resist exhaustive at-
tack. The histogram of the scheme is uniform. The correlation coefficient
is close to 0, and the entropy value is close to 8. Thus, the scheme can
resist statistical attack. Both UACI and NPCR values approach their ideal
values, which illustrates that the proposed scheme can resist differen-
tial attacks. The all-white and all-black image experiment also illustrates
that the proposed scheme can resist the known-plaintext and chosen-
plaintext attacks. All of the above findings demonstrate that the pro-
posed scheme is efficient and practical in communications, but there are
spaces to be explored and improved. For example, the proposed scheme
is designed mainly for grey image, and colour image and multimedia
data must first be converted to the same pattern of grey images and
then encrypted with the scheme. In the future, we intend to convert the
encryption scheme into the multimedia field.
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