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Chaotic systems have been widely applied in digital image encryption due to their complex properties such as er- 

godicity, pseudo randomness and extreme sensitivity to their initial values and parameters. An image encryption 

algorithm based on a hidden attractor chaos system and Knuth–Durstenfeld algorithm is proposed. First, a hidden 

attractor chaos system is used to encrypt digital image. Compared to a self-excited attractor, the hidden attractor’s 

attracting basin does not intersect with any small neighbourhoods of the equilibria. It is difficult for attackers 

to reconstruct the attractor by finding equilibrium points. Therefore, the hidden attractor chaotic system is diffi- 

cult to decrypt. Meanwhile, the hidden attractor chaos system is very sensitive to initial values and parameters. 

Second, the Knuth–Durstenfeld algorithm has good randomness. In addition, the Knuth–Durstenfeld algorithm 

can reduce the time complexity and the space complexity of the permutation while achieving good permutation 

effects. Thus, Knuth–Durstenfeld algorithm is used to permutate the digital image. Finally, DNA sequence op- 

erations are used to diffuse image pixels values. Some experimental analyses have been applied to measure the 

new scheme, and the experimental results illustrate the scheme possesses better encryption performances. This 

method can be applied in secure image communication fields. 
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. Introduction 

The rapid development of digital technology and the popularity of

he Internet have brought great convenience to people’s work and life.

igital media as the carrier of works such as books, music, images and

ideos, has greatly enriched people’s lives due to the easy access, conve-

ient copying, quick spread and other advantages. However, as we can

ee, some of the malicious behaviors aiming to intercept useful informa-

ion by exploiting the characteristics of network openness and sharing,

ave seriously damaged the interests of communication parties. There-

ore, it is urgent to develop technology for secure information commu-

ication. 

Digital images with visual visibility are an important form of digital

edia data and have been widely spread across the Internet. Therefore,

mage encryption for secure transmission of digital images over the In-

ernet has become a widely used technology. Due to some special prop-

rties of images such as large data capacity, strong correlation of pixel

oints and high redundancy, the developed data encryption algorithms

uch as DES and AES [ 1 , 2 ], which require a considerable amount of time

o calculate, are not suitable for the secure transmission of real-time im-

ges, thus, a large number of algorithms dedicated to image encryption

ave been designed based on chaotic system [3–14] , deoxyribonucleic

cid(DNA) sequence [ 13 , 14 ], cellular automata [ 15 , 16 ], magic cube
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17] and so on. In 1998, Fridrich [18] proposed the first general ar-

hitecture for chaos-based image encryption, and it was composed of

ermutation and diffusion. Permutation is used to break the correlation

etween adjacent pixels of the digital images by shuffling the positions

f the image pixels, and the histogram is not changed. Diffusion alters

he pixel values, so the histogram is changed. 

A chaotic system possesses prominent features, including extremely

ensitive dependence on initial conditions and system parameters, er-

odicity and random-like behaviors, which is very suitable for image

ncryption. Therefore, many articles [3–14] have recently applied dif-

erent chaotic systems to image encryption. For example, in Ref. [11] ,

he researcher proposed an image encryption algorithm based on a high-

imensional hyperchaotic system, pixel-level permutation and bit-level

ermutation. Wu et al. [13] proposed an image encryption algorithm

ased on two-dimensional Hénon-Sine map. The new map possesses ex-

ellent ergodicity and pseudo randomness, and the new mapping has

haos in a wide range of parameters. Chai et al. [14] used a memris-

ive hyperchaotic system along with the cellular automata and DNA se-

uence operations to encrypt the image. In general, all chaotic systems

n the above image encryption algorithms are generated by self-excited

ttractors. For a self-excited attractor, its attracting basin is associated

ith an equilibrium point [20] . For chaotic systems generated by self-

xcited attractors, the attractors can be reconstructed in phase space by
ember 2019 

https://doi.org/10.1016/j.optlaseng.2019.105995
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2019.105995&domain=pdf
mailto:wch1227164@hnu.edu.cn
https://doi.org/10.1016/j.optlaseng.2019.105995


S. Wang, C. Wang and C. Xu Optics and Lasers in Engineering 128 (2019) 105995 

fi  

s  

w  

o  

c  

t  

o  

a  

e  

p  

d  

e  

C  

t  

t  

a  

o  

h  

g  

A  

t  

t

 

f  

t  

r  

s  

s  

p  

A  

c  

a  

F  

v

3

D  

K  

[  

r  

t  

o  

a  

C  

i  

e

 

a  

q  

s  

e  

b  

a  

e  

c  

t  

K  

c  

d  

a  

t  

l  

l  

t  

t  

r  

t  

s  

s  

r  

f

 

i  

a  

S  

i

2

2

 

c  

n  

r  

p  

t  

a

 

s⎧⎪⎪⎨⎪⎪⎩
w  

k

2

h

 

a  

W  

m  

p  

a  

t

 

h  

r  

h  

c  

w

2

 

o  

t  

c  

a  

w

 

v  

c  

t  

b  

j  

t  

T

 

(  

r  
nding equilibrium points. Thus, some attackers can reconstruct chaotic

ignals by reconstructing the attractors of the original chaotic system,

hich leads to the low security of the image encryption algorithm based

n self-excited attractor chaotic systems. Recently, researchers have dis-

overed hidden attractor chaotic systems [19–26] . The hidden attrac-

or’s attracting basin does not intersect with any small neighborhoods

f the equilibria. Therefore, it is difficult for attackers to reconstruct the

ttractors through equilibrium points. Hence, it is difficult for attack-

rs to decrypt the chaotic system by reconstructing the attractors in the

hase space. However, to date, image encryption schemes based on hid-

en attractor chaotic systems are rarely reported, and only one image

ncryption based on hidden attractor chaotic systems is mentioned by

avusoglu U et al. [27] . However, in Ref. [27] , the author focused on

he analysis of the generation of the new hidden attractor chaotic sys-

em, the analysis of the image encryption algorithm based on the hidden

ttractor chaotic system is very weak, and a simple image encryption is

nly used as an application to prove correctness of the proposed new

idden attractor chaotic system. In our paper, the image encryption al-

orithm based on a hidden attractor chaotic system is studied in detail.

n image encryption scheme based on the hidden attractor chaotic sys-

em, the Knuth–Durstenfeld algorithm and DNA is proposed, and de-

ailed performance analyses are performed. 

Image encryption algorithms usually consist of permutation and dif-

usion. The diffusion process extends the image portion information to

he full-text range. The permutation process can break the strong cor-

elation of adjacent pixels of a digital image by changing the pixel po-

ition, which is very important for digital image encryption. Many re-

earchers have performed considerable work on image permutation and

roposed many effective permutation algorithms [ 28–30 , 34 ], such as

rnold transform, baker transform, and E-curve transform, etc. These

lassical methods have greatly promoted research in the field of im-

ge encryption, but some problems have been exposed in later research.

or example, Arnold transformation and Baker transformation have ob-

ious periodicity. In conclusion, the above methods proposed in [ 28–

0 , 34 ] have problems such as poor randomness. In contrast, the Knuth–

urstenfeld algorithm has good randomness. Guvenoglu E [31] uses the

nuth–Durstenfeld algorithm for image encryption. However, in Ref.

