
Computer Communications 70 (2015) 86–94

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

A compression approach to reducing power consumption of

TCAMs in regular expression matching

Jinmin Yang a,∗, Jie Yang a, Kun Huang b, Huigui Rong a, Kin Fun Li c

a College of Computer Science and Electronic Engineering, Hunan University, China
b Institute of Computing Technology Chinese Academy of Sciences, China
c Department of Electrical and Computer Engineering, University of Victoria, Canada

a r t i c l e i n f o

Article history:

Received 13 January 2015

Revised 11 June 2015

Accepted 2 August 2015

Available online 8 August 2015

Keywords:

Regular expression matching

Ternary content addressable memory

Power consumption

Compressibility identification

Source state differentiation

a b s t r a c t

Ternary content addressable memory (TCAM) is a popular device for fast regular expression (Regex) match-

ing in networking and security applications. The rapid growth of Regexes necessitates large TCAM memory

consumption, which in turn impacts power consumption. Compressing the transition table can cut down

TCAM memory consumption, thereby reducing its power consumption. This work identifies the compress-

ibility of transition entries and then proposes a compression scheme. In our scheme, the compression ratio is

improved by skillfully assigning identifiers to states in a deterministic finite automaton (DFA). Furthermore,

our scheme utilizes the wildcard function and the priority matching mechanism provided in TCAM to exploit

the minimum differentiation among a set of source states. A complete implementation of the identifier as-

signment and transition table compression is presented. Experimental results on real-world Regex sets show

that our scheme is significantly more effective, reducing power consumption by 87.4% and memory space by

93.2%, and improving throughput up to 114.7% on average compared to prior work.

© 2015 Elsevier B.V. All rights reserved.

e

f

e

p

m

a

o

i

a

T

a

A

g

h

h

t

b

c

a

m

1. Introduction

Deep packet inspection (DPI) [1, 2] is a core component of net-

working and security devices such as network intrusion detec-

tion/prevention systems (NIDS/NIPS) [3,4], firewalls, and routers, etc.

Its function is to detect malicious intrusions and identify specific ap-

plications. This is achieved by examining both the header and the

payload of network data packets against a set of predefined string sig-

natures. This process is called ‘string matching’. However, it is difficult

to use such a string matching approach to represent and match com-

plex string signatures. Therefore, regular expression (Regex) match-

ing [5–6] is adopted to displace string matching in many DPI systems

such as bro [7], snort [8], and Cisco [9], as Regex is more flexible

and expressive in describing complex string signatures. In practice,

a given Regex can be precisely realized by equivalent deterministic fi-

nite automaton (DFA). DFA is a finite state machine in which a source

state accepts an input character and then migrates to a unique desti-

nation state. In DPI, DFA built from Regex is typically implemented in

hardware such as ternary content addressable memory (TCAM) [10].

TCAM is a type of memory that parallel search can be performed

at a high speed. A TCAM consists of a set of memory entries. Each
∗ Corresponding author. Tel.: +86 13975896967.

E-mail address: rj_jmyang@hnu.edu.cn (J. Yang).

I

a

a

e

http://dx.doi.org/10.1016/j.comcom.2015.08.003

0140-3664/© 2015 Elsevier B.V. All rights reserved.
ntry is a vector of cells, where every cell can store one bit. There-

ore, a TCAM memory entry can be used to store a string. TCAM is

xpensive and its content space is limited, so TCAM is typically im-

lemented with a low-cost memory device, like static random access

emory (SRAM) [11]. As to a search, TCAM works as follows: given

n input string, it compares this string against all entries in its mem-

ry in parallel, and returns the matching data in SRAM. When TCAM

s used to perform DFA, every state transition in a DFA is encoded

s one TCAM memory entry. Every entry consists of two parts: the

CAM part storing one source state of a DFA and one input character,

nd the associative SRAM storing the corresponding destination state.

ll TCAM memory entries built from transitions in a DFA constitute a

lobal transition table.

TCAMs are off-the-shelf chips capable fast parallel lookups, and

ave been widely deployed in modern network devices. Though, the

igh power consumption of TCAM has become a critical issue with

he proliferation of data centers which have thousands of TCAM-

ased network devices. Nowadays, more and more companies are

oncerned with power consumption in their devices. For example,

Cisco system provides an additional 600 Watt redundant power

odule to support its four 150 Watt external network devices [12].

n these devices, a typical 18 Mb TCAM, such as Cypress’s NSE10K

nd Netlogic’s NL3280, can consume up to 15 Watts of power when

ll TCAM entries are activated for a search [13]. The 15 Watts of

ach TCAM is significant power consumption in data centers with

http://dx.doi.org/10.1016/j.comcom.2015.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.08.003&domain=pdf
mailto:rj_jmyang@hnu.edu.cn
http://dx.doi.org/10.1016/j.comcom.2015.08.003

J. Yang et al. / Computer Communications 70 (2015) 86–94 87

t

c

d

h

n

R

T

i

t

n

n

T

t

fi

T

v

a

w

T

i

T

s

a

t

a

s

c

r

t

(

m

c

a

c

m

w

p

n

w

a

c

→
d

o

b

P

r

a

o

r

P

p

i

2

fi

t

h

fi

d

s

c

s

s

a

t

b

a

t

[

s

r

t

A

p

F

m

t

i

a

a

s

m

f

c

h

r

h

A

m

T

t

a

c

s

w

i

[

t

s

c

w

p

o

i

i

s

T

r

t

b

i

i

t

t

b

i

t

m

housands of TCAM-based network devices. This is especially criti-

al in power-constrained situations where most high performance

evices, such as routers and switches, can easily consume tens and

undreds of Watts if these searches are not optimized.

The power consumption of TCAM is directly proportional to the

umber of its memory entries. A huge DFA with a large number of

egex signatures means the need of many memory entries in the

CAM. Consequently, the high power consumption of TCAM occurs

n lockstep with the rapid growth of the size of Regex signatures. Fur-

hermore, DFA suffers from the state explosion problem, where the

umber of DFA states grows exponentially with the size of Regex sig-

atures. With the growing size of Regex signatures, how to reduce

CAM power consumption has become a hot spot in large data cen-

ers with thousands of TCAM-based network devices.