31] , the Knuth–Durstenfeld algorithm is only used to generate keys,

ather than permutate images. Moreover, it is a general image encryp-

ion algorithm, but not a chaotic-based image encryption algorithm. In

ur paper, the Knuth–Durstenfeld algorithm is used to permutate im-

ges, and a hidden attractor chaotic system is used to generate keys.

ompared to other permutation algorithms in the papers of chaos-based

mage encryption, this Knuth–Durstenfeld permutation algorithm in our

ncryption scheme exhibits good randomness. 

Based on the above analyses, a new algorithm based on a hidden

ttractor chaos system, the Knuth–Durstenfeld algorithm and DNA se-

uence operations is proposed. The algorithm proposed in this paper has

ome advantages. First, the hidden attractor chaotic system is used to

ncrypt images. Therefore, attacker cannot decrypt the chaotic system

y reconstructing the attractors in phase space. In addition, the hidden

ttractor chaotic system is very sensitive to initial values and param-

ters, and a slight change in parameters or initial values may lead to

ompletely different chaotic dynamics. It is also very difficult to ob-

ain initial values and parameters by brute force attacks. Second, the

nuth–Durstenfeld algorithm is used in permutation process. This is a

ompletely irregular random permutation algorithm. It has good ran-

omness. The Knuth–Durstenfeld algorithm is an in-place scrambling

lgorithm, so it has low algorithmic space complexity, and its algorithm

ime complexity is also low. We know that an image is the carrier of

arge amounts of data, thus, in the case of limited computing resources,

ow time complexity and low space complexity of algorithms are impor-

ant. Using the Knuth–Durstenfeld algorithm to permutate the image,

he time complexity and space complexity of algorithm can be greatly

educed under the premise of ensuring the permutation effect. Third, in

he diffusion phase, uniform DNA rules are made by the scheme and a
tatistical characteristic of the plain image is embedded into diffusion

tep to resist common attacks. In addition, to improve the ability to

esist known-plaintext and chosen-plaintext attacks, the SHA 256 hash

unction of the plain image is used to generate the secret key. 

The paper is organized as follows. In Section 2 , we provide prelim-

nary works. In Section 3 , we describe the proposed image encryption

lgorithm in detail. In Section 4 , simulation results are presented. In

ection 5 , security analysis is presented, while conclusions are reported

n Section 6 . 

. Preliminary works 

.1. Chaotic system 

The paper adopts a new four-dimensional hidden attractor hyper-

haotic system, which is developed by the extension of the generalized

on-diffusion Lorenz equation. The system does not have any equilib-

ia, but can exhibit two-scroll hyperchaotic, chaos, quasiperiodic and

eriodic dynamics. For certain parameter values, coexisting hidden at-

ractors can be observed, for example hyperchaotic and periodic hidden

ttractors. 

The new 4-dimensional hidden attractor hyperchaotic system is de-

cribed as follows [22] : 

 

 

 

 

 

 

 

𝑥̇ = 𝑎 ( 𝑦 − 𝑥 ) 
𝑦̇ = − 𝑥𝑧 − 𝑐𝑦 + 𝑘𝑤 

𝑧̇ = − 𝑏 + 𝑥𝑦 

𝑤̇ = − 𝑚𝑦 

(1) 

here a, b, c, m, k are the real parameters of the chaotic system, and

 × m ≠0. When b ≠0, system (1) has no equilibria. 

.1.1. Typical hidden hyperchaotic attractors in the hidden attractor 

yperchaotic system 

Hyperchaotic theory states that for a four-dimensional hyperchaotic

utonomous system, it has at least two positive Lyapunov exponents.

hen the parameters are set to a = 10, b = 25, c = − 2.5, k = 1, and

 = 1 and the initial conditions are set to (0.2,0.1,0.75, − 2), the Lya-

unov exponents of the system are L 1 = 0.9115, L 2 = 0.0224, L 3 = 0,

nd L 4 = 0. − 8.4330 and the system has a two-scroll hyperchaotic at-

ractor. 

The strange attractors and phase portraits of the hidden attractor

yperchaotic system (1) are shown in Fig. 1 . System (1) has no equilib-

ia, and no homoclinic (heteroclinic) orbits but has a two-scroll hidden

yperchaotic attractor that resembles the butterfly shape of the Chen

haotic attractor, which as a whole form a singular tornado-like shape

ith two inner holes (see Fig. 1 ). 

.1.2. Dynamical structure of the new hyperchaotic system 

System (1) exhibits abundant complex chaotic dynamical behaviors

ver a wide range of parameters. Of particular interest is the fact that

his nonlinear system can display periodic orbit, quasi-periodic orbit,

haos, and hyperchaotic features under different conditions. Remark-

bly, this system can display different types of coexistence of attractors

ith variations of only a single parameter but with no equilibria. 

When we fix a = 10, b = 25, k = 1, m = 1, and c = − 4.66, for initial

alues (0.2, 0.1, 0.75, − 2), a hyperchaotic attractor with no equilibria

an be obtained, however, for initial values (0.2, 0.8, 0.75, − 2), trajec-

ories of system (1) coverage to chaotic attractor. When we set a = 10,

 = 25, k = 1, m = 1, and c = 2, for initial values (0.2, 0.82, 0.75, − 2), tra-

ectories of system (1) coverage to a stable period orbit. Minor change in

he initial condition of the system causes wide difference of trajectories.

herefore, the system is very sensitively to initial values. 

We fix a = 10, b = 25, k = 1, and m = 1, and the initial values

0.2, 0.1, 0.75, − 2). When c ∈[ − 8.5, − 7.45], system (1) displays the pe-

iodic orbits, quasi-periodic orbit and periodic orbit alternately with
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Fig. 1. Different perspectives on two-scroll hyperchaotic attractor of the 4D system (1) with no equilibria; system parameters of a = 10, b = 25, c = − 2.5, k = 1, 

and m = 1; and initial values of (0.2, 0.1, 0.75, and − 2). 
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Table 1 

NIST SP800-22 test results of binary sequences generated using 

hidden attractor chaos system. 

P -value Result 

Sub-tests ≥ 0.01 

Approximate Entropy 0.621305 Pass 

Block Frequency 0.955336 Pass 

Cumulative Sums Forward 0.079280 Pass 

Reverse 0.084353 Pass 

FFT 0.765214 Pass 

Frequency 0.747075 Pass 

Linear Complexity 0.846726 Pass 

Longest Run 0.445214 Pass 

Non-Overlapping Template 0.223465 Pass 

Overlapping Template 0.936519 Pass 

Random Excursions 0.217525 Pass 

Random Excursions Variant 0.427786 Pass 

Rank 0.154121 Pass 

Runs 0.755034 Pass 

Serial P -value1 0.178383 Pass 

P -value2 0.422304 Pass 

Universal 0.969388 Pass 

e  

t  

t

2

 

a  

o

 

a

 

a

ifferent values of parameter c . For c ∈( − 7.45, 4.96) ∪( − 4.94, − 4.68)

( − 4.66, − 4.12) ∪( − 0.46, 0.24], system (1) is chaotic. When c ∈( − 4.96,

 4.94) ∪( − 4.68, − 4.66) ∪( − 4.12, − 0.46) ∪[1.83, 1.88], hyper-chaos of

ystem (1) occurs. When c ∈( − 0.24,0.154], system (1) displays chaos,

uasi-periodic orbits and periodic orbits alternately with different val-

es of parameter c . For c ∈[0.154,1.84) ∪(1.88,2.84), system (1) is

eriodic. When c ∈[2.84,8.54], the system is quasi-periodic. When

 ∈(8.54,9], system (1) is chaotic. As the parameters change, the sys-

em exhibits different dynamic characteristics. Therefore, system (1) is

ery sensitive to parameters. 

.1.3. The effectiveness of the proposed chaotic system 

To show that the hidden attractor chaos system is suitable for de-

igning an image encryption algorithm, we use the National Institute

f Standards and Technology (NIST) SP800-22 to test the randomness

f the output sequences of the hidden attractor chaos system. The NIST

P800-22 has 15 sub-tests and each sub-test can generate a P -value. Bi-

ary streams are suggested as the input and the generated P -value is

xpected to fall into the range [0.01,1] to pass the corresponding sub-

est. In our experiment, the double float data format is adopted for the

terative outputs of the proposed hidden attractor chaos system. For each

utput of the hidden attractor chaos system, we transform its fractional

art to be a binary stream with 49 bits. The input binary streams are

btained by combining these binary streams from the outputs. Table 1

hows the test results, and it is clear that binary streams obtained from

he outputs of the proposed hidden attractor chaos system can pass all

he sub-tests. This finding indicates that the proposed hidden attractor

haos system can generate a pseudo-randomness sequence. Therefore,

he hidden attractor chaos system is suitable for image encryption. 

.2. Knuth–Durstenfeld shuffle algorithm 

The shuffling of playing cards involves three methods, such as ex-

ract, exchange and insert. Three shuffling algorithms are derived from
xtract, exchange and insert. Here, extract and exchange correspond

o the Fisher-Yates Shuffle and Knuth–Durstenfeld algorithms, respec-

ively. 

.2.1. Fisher–Yates shuffle algorithms 

The Fisher-Yates shuffle algorithm was proposed by Ronald A. Fisher

nd Frank Yates. The basic idea is to randomly take a number from the

riginal array and place it into a new array; The details are as follows: 

Step 1: Initialize the original array and the new array; The original

rray length is n . 

Step 2: Assuming that there are still k number left in the array, then

 number p between [1, k ) is randomly generated. 
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Table 2 

DNA encoding rules. 

Rule 1 2 3 4 5 6 7 8 

A 00 00 01 01 10 10 11 11 

T 11 11 10 10 01 01 00 00 

C 01 10 00 11 00 11 01 10 

G 10 01 11 00 11 00 10 01 

Table 3 

DNA XOR operation. 

XOR A G C T 

A A G C T 

G G A T C 

C C T A G 

T T C G A 
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Step 3: Take the p th number from the remaining k numbers. Then,

lace it in a new array. 

Step 4: Repeat steps 2 and 3 until the numbers are all taken. 

The new sequence taken from step3 is a scrambled sequence. The

ime complexity of this algorithm is O ( n × n ), and the space complexity

s O ( n ). 

.2.2. Knuth–Durstenfeld shuffle algorithm 

Knuth and Durstenfeld improved the algorithm based on the Fisher-

ates shuffle algorithm, by interacting with numbers on the original

rray, and eliminating the extra O ( n ) space. The basic idea of the al-

orithm is similar to the Fisher-Yates shuffle algorithm. We randomly

ake a number out of the unprocessed data, and then place the number

n the end of the array. Thus, the number stored in the end of the array

s already processed. The details are as follows: 

Step 1: Create an array arr with an array size of n to store the values.

Step 2: Generate a random number x from 0 to n-1 . 

Step 3: Output the value of arr subscripted as x . 

Step 4: Exchange the element subscripted with x with the element at

he end. 

Step 5: Similar to step2, generate a random number from 0 to n-2 . 

Step 6: Output the value of arr subscripted as x . 

Step 7: Exchange the element subscripted with x with the second-to-

ast element. 

Repeat as noted above, until n elements are processed. 

The time complexity is O ( n ) and the space complexity is O (1) . This is

n in-situ disordered algorithm. The space complexity of the algorithm

s improved from O ( n ) of the Fisher-Yates shuffle algorithm to O (1) , and

he time complexity of the algorithm is also improved from O ( n × n ) of

he Fisher-Yates shuffle algorithm to O ( n ). 

.3. DNA sequence operations 

.3.1. DNA encoding and decoding rules 

A DNA sequence consists of four nucleic acid bases: A(adenine),

(cytosine), G(guanine) and T(thymine). A and T as well as G and C

re complementary. Because 0 and 1 are complementary in the binary

ystem, 00 and 11 are complementary. In addition, 01 and 10 are also

omplementary. There are 24 types of encoding rules using the four nu-

leic acid bases (A, C, G, and T) to encode 00,01,10 and 11. However,

nly 8 of them satisfy the Watson-Crick complementary rule [32] as
Fig. 2. The encrypt
hown in Table 2 . Note that DNA decoding rule is the reverse operation

f the DNA encoding rule. 

For example, the greyscale value of a pixel is “126 ”, and the corre-

ponding binary number is “01111110 ”. The DNA sequence “GTTC ” is

btained using DNA encoding rule 2. Inversely, if the DNA sequence is

TGCA ”, the binary number can be obtained by rule 8(the decoding rule

s 8), that is “00011011 ”, the decimal number is “78 ”, and this is the

ecoding process of the DNA sequence 

.3.2. DNA XOR algebraic operation 

The DNA XOR operation is manipulated according to traditional XOR

n the binary format. Eight types of DNA encoding rules exist, and eight

ypes of DNA XOR rules correspondingly appear. In this paper, XOR

peration is used in the diffusion process. One type of XOR operation is

sed in the diffusion process. One type of XOR operation is used in the

iffusion process. One type of XOR operation is shown in Table 3 . An

xample of a DNA XOR operation is provided. Using Table 3 , the XOR

esult of DNA sequence “AGCT ” and “TGAC ” is TACG. 

. Encryption scheme 

The encryption process in the paper is shown in Fig. 2 . First, mul-

iple chaotic sequences are generated by the chaotic system, and two
ion processes. 
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Algorithm 2 

Input: P_Row , and R 1 
Output: Scrambled vector P_Row 

1.for i = 1: M × N -1 

2. t = P_Row ( M × N - i + 1); 

3. P_Row( M × N - i + 1) = P_Row ( R 1 ( i )); 

4. P_Row ( R 1 ( i )) = t ; 
5.end 
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haotic sequences are selected according to the hash value of the origi-

al image. Next, the original image is permutated based on the Knuth–

urstenfeld algorithm using the selected two chaotic sequences. Finally,

 cipher-image is obtained by a DNA diffusion operation. In the encryp-

ion scheme of the paper, since the parameters and initial values of the

haotic system are fixed, the method of determining the parameters and

nitial values of the chaotic system through plain text is not feasible. In

his paper, we apply the SHA 256 function to enhance the relevance of

laintext and encryption. 