When the memory entries of TCAM are chunked into a set of

xed-size blocks, it is feasible to reduce the power consumption of

CAM. The feasibility comes from the heuristics that a search is in-

olved in only a small part of memory entries of the TCAM. When

search is executed, only the involved blocks need to be activated,

hile non-involved blocks can stay in the dormant state. Thus, the

CAM power consumption is decreased. The key issue of the strategy

s how to identify in advance which blocks are involved in a search.

he character-indexed scheme [14] was proposed to address this is-

ue by separating input characters from the global transition table in

TCAM. This scheme constructs an extra front-end character index

able for the blocks involved in a specific search. Nevertheless, such

scheme still leads to high power consumption, because every tran-

ition table has many redundant transitions. If every transition table

ould be compressed, the TCAM power consumption can be further

educed.

This work aims to reduce TCAM power consumption by transi-

ion table compression. We call our approach power-efficient DFA

PEDFA). The main idea is to compress all transition tables so as to

inimize TCAM space usage, thereby achieving lower TCAM power

onsumption. PEDFA exploits two features of TCAM. First, TCAM has

ternary state in each cell. Each cell has three states: 0, 1 and ∗ (wild-

ard). A “∗” state matches both “0” and “1”, hinting the possibility of

emory compression. Second, TCAM returns the first matching entry

hen two or more entries match the input key, which is called TCAM

riority matching. This mechanism can be used to further reduce the

umber of TCAM entries. It implies that those TCAM memory entries

ith the same prefix codes and destination state can be displaced by

single TCAM memory entry consisting of the prefix codes plus wild-

ard state “∗”. Suppose that there are two TCAM memory entries “000

010” and “001 → 010”. They have the same prefix code “00” and

estination state “010”. Consequently, they can be compressed into

ne TCAM memory entry “00∗ → 010”.

The proposed PEDFA is evaluated using the real Regex sets snort,

ro, and cisco. A series of experiments are conducted to compare

EDFA to state-of-the-art character-indexed (CIDFA). The preliminary

esults demonstrate that PEDFA reduces 93.2% memory space as well

s 87.4% power consumption, and improves throughput up to 114.7%,

n average against CIDFA.

The structure of this paper is as follows. In Section 2, we discuss

elated work. Section 3 gives a detailed description of the proposed

EDFA. Section 4 presents our evaluation methodology and the ex-

erimental results on real Regex sets. Finally, conclusion is presented

n Section 5.

. Related work

For TCAM-based implementations of Regex matching, memory ef-

ciency is a key issue. It has a direct influence on matching speed and

hroughput, and especially on power consumption. Many approaches

ave been proposed to improve memory efficiency.
Sharing common data [15] is an effective approach to memory ef-

ciency. For transition entries stored in TCAM, there exists a lot of re-

undancy in terms of input character, source state, and destination

tate. The redundancy can be reduced or eliminated by extracting

ommon parts and then sharing them. One way is to transform the

torage structure from a table into a tree [15]. In this approach, many

chemes were proposed, such as transition sharing, default transition,

nd failure transition in [15], and character indexing in [14]. Transi-

ion sharing merges multiple transitions of DFA into one TCAM entry

y exploiting both character redundancy and state redundancy, while

table consolidation scheme [15] extracts the common part of mul-

iple transition tables to form a shared table.

Memory efficiency can be also achieved by transformation

16–20]. For example, delay input DFA (D2FA) [16] constructs a tree

tructure for every DFA according to its inherent logic relationship,

espectively, and then analyzes local similarity in a tree or among

rees, similar to default transition path [17] and variable striding [16].

fter that, every similar part is extracted and transformed into a sim-

le transition with a bit of additional information and/or treatment.

or example, CD2FA [18] uses a prefix and a hash function to deter-

ine the specific outlet of a default path in matching. The DFA defla-

ion scheme [19] implements one simple TCAM lookup to match an

nput character by exploiting the structural connection between DFA

nd non-deterministic finite automaton (NFA). NFA is space-efficient,

s the memory needed by NFA grows linearly with the size of Regex

ignatures. However, NFA is time-inefficient, as it maintains possibly

ultiple active states at the same time. CFA [20] focuses on the trans-

ormation of the complex terms of Regex patterns like the wildcard

losure “.∗” and the associated character “{}”. Those complex terms

ave an important influence on DFA state size, so CFA can effectively

educe TCAM space consumption. However, CFA requires devices to

ave certain logic handling capability.

Compression [21,22] is another approach to memory efficiency.

lthough multiple transition entries have different values in one or

ore attributes, they can be compressed into one entry by exploiting

CAM characteristics. The wildcard provided by TCAM contributes to

his target. In TCAM, a value with one or more wildcards can cover

nd express multiple values. In this compression approach, higher

ompression ratio is usually the primary research effort. The global

cheme in [21] directly compresses the rows of the transition table,

hile the local scheme in [22] conducts compression after transform-

ng the two-dimensional table into a hierarchical tree. Compact DFA

22] achieves a higher compression ratio by adding a bit of informa-

ion about state properties in the state code.

Although memory efficiency contributes to lower power con-

umption of TCAM, special emphasis should be put on power effi-

iency. This is critical for large-scale deployment of devices in net-

ork environment such as data center networks. String matching

robability was exploited to reduce power consumption [22]. Based

n the characteristic that the mismatch has a very high probabil-

ty, prefixes are extracted from strings to form two-level matching

n separate modules. Thus the scale of parallel matching becomes

maller, leading to lower power consumption. Another low-power

CAM solution was called character-indexed DFA (CIDFA) [14]. CIDFA

educes the power consumption by indexing characters and struc-

uring TCAM units. In CIDFA, TCAM memory consists of two kinds of

locks: character-index blocks and transition blocks. In the character-

ndex blocks, all input characters are associated with the correspond-

ng transition block IDs. In transition blocks, all transitions are clus-

ered based on the input characters. In a Regex matching, the first

hing is to scan character-index blocks to determine which transition

locks need to be activated.