.1. Permutation process 

In the permutation process, the SHA-256 hash function of the plain

mage is used to produce the index of the grouped chaotic sequence.

or the SHA-256 function, if there is one-bit difference between two

riginal images, their hash values will be completely different. Suppose

he size of the plain greyscale image is M × N , the permutation steps are

s follows. 

Step 1: According to the different dynamic characteristics of the hid-

en attractor chaotic system under different parameters and initial val-

es, we can reasonably choose the parameters and initial values of the

idden attractor chaotic system. The hash value of the original image

s calculated according to the SHA-256 algorithm. Therefore, the secret

ey of the encryption algorithm proposed in this paper consists of the

ash value of the original image and the chaotic system’s parameters

nd the chaotic system’s initial values. The parameters selected in this

aper are: a = 10, b = 25, c = − 2.5, k = 1, m = 1; the initial value is:

0 = 0.2, y0 = 0.1, z0 = 0.75, w0 = − 2. It can be seen from the dynamic

haracteristics of the hidden attractor chaos that the system has hidden

yperchaotic attractors when the parameters and initial values are set

o the above. 

Step 2: Iterate the chaotic system 1000 times with x0, y0, z0, w0,

nd a, b, c, k, m to avoid the transient effect. Continue to iterate the

haotic system M × N − 1times to get four sequences X, Y, Z, W. 

Step 3: To strengthen the correlation between the encryption scheme

nd the plaintext, the generated four chaotic sequences are divided into

ix groups, namely:A1 = (X,Y), A2 = (X,Z), A3 = (X,W), A4 = (Y,Z),

5 = (Y,W), A6 = (Z,W). Additionally, we define two vectors R1, R2.

oreover R1 = Ai (1) , R2 = Ai (2) , i = 1,2,3,4,5,6. 

Step 4: First, we define two variables h_sum and index. According

o the hash value of the original image obtained by the SHA-256 algo-

ithm, each hexadecimal character in the hash value is converted into a

ecimal number, and we add all the decimal numbers converted from

he hexadecimal hash value to get the h_sum value. We perform the

ollowing operations on h_sum: 

Find the index according to the following equation: in-

ex = mod(h_sum,6) + 1 ; 

When index = 1, then i = 1, A i = A 1 , then we get R 1 = X and R 2 = Y ;

When index = 2, then i = 2, A i = A 2 , then we get R 1 = X and R 2 = Z ;

When index = 3, then i = 3, A i = A 3 , then we get R 1 = X and R 2 = W ;

When index = 4, then i = 4, A i = A 4 , then we get R 1 = Y and R 2 = Z ;

When index = 5, then i = 5, A i = A 5 , then we get R 1 = Y and R 2 = W ;

When index = 6, then i = 6, A i = A 6 , then we get R 1 = Z and R 2 = W ;

Step 5: Define two vectors Row and Column. Then, according to the

characteristics of the scrambling of the Knuth–Durstenfeld algo-

rithm, R 1 and R 2 are processed as Algorithm 1 : 
Algorithm 1 

Input: R 1 , R 2 
Output: Row, Column 

1.for i = 1: M × N − 1 
2. Row( i ) = mod(floor(( R 1 ( i ) + 100) ×10ˆ10), M × N - i + 1) + 1; 

3. Column( i ) = mod(floor(( R 2 ( i ) + 100) ×10ˆ10), M × N - i + 1) + 1; 

4.end 
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Step 6: Expand the original image matrix P into a one-dimensional

ector P_Row . Then, P_Row is scrambled according to the Knuth–

urstenfeld algorithm by the processed chaotic sequence R 1 . Detailed

teps are shown in Algorithm 2 . 

Step 7: Convert the scrambled vector P_Row into a matrix of M × N ,

nd transpose the matrix. Then, the transposed matrix is expanded to

et the one-dimensional vector P_Column . 

Step 8: P_Column is scrambled according to Algorithm 2 by the

rocessed chaotic sequence R 2 . The sequence P_Column obtained after

crambling is converted into a matrix P1 of M × N . 

.2. Diffusion process 

Diffusion process can enhance the resistance to statistical attack and

ifferential attack greatly, in which the histogram of the cipher-image is

airly uniform and is significantly different from histogram of the orig-

nal image. To a good diffusion process, a key stream strongly related

o plain-image should be used. When encrypting different plain-images,

e can get completely different result in the encryption algorithm. The

iffusion process is outlined as follows. 

Step 1: According to the parameters and initial values of the chaotic

ystem during the scrambling process, we iterate the chaotic system

000 times to avoid the transient effects of the chaotic system. 

Step 2: Continue to iterate the chaotic system M × N times, and store

he values in the sequence X1, Y1, Z1, W1 to get four chaotic sequences

1, Y1, Z1, W1 . 

Step 3: By implementing the following operations to every element

f X1, Y1, Z1, W1 as described by Eq. (2) - (5) , four vectors R x , R y , R z ,

nd R may be obtained. 

 𝑥 ( 𝑖 ) = mod 
(
𝑋1 ( 𝑖 ) ′10 10 , 8 

)
+ 1 (2) 

 𝑦 ( 𝑖 ) = mod 
(
𝑌 1 ( 𝑖 ) ′10 10 , 8 

)
+ 1 (3) 

 𝑧 ( 𝑖 ) = mod 
(
𝑍1 ( 𝑖 ) ′10 10 , 8 

)
+ 1 (4) 

 ( 𝑖 ) = mod 
(
𝑊 1 ( 𝑖 ) ′10 10 , 256 

)
(5) 

Here, X1 ( i ), Y1 ( i ), Z1 ( i ), and W1 ( i ) denote the i th element of X1, Y1,

1 , and W1, i ∈[1, M × N ], and mod ( a, b ) returns the remainder of a

ivided by b . 

Step 4: Expanding the scrambled matrix P1 into a one-dimensional

ector E(i), i ∈[1, M × N ], we get a vector of M × N . A variable temp is

efined as Eq (6) . In addition, we define a variable i = 1. 

emp = mod 

( 

𝑀×𝑁 ∑
𝑗=1 

𝑃 1 𝑖 , 256 

) 

(6) 

Step 5: According to the coding rule corresponding to R z ( i ), R ( i )

s DNA-encoded to obtain DNA_R ( i ). At the same time, according to

he coding rule corresponding to Ry ( i ), E ( i ) is DNA-encoded to obtain

NA_E ( i ). Then, by XORing DNA_R ( i ) and DNA_E ( i ), we can get New_E ( i ).

Step 6: According to the rule corresponding to Rx ( i ), New_E ( i ) is

ecoded to obtain de_New _ E ( i ). XOR the de_New_E ( i ) and temp to get

_New_E ( i ). Then, we modify the temp value to C_New_E ( i ). 

Step 7: Set i = i + 1, do step 5–6 in a loop, until all the element of the

lain image has been encrypted. Then, transform the vector to a M × N

atrix, we can obtain the cipher image. 
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Algorithm 3 

The proposed diffusion decryption algorithm. 

Input: The cipher image I c , the decryption sequence R x , R y , R z , and R . 

Output: Diffused decrypted sequence D d . 

1. A vector C ← Reshape I c . 

2. DNA R ← Encode R with Rule R z . 

3. D d 1 ) ← C ( (1) . 

4. FOR i from 2 to m × n 

temp ← C ( i -1) 

D d ( i ) ← C ( i ) XOR temp 

D d ( i ) ← Encode D d ( i ) with Rule R x ( i ) 

D d ( i ) ← D d ( i ) XOR DNA R ( i ) 

D d ( i ) ← Decode D d ( i ) with Rule R y ( i ) 

5.END FOR 

Algorithm 4 

The proposed permutate decryption algorithm. 

Input: the decryption sequence X, Y . Diffused decrypted sequence D d . 

Output: The decrypted image I d . 

1.X1 ← fliplr( X ), Y1 ← fliplr( Y ) 

2.FOR i from 1 to m × n -1 

temp = D d ( i + 1) 

D d ( i + 1) = D d ( Y1 ( i )) 

D d ( Y1 ( i )) = temp 

3.END FOR 

4.FOR i from 1 to m × n -1 

temp = D d ( i + 1) 

D d ( i + 1) = D d ( X1 ( i )) 

D d ( X1 ( i )) = temp 

5.END FOR 

6. I d ← Reshape D d to a matrix of size m × n 
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Table 4 

Experiment parameters. 

Items Parameter values 

Parameters of the hidden 

attractor hyperchaotic system 

a = 10, b = 25, c = 4.6, k = 25, 

m = 1 
The initial values of the hidden 

attractors chaotic system 

X 0 = 0.2, Y 0 = 0.1, Z 0 = 0.75, 

W 0 = − 2 
256-bit secret key (in 

hexadecimal form) 

E D D 1 B B A 8 0 B 8 E 6 0 4 7 

3 7 1 5 0 8 A 2 4 5 5 3 5 7 B E 

6 3 E 7 C B 7 F A B 0 0 F E F B 

D 6 2 0 F 4 C A 7 6 0 1 4 5 5 4 
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.3. Decryption 

The decryption process is the inverse of the encryption process, and

he key must be transmitted to the decryption side over a secure channel

efore decrypting image. The key includes the hash value of the plain

mage generated by the SHA-256 algorithm and the hidden attractor

haotic system’s parameters and the initial values. Since in image en-

ryption phase, we first permutate the image and then diffuse the image.

herefore, in the decryption phase, we first decrypt the diffusion, and

hen decrypt permutation. Prior to decryption, decryption sequences are

enerated using the same method as the encryption phase. The detailed

iffusion decryption is presented in Algorithm 3 , and the detailed per-

utate decryption is presented in Algorithm 4 . 

. Experimental results 

In this section, the standard 512 ×512 image of “Lena ” (shown in

ig. 3 (a)) is employed as the test image. All experiments are manipu-

ated by MATLAB R2014a and we run the encryption and decryption

rocess using a computer with a 3.3 GHz CPU, 4GB memory and Win-

ows 10 operating system. The experiment parameters are presented
n Table 4 . The cipher image is shown in Fig. 3 (b), and the decrypted

mage is illustrated in Fig. 3 (c). 

The figures show that the cipher image is a noise-like image, and

here is no relationship between the original image and the cipher im-

ge. By visual observation, the decrypted image is the same as the origi-

al image. These findings show that our algorithm has good encryption

nd decryption effect. 

. Performance analysis 

In this section, we analyse the performances of the proposed scheme,

ncluding histograms, correlation coefficients, entropy, key space anal-

sis, key sensitivity analysis, differential analysis and known-plaintext

nd chosen-plaintext attacks analysis. 

.1. Key space 

The key space of a good encryption algorithm should be large enough

hat it can resist all types of brute-force attacks from information eaves-

roppers. In the proposed algorithm, the secret keys include the follow-

ng: 

1) The 256-bit hash value generated by the hash function of the plain

image, 

2) The parameter and the initial value of the hidden attractors chaotic

system. 

The key space of the SHA 256 hash function with complexity of the

est attack is 2 128 larger than 2 100 [33] , and this finding indicates that

ur algorithm is sufficient to prevent the exhaustive search and any

rute force attack. 

.2. Statistical attack analysis 

Correlation coefficient, histogram and entropy depicted in the fol-

owing subsections are the three most important evaluation criteria for

tatistical attack analysis. 
Fig. 3. Simulation results. (a) Plain image of 

Lena (512 ×512), (b) corresponding cipher im- 

age, (c) decrypted image. 
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Fig. 4. Correlation of two adjacent pixels of the plain image Lena (256 ×256) and its cipher image. (a) Horizontal direction in plain image. (b) Horizontal direction 

in cipher image. (c) Vertical direction in plain image (d) Vertical direction in cipher image. (e) Diagonal direction in plain image (f) Diagonal direction in cipher 

image. 
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.2.1. Correlation coefficient analysis 

The adjacent pixels of the original image have a high correlation

n the horizontal, vertical and diagonal directions. An ideal encryption

lgorithm can make the correlation coefficients of the pixels in the en-

rypted image have a sufficiently low correlation to resist statistical at-

acks. To analyse and compare the correlation of the adjacent pixels

n the plain and cipher images, 10,000 pairs of adjacent pixels in each

irection are randomly chosen from the plain image and its encrypted

mage. The correlation distribution of two adjacent pixels in three di-

ections is shown in Fig. 4 . As observed, the distributions of adjacent

ixels in the original image are highly concentrated, which means that

he original image has a strong correlation. However, the distributions

f the adjacent pixels in the original image’s ciphered image are random,

hich means that the ciphered image has a low correlation. 

Moreover, we used the following formulas [34] to calculate the cor-

elation coefficient r xy of each pair: 

( 𝑥 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑥 𝑖 (7) 

( 𝑥 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

( 𝑥 𝑖 − 𝐸( 𝑥 )) 2 (8) 

ov ( 𝑥, 𝑦 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

( 𝑥 𝑖 − 𝐸( 𝑥 ))( 𝑦 𝑖 − 𝐸( 𝑦 )) (9) 

 𝑥𝑦 = 

cov ( 𝑥, 𝑦 ) √
𝐷( 𝑥 ) ×𝐷( 𝑦 ) 

(10) 

here x and y are the greyscale values of two adjacent pixels in the

mage, N is the total number of pixels selected from the image, and E ( x )

nd D ( x ) denote the expectation and variance of variable x , respectively.

Fig. 4 plots the correlation of two adjacent pixels of the plain im-

ge “Lena (256 ×256) ” and its cipher image in the horizontal, vertical
nd diagonal directions. Table 5 illustrates the correlation coefficients

f two adjacent pixels in the plain images (shown in Fig. 5 ) and their

orresponding cipher images. The results clearly demonstrate that the

orrelations between adjacent pixels in the original images are strong,

nd the correlation coefficients are all close to 1. However, correlation

oefficients of cipher images are all less than 0.02. These findings indi-

ate greatly reduced correlation in the cipher images. In addition, the

pponents cannot obtain useful information from the cipher images by

tatistical attack. 

.2.2. Histogram analysis 

An image histogram represents the distribution of the pixel intensity

alues within an image. A secure encryption system can make the en-

rypted image have a uniform histogram to resist any statistical attacks.

he histograms of plain images and its cipher images by the proposed

lgorithm are shown in Fig. 6 . It is clear that histogram of the cipher

mage is uniform and significantly different compared with the plain

mage. Thus, our algorithm can make the statistical attack invalid. 