CIDFA can avoid activating irrelevant transition blocks, result-

ng in lower power consumption. However, its memory consump-

ion is still high because it does not compress its TCAM space. High

emory consumption implies high power consumption in TCAMs.

88 J. Yang et al. / Computer Communications 70 (2015) 86–94

01
01

10
10

Dst state

00
10

10
10

00
00

11
11

00
00

10
10

000-001
010-011
100-101
110-111

Block ID

TCAM SRAM

01100001
01100010
01100011...

input

activate

stream

index

Transition block IDs

Destination state

(a) DFA (b) TCAM table

2

3

1

0 [^a]

[^ab]

b

[^c]

a

c

c

a

[^c]

01

00

01

10

00

11

10

11

10

dst

SRAM

00

00

01

01

01

10

10

11

11

src

01100001

...

01100001

01100010
...

01100011

...

01100011

...

input

TCAM

src inputstream

(c) TCAM table with indexing

Input character

current state

00
01

10
11

Src state

00
01

10
11

00
01

10
11

00
01

10
11

...

00000000 110-111
110-111

110-11111111111

Character-index table

block

#000

block

#001

transition table

block

#010

block

#011

block

#100

block

#101

block

#110

block

#111

#a

#b

#c

#[^abc]

Fig. 1. DFA and TCAM table of {.∗a.∗ bc}.

t

p

s

s

a

t

t

b

c

b

s

3

m

Therefore, this paper proposes TCAM space compression over CIDFA

to further reduce TCAM power consumption. In many existing com-

pression schemes [15–22], the typical strategy is to extract common

units and then share them by structure adjustment, or to conduct

an equivalent transformation to logic units to reduce redundancy. In

contrast, our scheme exploits the minimum differentiation among a

set of source states, and then utilizes the wild card function and the

priority matching mechanism provided in TCAM to implement com-

pression. Moreover, our scheme improves the compression ratio by

adequately assigning identifiers to the states of a DFA.

3. The scheme for power-efficient DFA (PEDFA)

compression in TCAM

Section 3.1 addresses basic TCAM architecture for Regex matching

and shows how to implement a DFA constructed from Regexes into

a TCAM. The implementation consists of two steps: constructing an

equivalent DFA from the given Regexes, and then encoding DFA into

a TCAM. After that, we examine the encoded DFA in TCAM for some

compressibility characteristics. In Section 3.2, we use two represen-

tative Regexes “{.∗a.∗bc}” and “{.∗c.∗de}” to illustrate the basic idea of

our PEDFA approach and its implementation details. Section 3.3 gives

the proof of the validity of PEDFA.

3.1. DFA-based TCAM architecture

A Regex matching can be represented by a DFA that can be used

to validate an input string is a part to be retrieved. The automaton of

DFA reads an input string provided in advance from left to right, one

character at a time. The automaton begins at a start state and then

proceeds by accepting the first character and following the state tran-

sition corresponding to the character. The computation continues to

read the next characters and follows the state transitions until there

are no more inputs. If the automaton reaches some accepting state,

the matching succeeds.

Given a Regex set, an equivalent DFA needs to be constructed first,

and then it is stored into a TCAM device. We take the Regex {.∗a.∗ bc}

as an example to demonstrate the construction details. Fig. 1(a) illus-

trates its corresponding DFA. In Fig. 1(a), a single circle represents an

ordinary state, and the number inside is its identifier. A solid arrow

represents a transition. For example, state 0 accepts input character

‘a’ and then moves to state 1. Theoretically, every state can accept any

character and then migrate to a new state. The symbol “[^a]” of state

0 represents input characters other than ‘a’. In this example, state 0 is

the start state. A double circle represents an accepting state that indi-

cates a successful Regex matching, such as state 3. Fig. 1(b) shows the

corresponding TCAM. Every transition is stored into one TCAM mem-

ory entry. To concisely illustrate its structure, some transition entries

are omitted in Fig. 1(b). Every entry consists of two parts: source state

code and input character. For example, for the first entry in Fig. 1(b),

its source state is “00”, its input character is “01100001”, and its des-

tination state is stored into the associated SRAM entry. In a search,

suppose the current state is “10” and the current input character is

“01100011”. The TCAM entry “10–01100011” matches the search and

the destination state “11” is returned. Then the state “11” becomes

the current state and it continues to read the next input character.

In CIDFA, the transition entries of every specific input character

are organized together and stored into TCAM blocks as adjacent as

possible. Thus CIDFA knows in advance which TCAM blocks need to

be activated when it reads in a specific input character. That is, every

possible input character has its own transition table in which tran-

sitions are stored into TCAM blocks according to the order of their

source state identifiers. Additionally, there is a character-index table

in which every row records a possible input character and its cor-

responding segment of TCAM blocks. The architecture of CIDFA is

shown in Fig. 1(c). In a search, CIDFA first queries the character-index
able to get those TCAM block IDs corresponding to the current in-

ut character. It then activates those TCAM blocks and searches the

tored entries for the destination state corresponding to the current

tate. After that, the current state is shifted to the hit destination state

nd CIDFA continues to process the next input character.

CIDFA achieves power consumption efficiency by identifying

hose TCAM blocks that need to be activated. Nevertheless, as the

ransition table of every character contains a lot of entries, the num-

er of activated TCAM blocks is still large. If those entries can be

ompressed effectively, the number of activated TCAM blocks will

e reduced. In the next subsection, we present such a compression

cheme.

.2. Transition table compression

Transition table is the main component for high power and

emory consumption, especially when the DFA size is very large.

J. Yang et al. / Computer Communications 70 (2015) 86–94 89

T

p

k

s

i

t

s

s

a

p

o

S

s

p

o

c

c

t

t

3

t

s

t

0

c

i

i

c

o

“

0

o

e

fi

s

t

v

p

p

t

t

a

s

n

t

F

c

o

g

a

F

s

c

c

s

r

w

i

c

Algorithm 1

Transition table compression.

Pre-processing

1: for each row in transition table do

2: statisticsTable.push_back(the number of states in rows);

3: end for

4: sort(each entry in descending order of statisticsTable);

5: for each entry in transition table do

6: for each item in entry do

7: updating the state_ID of item according statisticsTable;

8: end for

9: updating the position of entry according statisticsTable;

10: end for

11: bit_width = log2(DFA size);

12: for each state in DFA do

13: state.code = conver_binary_code(state_ID.bit_width);

14: end for

Recoverable compression

15: function recoverable_compression(column, index, end)

16: if(destination states in column from index to end are same) do

17: m = �log2(end-index)�;

18: src_code = prefix_code+ m times ‘∗ ’;

19: result.push_back(entry<src_code, dst_code>);

20: else

21: new_end = (index+end)/2;

22: recoverable_compression(column, index, new_end);

23: recoverable_compression(column, new_end, end);

24: end if

25: end function

Feasible compression

26: cur_iterator = end_iterator = result.begin();

27: prefix_code = end_iterator->src_code.prefix_code;

28: while(end_iterator != result.end()) do

29: dst_state = end_iterator->dst_state;

30: while(dst_state == end_iterator->dst_state) do

31: updating prefix_code and end_iterator;

32: end while

33: while(end_iterator->src_code.prefix_code == prefix_ code) do

34: ++end_iterator;

35: end while

36: for(each iterator between cur_iterator and end_iterator) do

37: map_iterator = count_map.find(iterator->dst_state);

38: if(map_iterator != count_map.end()) do

39: ++map_iterator->second;

40: else

41: count_map.insert(make_pair(iterator->state,1));

42: end if

43: end for

44: remove_state = count_map.find(max_count)->first;

45: for(each iterator between cur_iterator and end_iterator) do

46: if(iterator->dst_state == remove_state) do

47: result.remove(iterator);

48: end if

49: end for

50: initialize every bit of com_transition with ‘∗ ’;

51: strncpy(com_transition, prefix_code, strlen(prefix_ code));

52: entry = make_pair(com_transition, remove_state);

53: insert entry into result after those uncompressed transitions;

54: updating cur_iterator and end_iterator;

55: end while

o

r

F

m

o

a

b

s

t

F

t

i

o

herefore, the more a transition table is compressed, the more the

ower and memory consumption is reduced.

Our scheme conducts two levels of compression. The first level is a

ind of recoverable compression, and the second level is a sort of fea-

ible compression by exploiting TCAM priority matching. The basic

dea of recoverable compression comes from the following heuris-

ics. In a transition table, if two rows have the same destination

tate value, and their source state codes are identical except in only

ome bit positions, they can be compressed into one row. For ex-

mple, the two rows, “000 → 000” and “001 → 000”, can be com-

ressed into one row, “00∗ → 000”. In order to ensure the validity

f this compression scheme, we present a compressible condition in

ection 3.2.2. According to the compressible condition, reasonable as-

ignment of identifiers to states in a DFA is crucial for a desirable com-

ression result. Therefore, our transition table compression consists

f three steps: pre-processing, recoverable compressing, and feasible

ompressing. Pre-processing tries to make as many rows meeting the

ompressible condition as possible, by reasonably assigning the iden-

ifiers to states in a DFA. Algorithm 1 shows the pseudo code of the

ransition table compression.

.2.1. Pre-processing

The motivation of pre-processing comes from the heuristics that

he assignment of identifiers to states in a DFA affects the compres-

ion ratio of recoverable compression. For example, suppose that

here are five transitions in a transition table: “000 → 000”, “001 →
00”, “010 → 001”, “011 → 000”, and “100 → 000”. According to the

ompressible condition, only the first two rows can be compressed

nto one row, reducing the transition table to four rows. If we reassign

dentifiers of states, we can obtain better compression ratio. Specifi-

ally, let the state “010” swaps its identifier with the state “100”, and

ther states remain the same. So, the new transition table becomes

000 → 000”, “001 → 000”, “010 → 000”, “011 → 000”, and “100 →
01”. Consequently, the first four rows can now be compressed into

ne row, resulting in a better compression ratio. This situation widely

xists in all transition tables.

The idea of pre-processing is to grant the priority of the identi-

er assignment to those states that can bring a maximum compres-

ion ratio. Let’s treat a DFA as a set of directed graphs. If some ver-

ex has a maximum in-degree, then the assigned identifiers of those

ertexes with an edge pointing to this vertex should meet the com-

ressible condition. With this identifier assignment strategy, our pre-

rocessing scheme consists of four steps: counting, reordering, iden-

ifier reassigning, and state encoding (see Algorithm 1, from 1st line

o 14th line). We take two Regexes “{.∗a.∗bc}” and “{.∗c.∗de}” as an ex-

mple to illustrate the details of pre-processing. We firstly assign a

equential number to every state in DFA in turn. Fig. 2(a) is the origi-

al global transition table built from DFA. Its horizontal axis indicates

he input characters and its ordinate axis indicates the source states.

or example, state “0” migrates to state “1” when it reads in an input

haracter ‘a’. The label ‘^’ indicates input characters other than the

nes listed in Fig 2(a).

The counting step collects statistics to destination states in the

lobal transition table in the horizontal direction. Then the counts

re sorted in descending order. The ordered results are shown in

ig. 2(a), where the number to the left of the brackets is referred to

ome destination state, while the number in brackets is its statistical

ount.

The reordering step moves the positions of rows according to the

ounting results in the above step. First all rows are ordered in de-

cending pattern by the first column as in Fig. 2(a). After that, the

ear rows are moved recursively forward to the position after the row

ith the same destination state. This processing transforms the table

n Fig. 2(a) to the one shown in Fig. 2(b).

After reordering, the adjacency relationship of states becomes

lear. We assign sequential identifiers to those states close to
ne another according to the compressible condition. One of the

eassignment results is shown in Fig. 2(c). The first column of

ig. 2(c) shows the change of state identifiers. For instance, the ele-

ent “3 → 2” in the third row indicates the state with three as its

riginal identifier has two as its new identifier. After every state is re-

ssigned with a new identifier, the global transition table is updated

ased on the new identifiers. Note that the identifier reassignment

tep simply changes the identifiers of DFA states, without destroying

he original DFA logic.