For quantity analyses of each key, we calculate variances of his-

ograms to evaluate the uniformity of the distribution of the ciphered

mage. The lower value of variances indicates higher uniformity of the

iphered image. We also calculate the two variances of ciphered images

hat are encrypted by different secret keys on the same plaintext image.

he closer of the two values of variances indicates the higher unifor-

ity of ciphered images when the secret keys are varied. The variance

f histograms is presented as follows: 

ar ( 𝑧 ) = 

1 
𝑛 2 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

1 
2 
( 𝑧 𝑖 − 

𝑧 𝑗 ) 2 (11)

here Z is the vector of the histogram values, and Z = { Z 1 , Z 2 , Z 3 ,

 4 …Z 256 }. Z i and Z j are the numbers of pixels whose grey values are

qual to i and j , respectively. In simulation experiments, we calculate
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Table 5 

Correlation coefficients of two adjacent pixels in the plain image and cipher image. 

Images Correlation coefficients 

Horizontal Vertical Diagonal 

Lena (256 ×256) Plain image 0.9588 0.9260 0.9291 

cipher image 0.0004 0.0013 − 0.0023 

Brain (256 ×256) Plain image 0.9872 0.9824 0.9768 

cipher image 0.0011 0.0029 0.0001 

Baboon (256 ×256) Plain image 0.8901 0.9081 0.8508 

cipher image 0.0138 0.0113 0.0053 

Cman (256 ×256) Plain image 0.9533 0.9199 0.8995 

cipher image − 0.0105 0.0033 − 0.0037 

Girl (256 ×256) Plain image 0.9771 0.9715 0.9636 

cipher image 0.0030 0.0001 0.0030 

Fig. 5. Test images (a) Lena (256 ×256) (b) Brain (256 ×256) (c) Baboon (256 ×256) (d) Cman(256 ×256) (e) Girl (256 ×256). 
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wo variances of histograms of two ciphered images using Eq. (11) from

he same plaintext image with different secret keys. Only one parameter

f the secret keys is changed in such different secret keys. The variances

re obtained by the initial key ( x 0 , y 0 , w 0 , z 0 ). The variance values are

pproximately 250, which indicates that the average fluctuation in num-

er of pixels in each grey value is approximately 13 pixels. However, the

ariance value is 33,860.0547 for the histogram of the plaintext image

ena. It is clear that the histograms of the cipher images are fairly uni-

orm and significantly different from that of the plain images. Therefore,

t does not provide any information to the attackers. 

In addition to the histogram graphic analysis, we use the chi-square

est to verify the uniform histogram distribution via quantification of the

ipher image. The chi-square test verifies that the statistic magnitude 𝜒2 

beys the chi-square distribution [35] : 

2 = 

𝑘 ∑
𝑖 =1 

( 𝑓 𝑖 − 𝑛𝑝 ) 2 

𝑛𝑝 
(12)

here f i is the number of pixels in i interval, n is the total number of

ixels, and p = 1/ k . 

In the simulation, we set a significant level of 𝛼 = 0.05 and calcu-

ate the chi-square values and P -values of the test images. Table 6 lists

he experimental results of chi-square tests for all test images and corre-

ponding encrypted images. Table 6 shows that the P-values are greater

han 0.05 for the encrypted images, and the pixel distribution is uni-

orm. Thus, the encryption scheme does not provide useful information

or attackers and can resist any statistical attacks. 

.2.3. Information entropy analysis 

Information entropy is the most important measure of randomness.

he source of information is defined as m, and we can obtain the fol-

owing formula [34] to calculate information entropy: 

( 𝑚 ) = 

𝑀−1 ∑
𝑖 =0 

𝑝 ( 𝑚 𝑖 ) log 
1 

𝑝 ( 𝑚 𝑖 ) 
(13)

here M is the total number of symbols m i ∈m; p ( m i ) denotes the prob-

bility of symbols, and the theoretical value H ( m ) = 8 is obtained using

q. (13) . The closer the number is to 8, the less possible it is for attack-

rs to decode cipher images. Table 6 shows the information entropy.
able 7 reveals that entropies are close to 8, thus indicating that the

roposed algorithm has a good property of information entropy. 

Recently, by computing the sample mean of conventional informa-

ion entropy over a number of non-overlapping and randomly selected

mage blocks, the local Shannon entropy was proposed to measure the

mage randomness. Local Shannon entropy may overcome some known

eaknesses of conventional information entropy. Local Shannon en-

ropy has some advantages. First, it can capture local image block ran-

omness that may not be correctly obtained by information entropy.

econd, it is able to assess image randomness using the same set of pa-

ameters regardless of the various sizes of the test images. Finally, only

 portion of the pixel information is needed to measure the image, and

t has higher efficiency. Next, local Shannon entropy is used to measure

he randomness of our encryption algorithm. 

The ( k,T B )-local Shannon entropy with respect to local image blocks

ay be computed by the following steps. First, non-overlapping im-

ge blocks S 1 , S 2 , …, S k with T B pixels for a test image S are ran-

omly selected. Then, information entropy H ( S i ) for all image blocks

ia Eq. (13) may be obtained. Finally, the local Shannon entropy over

hese k image blocks is computed using the following equation [36] : 

̄
 𝑘, 𝑇 𝐵 

( 𝑚 ) = 

𝑘 ∑
𝑖 =1 

𝐻( 𝑆 𝑖 ) 
𝑘 

(14)

In the experiment, for three test images, we select k = 30 and

 B = 1936, and the results are presented in Table 7 . Table 8 demon-

trates that the local Shannon entropies of the cipher images are close to

.0. The local image blocks are chosen randomly in the local Shannon

ntropy measure. Thus, the cipher images generated by the proposed

ncryption algorithm have good local randomness, and our algorithm is

ufficiently secure to resist entropy attacks. 

.3. Key sensitivity analysis 

To guarantee the security of the cryptosystem, a good cryptosystem

hould be sensitive to the key. The key sensitivity must be analysed. The

ncorrect plain image will be produced when different keys are used to

ecrypt the cipher image. We use the original key to encrypt the plain

mage and the modified key to decrypt the cipher image. Their differ-

nce lies in the last digit after the decimal point of the first parameter.
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Fig. 6. Histogram analysis. (a) Histogram of the 

Lena image (256 ×256); (b) histogram of the Lena 

(256 ×256)’s encrypted image; (c) histogram of the 

Brain image (256 ×256); (d) histogram of the Brain 

(256 ×256)’s encrypted image; (e) histogram of the 

Baboon image (256 ×256); (f) histogram of the Ba- 

boon (256 ×256)’s encrypted image; (g) histogram 

of the Cman image (256 ×256); (h) histogram of the 

Cman (256 ×256)’s encrypted image; (i) histogram 

of the Girl image (256 ×256); (j) histogram of the 

Girl (256 ×256)’s encrypted image. 

Table 6 

Chi-square ( 𝜒2 ) test analysis. 

Image Lena (256 ×256) Brain (256 ×256) Baboon (256 ×256) Cman (256 ×256) Girl (256 ×256) 

𝜒2 279.3040 225.9531 264.6797 269.3672 259.1016 

P -values 0.7942 0.0953 0.6746 0.7434 0.5832 
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Table 7 

The result of information entropy. 

Image Lena (256 ×256) Brain (256 ×256) Baboon (256 ×256) Cman (256 ×256) Girl (256 ×256) 

Information entropy 7.9978 7.9973 7.9971 7.9970 7.9971 

Table 8 

Local entropies for the cipher images. 

Images Lena (256 ×256) Brain (256 ×256) Baboon (256 ×256) Cman (256 ×256) Girl (256 ×256) 

Local entropies 7.9078 7.9081 7.9085 7.9089 7.9053 

Fig. 7. Key sensitivity analysis. (a) The Lena image; (b) the encrypted image using the original key; (c) the decrypted image with an incorrect security key; and (d) 

the decrypted image with the correct security key. (e) The Peppers image; (f) the encrypted image using the original key; (g) the decrypted image with an incorrect 

security key; and (h) the decrypted image with the correct security key. 
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he original key is (0.2, 0.1, 0.75, − 2), and the modified key is (0.2 + 10ˆ

 − 13), 0.1, 0.75, − 2). The original images are shown in Fig. 7 (a) and

ig. 7 (e), and the corresponding cipher images of the original key are

hown in Fig. 7 (b) and Fig. 7 (f). The decrypted images for the incorrect

ecryption key are shown in Fig. 7 (c) and Fig. 7 (g), and the decrypted

mages for the correct decryption key is shown in Fig. 7 (d) and Fig. 7 (h).

t is clear that the slightly different decryption key cannot decrypt the

ipher-image. Therefore, the key sensitivity test shows that the proposed

ryptosystem has perfect sensitivity to the key. 

.4. Differential analysis 

To resist a differential attack, a good cryptosystem should ensure

hat any small modification in the plain-image should cause a signifi-

ant difference in the cipher-image. The NPCR (number of pixels change

ate) and UACI (unified average changing intensity) [37] are usually

sed for differential attack analysis. The ideal values of NPCR and UACI

re 99.61% and 33.46%, respectively. These concepts are defined by

qs. (15) and 16 below: 

𝑃 𝐶𝑅 = 

1 
𝑀 ×𝑁 

𝑀 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

𝐷( 𝑖, 𝑗) × 100% (15)

𝐴𝐶𝐼 = 

1 
𝑀 ×𝑁 

𝑀 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

||𝐶 1 ( 𝑖, 𝑗) − 𝐶 2 ( 𝑖, 𝑗) ||
255 

× 100% (16)
here C 1 and C 2 are two cipher-images whose plaintext has only a dif-

erent pixel, and D ( i, j ) is defined as: 

 ( 𝑖, 𝑗 ) = 

{ 

0 𝐶 1 ( 𝑖, 𝑗 ) = 𝐶 2 ( 𝑖, 𝑗 ) 
1 𝐶 1 ( 𝑖, 𝑗 ) ≠ 𝐶 2 ( 𝑖, 𝑗 ) 

(17)

NPCR and UACI for different images are presented in Table 9 .

able 10 presents the results for a Lena (512 ×512) image when the

ixel values at different positions have changed. From the two tables,

e can see that UACI is greater than 0.33, and NPCR is greater than

.99. Thus, the encryption scheme is highly sensitive to the change in

he plain images, and two completely different cipher images may be

otten obtained despite a minimal change in the original images. Thus,

ur algorithm can effectively resist differential attacks. 

.5. Known-plaintext and chosen-plaintext attacks 

In the encryption process, some methods are used to enhance the

bility of the encryption scheme to resist known-plaintext and chosen-

laintext attacks. First, we use the SHA 256 hash function to compute

he secret key of the encryption scheme, so our algorithm has high sen-

itivity to changes in the plain image. Second, in the diffusion phase,

e diffuse the information of the original image to each pixel of the

ipher image, which strengthens the correlation between the original

mage and the diffusion operation. In our algorithm, the permutation

nd diffusion of the image are strongly correlated with the original im-

ge. Therefore, the algorithm is highly sensitive to small changes in the
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Table 9 

NPCR and UACI for different images. 

Images Lena (256 ×256) Brain (256 ×256) Baboon (256 ×256) Cman (256 ×256) Girl (256 ×256) 

UACI 0.3350 0.3358 0.3374 0.3367 0.3386 

NPCR 0.9959 0.9963 0.9962 0.9963 0.9956 

Table 10 

The Lena (512 ×512) image for different po- 

sitions. 

Images (1,1) (10,33) (203,155) 

UACI 0.3344 0.3344 0.3351 

NPCR 0.9962 0.9962 0.9961 
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F

i

riginal image. Therefore, the proposed algorithm could resist known-

laintext and chosen-plaintext attacks. 

Some attackers always use all-white and all-black to make the per-

utation process of encryption methods invalid and then try to obtain

ome useful information. However, in our encryption scheme, the per-

utation and diffusion have strong correlations with the original image.

t remains difficult for the attacker to crack the encryption algorithm

sing an all-white and all-black image method. All-white and all-black

mages are used as test images, and their cipher images and histograms

f cipher images are illustrated in Fig. 8 . Their entropies, correlation co-
ig. 8. Experimental results of all-white and black images. (a) All-white, (b) cipher

mage, (e) cipher image of all-black image, and (f) histogram of the cipher image. 
fficients, NPCR, UACI and local entropy are provided in Table 11 . The

hi-square test is used to illustrate the uniform distribution of the his-

ograms. Table 12 presents the chi-square test results. Table 12 demon-

trates that all P-values are greater than 0.05 (significant level), so the

ixel distribution is uniform. NPCR and UACI are used to prove that

he original image and the encrypted image are two different images.

he results demonstrate that the original image is different from the

ncrypted image. In general, the cipher images are noisy and different

rom the original images, and their histograms distribute uniformly. No

seful information can be obtained from analysing the cipher images.

oreover, entropies and local entropies of the cipher images are greater

han 7.90, and correlation coefficients in three directions are close to 0.

hese findings indicate that our algorithm has good encryption effect

or all-white and all-black images and a high security level. 

.6. Computational complexity of the proposed scheme 

The size of the plain image is denoted as m × n . The time consumed

y the proposed scheme is mainly divided into three parts. The first part
 image of the all-white image, (c) histogram of the cipher image, (d) all-black 
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Table 11 

The entropies, NPCR, UACI, local entropy and correlation coefficients of the plain, cipher images of all-white and 

all-black images. 

Images Entropies NPCR UACI Local entropies Correlation coefficients 

Horizontal Vertical Diagonal 

Cipher image of all white 7.9971 0.9959 0.3348 7.9053 0.0051 0.0026 0.0020 

Cipher image of all black 7.9972 0.9960 0.3337 7.9062 0.0035 0.0060 0.0028 

Table 12 

Chi-square ( 𝜒2 ) test analysis. 

Images Cipher image of all white Cipher image of all black 

𝜒2 263.4922 249.8672 

p-values 0.6559 0.4210 

Table 13 

Time complexity of different schemes. 