The state encoding step encodes DFA states with a binary code.

irst, we calculate the width of the binary code, bit_width, according

o the maximal value of state identifier. In this example, bit_width

s equal to�log211�= 4. The encoding is quite simple: the identifier

f every state is converted into the corresponding binary code. For

90 J. Yang et al. / Computer Communications 70 (2015) 86–94

0(4)
1(4)
2(4)
1(4)
4(4)
2(3)
4(4)
4(3)
4(3)
2(4)
4(4)

2(1)
4(1)
5(1)
6(1)
8(1)
9(1)
8(1)
8(1)
10(1)
5(1)
8(1)

1(1)
3(1)
4(1)
3(1)
7(1)
5(1)
7(1)
7(1)
8(1)
4(1)
7(1)

Statistics:state count

4(1)

6(1)
7(1)

state

0->0
1->1
3->2
2->3
9->4
5->5
4->6
6->7

10->8
7->9

8->10

^

0
1
1
3
3
3
6
6
6
6
6

a

1
1
1
6
6
6
6
6
6
6
6

b

0
2
2
3
3
3
9
9
9
9
9

c

3
6
7
3
3
3
6
6
6
7
6

d

0
1
1
5
5
5

10
10
10
10
10

e

0
1
1
3
3
4
6
6
6
6
8

(a) original transition table (1) original statistics

(d) identifier re-assigning

state

0
1
2
3
4
5
6
7
8
9

10

^

0
1
2
1
4
2
4
4
4
2
4

a

1
1
4
1
4
4
4
4
4
4
4

b

0
3
2
3
7
2
7
7
7
2
7

c

2
4
2
6
4
2
4
6
4
2
4

d

0
1
5
1
8
5
8
8
8
5
8

e

0
1
2
1
4
9
4
4

10
2
4

0(4)
1(4)
1(4)
2(4)
4(4)
2(3)
4(4)
4(3)
4(3)
2(4)
4(4)

2(1)
4(1)
6(1)
5(1)
8(1)
9(1)
8(1)
8(1)
10(1)
5(1)
8(1)

1(1)
3(1)
3(1)
4(1)
7(1)
5(1)
7(1)
7(1)
8(1)
4(1)
7(1)

Statistics:state count

4(1)

6(1)
7(1)

(b) transition table
(2)statistics

state

0
1
3
2
4
5
6
7
8
9

10

^

0
1
1
2
4
2
4
4
4
2
4

a

1
1
1
4
4
4
4
4
4
4
4

b

0
3
3
2
7
2
7
7
7
2
7

c

2
4
6
2
4
2
4
6
4
2
4

d

0
1
1
5
8
5
8
8
8
5
8

e

0
1
1
2
4
9
4
4

10
2
4

0(4)
1(4)
1(4)
2(4)
2(4)
2(3)
4(4)
4(4)
4(4)
4(3)
4(3)

2(1)
4(1)
6(1)
5(1)
5(1)
9(1)
8(1)
8(1)
8(1)
8(1)

10(1)

1(1)
3(1)
3(1)
4(1)
4(1)
5(1)
7(1)
7(1)
7(1)
7(1)
8(1)

Statistics:state count

6(1)
7(1)

(c) transition table (3) statistics

state

0
1
3
2
9
5
4
6

10
7
8

^

0
1
1
2
2
2
4
4
4
4
4

a

1
1
1
4
4
4
4
4
4
4
4

b

0
3
3
2
2
2
7
7
7
7
7

c

2
4
6
2
2
2
4
4
4
6
4

d

0
1
1
5
5
5
8
8
8
8
8

e

0
1
1
2
2
9
4
4
4
4
10

4(1)

state

0->0000
1->0001
2->0010
3->0011
4->0100
5->0101
6->0110
7->0111
8->1000
9->1001
10->1010

^

0000
0001
0001
0011
0011
0011
0110
0110
0110
0110
0110

a

0001
0001
0001
0110
0110
0110
0110
0110
0110
0110
0110

b

0000
0010
0010
0011
0011
0011
1001
1001
1001
1001
1001

c

0011
0110
0111
0011
0011
0011
0110
0110
0110
0111
0110

d

0000
0001
0001
0101
0101
0101
1010
1010
1010
1010
1010

e

0000
0001
0001
0011
0011
0100
0110
0110
0110
0110
1000

(e) state encoding

Fig. 2. Pre-processing of {.∗a.∗bc} and {.∗c.∗de}.

Recoverable

Compression

Original

transition table

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

0001

0001

1000

0001

0001

0001

0100

0001

0110

0110

0110

->

->

->

->

->

->

->

->

->

->

->

000*

0010

0011

010*

0110

0111

0001

1000

0001

0001

0100

0001

->

->

->

->

->

->

100*

1010

0110

0110

->

->

table 1

Fig. 3. Recoverable compression.

1010

0000

0001

src

0010

0011

010*

011*

100*

1010

c

src

0000

0001

0010

0011

010*

011*

1000

1001

^

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

0110

0000

0001

dst

0001

0011

0011

0110

0110

0110

dst

0011

0110

0111

0011

0011

0110

0110

0111

000*

0010

src

0011

01**

100*

1010

d

src

0000

0001

0010

0011

010*

011*

100*

1010

a

->

->

->

->

->

->

->

->

->

->

->

->

->

->

0001

0001

dst

0110

0110

0110

0110

dst

0000

0001

0001

0101

0101

1010

1010

1010

1010

0000

0001

src

0010

0011

010*

011*

100*

1010

e

src

0000

0001

0010

0011

0100

0101

011*

100*

b

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

1000

0000

0010

dst

0010

0011

0011

1001

1001

1001

dst

0000

0001

0001

0011

0011

0100

0110

0110

Fig. 4. Recoverable compression of {.∗a.∗bc} and {.∗c.∗de}.

a

b

r

w

n

o

a

c

r

t

n

l

c

c

r

(

t

3

a

c

p

example, the binary codes of state 0 and 1 are “0000” and “0001”,

respectively. Fig. 2(e) shows the encoding results.

3.2.2. Recoverable compression

The motivation of recoverable compression is to exploit the wild-

card “∗” matching state of TCAM to recursively merge two rows into

one in the transition table of an input character, thus reducing the

number of rows. At the same time, the original semantics is pre-

served completely. That is to say, after being compressed, the orig-

inal rows can be recovered completely, without any excess or loss.