Algorithm Computation 

Chaotic sequence Confusion Diffusion 

Ref. [38] O (8 m ×n ) + O ( m × n ) O (4 m ×n ) O (4 m ×n ) 

Ref. [39] O (8 m ×n ) O (8 m ×n ×log(8 m ×n )) O ( m × n ) 

Ref. [40] O ( m × n ) O ( m × n ×log( m × n )) O ( m × n ) 

Ref. [41] 2 O (4 m ×n ) O ( m × n ×log( m × n )) 

+ O (4 m ×n ×log(4 m ×n )) 

O (4 m ×n ) 

Ref. [42] O (2 m ×n ) O (2 m ×n ) + O (3 m ×n ) O (4 m ×n ) 

Our scheme O ( m × n ) O ( m × n ) O ( m × n ) 

Table 14 

Performance of the proposed scheme and other methods. 

Correlation coefficient 

Entropy 
Horizontal Vertical Diagonal 

Ref. [38] − 0.0230 0.0019 − 0.0034 7.9974 

Ref. [39] 0.0102 − 0.0053 − 0.0161 –

Ref. [40] − 0.0038 − 0.0026 0.0017 –

Ref. [41] 0.0241 − 0.0194 0.0243 7.9974 

Ref. [42] 0.0000 − 0.0011 0.0074 7.9973 

Our scheme 0.0004 0.0013 − 0.0023 7.9978 
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Table 15 

Performance of the proposed scheme and other methods. 

Correlation coefficient 

Entropy 
Horizontal Vertical Diagonal 

Ours 0.0004 0.0013 − 0.0023 7.9978 

Our scheme only 

with permutation 

0.0031 0.0035 0.0025 –

Ref. [43] 0.0030 − 0.0024 − 0.0034 7.9976 

Ref. [44] − 0.0098 − 0.0050 − 0.0013 7.9974 

Ref. [45] − 0.0230 0.0019 − 0.0034 7.9974 

Ref. [46] − 0.0226 0.0041 0.0368 7.9973 
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s the key streams generation. This part generates four key streams X, Y,

 , and W , and the lengths are all m × n . The complexity of the generation

lgorithm is O ( m × n ). The second part is the permutation, which is the

implest part and has the same complexity of O ( m × n ). The third part

s the diffusion part, which contains two DNA encoding steps and one

OR operation step, and its complexity is also O ( m × n ). The algorithm

ime complexity is arranged from low to high of O (1) , O (log( n )), O ( n ),

 ( n log( n )), and O ( n 2 ). Here, O (1) is the lowest time complexity, and

 ( n 2 ) is the highest time complexity. Table 13 demonstrates that our

ncryption algorithm has low algorithm time complexity compared to

he existing technology in Refs. [ 38 , 39 , 40 , 41 , 42 ]. In addition, algorithm

pace complexity is also an important criterion for measuring computa-

ional complexity. The Knuth–Durstenfeld algorithm is applied to image

crambling, which is an in-place scrambling algorithm, so its algorithm

pace complexity is O (1) . The algorithm space complexity O (1) means

hat our encryption algorithm does not need to occupy extra memory re-

ources for calculation during the scrambling stage, but many existing

ncryption schemes [ 12 , 14 , 15 ] need to occupy extra memory resources

or calculation in the scrambling stage. The algorithm space complex-

ty is greater than O (1) . In addition, Table 14 demonstrates that the

ncryption effect of the proposed encryption algorithm can achieve the

ncryption effect of the encryption algorithm in Refs. [38–42] . There-

ore, the Knuth–Durstenfeld algorithm can effectively reduce the time

omplexity and the space complexity of the algorithm while ensuring the

ncryption effect, thereby improving the efficiency of the algorithm. 
.7. Performance comparison 

In Table 15 , Lena (256 ×256) is as the test image, and the correlation

oefficient and entropy of the cipher image generated from the pro-

osed method and other methods are calculated and listed. In addition,

o prove the permutation algorithm has good randomness, the correla-

ion coefficient of the cipher image generated from the proposed method

xclusively with permutation is also listed. The plain image and the im-

ge obtained after permutation process are also shown in Fig. 9 (a, b).

he correlation distribution of two adjacent pixels in three directions

f the image obtained after permutation process is shown in Fig. 9 (c-

). Table 15 clearly demonstrates that the horizontal correlation coeffi-

ient of image generated from proposed permutation method is less than

he horizontal correlation coefficient of image generated from proposed

ethod in Refs. [ 44 , 45 , 46 ] and close to that in Ref. [43] , the verti-

al correlation coefficient of image generated from proposed permuta-

ion method is less than that in Refs. [ 44 , 46 ] and close to that in Refs.

 43 , 45 ], and the diagonal correlation coefficient of image generated

rom proposed permutation method is less than that in Refs. [ 43 , 45 , 46 ]

nd close to that in Refs. [44] . These results demonstrate that our per-

utation algorithm has better ability to disrupt the correlation between

djacent pixels of an image. Table 15 demonstrates that the horizon-

al, vertical, and diagonal correlation coefficients of an image generated

rom the proposed permutation method are all greater than the horizon-

al, vertical, and diagonal correlation coefficients of images generated

rom the proposed method. These results demonstrate that the diffu-

ion would reduce the correlation coefficient. According to the above

nalysis, the proposed permutation algorithm can still achieve the per-

utation effect of other encryption methods. In this paper, the Knuth–

urstenfeld algorithm is used for image permutation. Thus, the Knuth–

urstenfeld algorithm has good randomness. Additionally, regarding en-

ropy, our result is greater than that reported in Refs. [ 43 , 44 , 45 , 46 ].3 

. Conclusion 

This paper proposed a new image encryption scheme based on a

idden attractor chaos system, Knuth–Durstenfeld algorithm and DNA

equence operation. To overcome the common weaknesses of image en-

ryption using self-excited attractor chaotic systems, the hidden attrac-

or chaotic system is used to generate the chaotic sequences needed for

mage encryption. The NIST test of the chaotic sequence generated by

he hidden attractor chaotic system proves that the hidden attractor

haotic system is suitable for image encryption. Because the Knuth–
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Fig. 9. (a) Plain image, (b) image obtained after the permutation process, (c) horizontal direction, (d) vertical direction, and (e) diagonal direction. 
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urstenfeld algorithm has good randomness, this paper uses Knuth–

urstenfeld algorithms to better disrupt the correlation between adja-

ent pixels of the image. A DNA approach is used for diffusion oper-

tions. Experimental simulations and comparisons have also verified

he security of the proposed scheme from four aspects: the exhaus-

ive attack, the statistical attack, the differential attack and the known-

laintext and chosen-plaintext attacks. The scheme has a large key space

nd is extremely sensitive to its keys. Thus, it can resist exhaustive at-

ack. The histogram of the scheme is uniform. The correlation coefficient

s close to 0, and the entropy value is close to 8. Thus, the scheme can

esist statistical attack. Both UACI and NPCR values approach their ideal

alues, which illustrates that the proposed scheme can resist differen-

ial attacks. The all-white and all-black image experiment also illustrates

hat the proposed scheme can resist the known-plaintext and chosen-

laintext attacks. All of the above findings demonstrate that the pro-

osed scheme is efficient and practical in communications, but there are

paces to be explored and improved. For example, the proposed scheme

s designed mainly for grey image, and colour image and multimedia

ata must first be converted to the same pattern of grey images and

hen encrypted with the scheme. In the future, we intend to convert the

ncryption scheme into the multimedia field. 
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