Furthermore, the correctness of matching is not impacted.

In our scheme, for any two rows in the transition table of an input

character, the compressible condition is defined as follows:

(a) They have the same destination state.

(b) Their source state codes are the same except only one bit in

some position, the unlike bit is ‘1’ in a row, and ‘0’ in the other.

(c) The unlike bit is the last bit or all bits to its right are ‘∗’.

For any two rows meeting the compressible condition, they can

be compressed into a row with the same destination state, and the

unlike bit in the source state code is set to ‘∗’.
From this definition of compressible condition, we can infer that,

s to the source state of a row in the compressed result, if the num-

er of ‘∗’ it contains is m, the row comes from the compression of 2m

ows. Furthermore, since the identifiers of the 2m rows are sequential,

e call this adjacent transition compression. Additionally, we should

ote that the third constraint is necessary for correct matching. With-

ut this constraint, correct matching could be impacted. For example,

ssuming there are two rows “0∗10 → 000” and “011∗ → 001” in a

ompressed transition table. When the current state is “0110”, both

ows match to it. Therefore, the correct matching is impaired. In fact,

he two rows are interleaving. We will discuss this in detail in the

ext subsection.

The implementation of the recoverable compression is shown in

ines 15 to 26 of Algorithm 1. Fig. 3 illustrates the course of re-

overable compression on a transition table, and Fig. 4 shows the

ompressing results from Fig. 2(e). 66 rows are compressed into 48

ows. So the compression ratio of the recoverable compression is

66 – 48)/66 = 27.3% in this case.

From the definition of the compressible condition, it is clear that

his kind of compression is directly recoverable.

.2.3. Feasible compression

The above compressible condition is very strict. Although it can

chieve recoverable compression and correct matching, it has a low

ompression ratio. In this subsection, we investigate a feasible com-

ression by relaxing the compressible condition.

J. Yang et al. / Computer Communications 70 (2015) 86–94 91

r

r

t

i

e

i

t

s

t

t

i

r

c

p

“

o

“

c

a

a

a

i

d

l

f

f

p

r

b

o

v

T

c

m

c

r

o

2

c

e

Table 1

Parametric statistics of Regex sets.

Regex set Regex size State size

snort24 24 8335

snort31 31 4864

snort34 34 9754

bro79 79 4156

bro217 217 6533

cisco110 110 11696

c

f

3

p

t

o

I

e

t

a

p

e

4

D

o

m

T

r

p

m

f

i

o

o

p

4

l

T

t

u

6

T

p

T

t

t

E

c

i

l

d

b

The relaxed compressible condition is defined as follows: for two

ows in the transition table of an input character, if

(a) They have the same destination state.

(b) The bit values of their source state codes are unlike in at least

one bit position.

The two rows can be compressed into one row. In the resulting

ow, unlike bits in the source state code are set to ‘∗’. For example,

wo rows “0110∗ → 00001” and “00101 → 00001” can be compressed

nto the row “0∗10∗ → 00001”. This kind of relaxed compression in-

vitably leads to higher compression ratio, but with three problems,

.e., the special case problem, the interleaving problem and the iden-

ity problem. For instance, in the above compression example, the re-

ult row covers four source state instances. However, it comes from

he compression of three rows only, since “0110∗ → 00001” implies

wo rows. If there is a row “00100 → 00011” in the transition table,

ts source state “00100” is a special case of “0∗10∗”. When the cur-

ent state is “01000”, there exist two rows matching it. Consequently,

orrect matching is impaired.

We use the following example to demonstrate the interleaving

roblem. Suppose that there are still two rows “10100 → 00011” and

00100 → 00011” in the transition table. They can be compressed into

ne row “∗0010∗ → 00011”. When the current state is “00101”, both
∗010∗ → 00011” and “0∗10∗ → 00001” match it. As a result, an in-

orrect matching could occur. The reason is that “∗010∗ and “0∗10∗”

re interleaved, as the ‘∗’ is in the first bit position in “∗010∗”, while it

ppears in the second bit position in “0∗10∗”. Note that the second ‘∗’

ppears in the same bit position for two source state codes. Therefore,

t does not impact correct matching.

To address the above three problems, we formulate the following

efinition. For two source state codes A and B, if they meet the fol-

owing three conditions:

(a) They all contain at least one ‘∗’.

(b) There is at least one bit position which value is ‘∗’ in A, but not

in B.

(c) There is still at least another bit position which value is ‘∗’ in B,

but not in A.

We say that A and B are interleaved. Furthermore, if they meet the

ollowing two conditions:

(a) The number of ‘∗’ in A is lower than that in B;

(b) For every ‘∗’ in A, the corresponding bit position in B is also ‘∗’.

We say that A is a special case of B. In addition, if they meet the

ollowing two conditions:

(a) There is ‘∗’ in both A and B.

(b) A = B.

We say A is equal to B.

The special case problem can be resolved by exploiting the TCAM

riority matching mechanism mentioned in Section 1. When two

ows are compressed into one, other rows in the same transition ta-

le could become its special cases. The priority matching mechanism

f TCAM implies that correct matching would not be impacted, pro-

ided that the compressed row is moved behind its special case rows.

he reason is that TCAM will grant priority in matching to the special

ase rows located physically ahead of the compressed row.

In our scheme, the following principle is used to guarantee correct

atching as well as high compression ratio. After two operations of

ompression, A and B, are conducted, if the source state code in the

esult row of A is equal to or interleave with that of B, compression

peration with lower compression ratio should be canceled.

The implementation of the feasible compression is shown in lines

6 to 55 of Algorithm 1. Fig. 5 demonstrates the course of feasible

ompression in the transition table after recoverable compression is

xecuted in Fig. 4, while Fig. 6 shows the results where 48 rows are
ompressed into 31 rows. In this case, the compression ratio of the

easible compression is (48 – 31)/48 = 35.4%.

.3. Proofing the validity of PEDFA

Our compression scheme consists of three components: pre-

rocessing, recoverable compression and feasible compression. If all

hree components are valid, the whole compression scheme is valid.

The purpose of pre-processing is to perform adequate assignment

f identifiers to states in a DFA to facilitate recoverable compression.

t does not change the DFA’s structure and logic. Therefore, it is irrel-

vant to the correctness of compression.

In recoverable compression, the compressible condition inhibits

he appearance of the special case problem, the interleaving problem

nd the identity problem. So it is valid.

In feasible compression, although there exists the special case

roblem, the interleaving problem and the identity problem, it ad-

quately identifies and deals with them. So it is also valid.

Consequently, the false matching problem does not exist in PEDFA.

. Experimental evaluation

The experimental evaluation in this work consists of three parts:

FA generation, PEDFA implementation, and TCAM simulation. Based

n regular expression processing software [23], we have imple-

ented PEDFA and the code has been uploaded to github (see [24]).

he TCAM simulator [25] is used to obtain the results of our algo-

ithm. Three performance indicators, power, memory, and through-

ut consumption, are examined. The Regex sets used in the experi-

ent come from snort, bro, and cisco libraries [7–9]. These Regex sets

ollow the standard regular expression specification. Table 1 shows

nformation of the sets. The first column shows their names. The sec-

nd column lists their sizes. The third column is the state size of DFAs

utput by the Regex processing software. These results are also com-

ared to that of CIDFA.

.1. Experimental methodology

The TCAM power consumption is an output of the TCAM simu-

ator, and it is related to the TCAM memory consumption. So the

CAM power consumption depends on two important parameters:

he block size and the number of active blocks in a search. This work

ses eight different block sizes to simulate TCAM performance: 32,

4, 128, 256, 512, 1024, 2048, and 4096. Suppose that there are N

CAM memory entries needed to store the transition table of an in-

ut character and the TCAM block size is B. The needed number of

CAM blocks is X = �N/B�. The TCAM power consumption is referred

o that part needed to activate simultaneously X TCAM blocks, rather

han the product of X and the part needed to activate one block.

very character has its own transition table and the size of every

ompressed transition table may be different. It means that different

nput characters have the different number of active TCAM blocks,

eading to different TCAM power consumption. Suppose that pi in-

icates the TCAM power consumption of character i, and the num-

er of characters is C. Thus the total TCAM power consumption is

92 J. Yang et al. / Computer Communications 70 (2015) 86–94

0010

0110

0***

10**

1000

0100

0001

0110

->

->

->

->

table 2

table 3

table 5

000*

0010

0011

010*

0110

0111

0001

1000

0001

0001

0100

0001

->

->

->

->

->

->

100*

1010

0110

0110

->

->

table 1

0010

00**

010*

0110

0111

1000

0001

0001

0100

0001

->

->

->

->

->

100*

1010

0110

0110

->

->

step(a) step(b)

0010

00**

0110

01**

1000

0001

0100

0001

->

->

->

->

100*

1010

0110

0110

->

->

0010

0110

0***

100*

1000

0100

0001

0110

->

->

->

->

1010 0110->

step(c) step(d)

table 4

Fig. 5. Feasible compression.

0000

0011

src

00**

010*

c
src

0001
0010

011*

0***

1001

10**

^

->

->

->

->

->

->
->

->

->

->

->

0000

0011

dst

0001

0011

0110

dst
0110
0111

0110

0011

0111

0110

0011

00**

src

d
src

0000
0011

00**

010*

a

->

->

->

->
->

->

->

->

0110

0001

dst

0110

dst
0000
0101

0001

0101

1010

0000

0011

src

00**

010*

e
src

0000
0011

00**

0100

0101

1010

b

->

->

->

->

->

->
->

->

->

->

->

->

0000

0011

dst

0010

0011

1001

dst
0000
0011

0001

0011

0100

1000

0110

Fig. 6. Feasible compression of {.∗a.∗bc} and {.∗c.∗de}. 0 500 1000 1500 2000 2500 3000 3500 4000

50

60

70

80

90

100

)
%(

n
oit

p
m

us
n

o
C

re
w

o
P

M
A

C
T

f
o

oita
R

g
nic

u
de

R

TCAM Block size

snort24

snort31

snort34

bro79

bro217

cisco110

Fig. 7. Reducing ratio of TCAM power consumption.

b

w

a

i

a

v

l

3

o

b

t

f

W

b

t

u

4

c

p

i

4

c

m

t

u

Ptotal = ∑C
0 Pi. The average TCAM power consumption is pavg = ptotal/C.

In PEDFA, a TCAM search for an input character involves two steps:

searching in character-index blocks and then searching in transition

blocks. Suppose that pindex is the power consumption of searching in

character-index blocks, the total TCAM power consumption on aver-

age is p = pavg+pindex.

TCAM memory consumption S is the product of the bit size of a

TCAM entry bit_size and the number of TCAM entries N, namely S =
bit_size∗N. Suppose that S1 represents TCAM memory consumption

of the character-index blocks and S2 indicates that of the transition

blocks. The total TCAM memory consumption is S = S1 + S2.

TCAM throughput T is used to evaluate its matching speed. Its

value is equal to the quotient of the bit number bit_num read at a

time and the matching delay D in each search, namely T = bit_num/D.

The total matching delay mainly consists of two parts: the matching

delay Dindex in searching the character index table and the matching

delay Dtrans in searching the transition table. Therefore, the through-

put is T = bit_num/(Dindex + Dtrans). Suppose that Ti is the throughput

of character i. Thus, the average throughput isTavg = ∑C
0 Ti/C.

4.2. Results on power consumption

There are eight different block sizes to simulate TCAM power con-

sumption under CIDFA and PEDFA, respectively. Suppose the TCAM

power consumption under CIDFA and under PEDFA are p1 and p2, re-

spectively. The power reduction ratio is Rpower = (p2- p1)/p1
∗100%.

Fig. 7 shows the trends of power reduction ratio of the six Regex

sets in different TCAM block sizes. The horizontal axis represents the

TCAM block sizes and the vertical axis represents the TCAM power

reduction ratios. Under CIDFA, the power reduction ratios range from

50.0% to 98.4% in different block sizes. The average reduction ratio is

87.4%. From Fig. 7, we observe that the power reduction ratio is min-

imal when block size is 4096 and the ratio is at its maximum when
lock size is 32. It implies that the power reduction ratio decreases

ith the increase of block sizes. Let’s take the Regex set snort24 to

ddress this issue. In CIDFA, the transition table size of the Regex set

s 558445. There are 8335 TCAM entries for every input character on

verage. There are �8335/32� = 261 TCAM blocks needed to be acti-

ated for an input character when the TCAM block size is 32. In the

ast block, only 8335 – 260∗32 = 15 entries are utilized. The remaining

2 – 15 = 17 entries are unused for searching, but they are still a part

f the last TCAM block as TCAM can only be divided into fixed-size

locks. After being compressed by PEDFA, the transition table size of

he Regex set is only 28,937. The number of active blocks is different

or different input character but the average number is eight blocks.

ith the increase of the TCAM block size, TCAM memory of the last

lock for every input character is more wasteful, which in turn leads

o a smaller power reduction ratio.

Fig. 8 shows the comparison of the TCAM power consumption

nder CIDFA and PEDFA when the block sizes are 1024, 2048, and

096, respectively. The power consumption under PEDFA is signifi-

antly lower than under CIDFA. The other two characteristics are the

ower consumption is the same for different Regex sets under PEDFA

n terms of the block size, and decreases with decreased block size.

.3. Results on memory consumption

The TCAM memory consumption comes from two aspects: the

haracter index and the transition tables. CIDFA does not care about

emory consumption, while PEDFA conducts compression to transi-

ion entries in the transition tables.

Table 2 shows the comparisons of TCAM memory consumption

nder CIDFA and PEDFA. From Table 2, we can observe that the

J. Yang et al. / Computer Communications 70 (2015) 86–94 93

snort24 snort31 snort34 bro79 bro217 cisco110

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
C

A
M

 P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

n
j)

(c) Regex Sets (block size 4096)

CIDFA

PEDFA

snort24 snort31 snort34 bro79 bro217 cisco110

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
C

A
M

 P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

n
j)

(b) Regex Sets (block size 2048)

CIDFA

PEDFA

snort24 snort31 snort34 bro79 bro217 cisco110

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
C

A
M

 P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

n
j)

(a) Regex Sets (block size 1024)

CIDFA

PEDFA

Fig. 8. Comparison of TCAM power consumptions.

Table 2

TCAM memory consumption.

Regex set CIDFA/MB PEDFA/MB Ratio

snort24 7.458 0.387 94.8%

snort31 4.645 0.230 95.0%

snort34 9.509 0.434 95.4%

bro79 3.042 0.302 90.1%

bro217 8.992 0.652 92.8%

cisco110 11.558 1.016 91.2%

Table 3

TCAM throughput of Regex 24.

Block size CIDFA/Gbps PEDFA/Gbps Ratio

32 3.384 13.187 289.7%

64 3.384 11.357 235.6%

128 3.384 8.887 162.6%

256 3.384 6.077 79.6%

512 3.384 3.564 5.3%

1024 1.784 1.784 0.0%

2048 0.757 0.757 0.0%

4096 0.274 0.274 0.0%

Table 4

TCAM throughput on average.

Regex set CIDFA/Gbps PEDFA/Gbps Ratio

snort24 2.467 5.736 132.5%

snort31 2.831 5.859 107.0%

snort34 2.467 5.748 133.0%

bro79 2.831 5.818 105.5%

bro217 2.831 5.581 97.1%

cisco110 2.467 5.385 118.2%

a

d

b

t

t

4

s

m

m

c

i

f

i

d

i

t

m

o

P

c

P

e

1

1

5

t

o

b

s

T

o

i

i

i

i

verage reduction ratio on TCAM memory consumption is 93.2% un-

er PEDFA as compared to CIDFA. Under CIDFA, there are a large num-

er of transition entries in the transition tables. PEDFA compresses

hem as much as possible. Therefore, the TCAM memory consump-

ion under PEDFA is significantly lower than under CIDFA.

.4. Results on throughput

Although TCAM performs a query in parallel pattern, its matching

peed is actually related to its active memory size. The larger active

emory size is, the slower TCAM matching speed is. Therefore, TCAM

atching speed can be improved by a decrease in TCAM memory

onsumption. This work uses throughput to evaluate TCAM match-

ng speed.

In the experiment, the character encoding used is ASCII. There-

ore, the formula of throughput is T = 8/(Dindex + Dtrans). Its unit

s Gbps. Table 3 compares the throughput of Regex set snort24 un-

er CIDFA and PEDFA in different block sizes. The last column is the

mprovement ratio of throughput. In Table 3, the improvement ra-

io is minimum when the block size is 4096, while it is at maxi-

um when block size is 32. In other words, the improvement ratio

f throughput decreases with the increase of block size. Although

EDFA conducts compression to transition entries, the matching

omplexity remains invariant. So the throughput can improve under

EDFA.

Table 4 shows the average throughput of six Regex sets used in the

xperiment, respectively. The improvement ratios range from 97.1% to

37.5% in six Regex sets, and the average improvement ratio reaches

14.7% under PEDFA as compared to CIDFA.

. Conclusion

In TCAM-based implementations of regular expression matching,

he structured storage of state transition entries in TCAM enables

nly those necessary blocks to be activated, while those non-involved

locks can stay in the dormant state. Thus, the TCAM power con-

umption is decreased. If every transition table is compressed, the

CAM power consumption can be further reduced. The assignment

f identifiers to states in a DFA affects the compression ratio. Assign-

ng sequential identifiers to those associated states can result in an

mprovement in compression ratio. The wildcard function provided

n TCAM enables two rows in a transition table to be compressed

nto one row recursively. However, the compression could lead to

94 J. Yang et al. / Computer Communications 70 (2015) 86–94

[

[

[

the interleaving problem, the special case problem and the identity

problem. The special case problem can be resolved by exploiting the

priority matching mechanism provided in TCAM. The interleaving

problem and the identity problem can be identified. After two oper-

ations of compression are conducted respectively, if the source state

codes in the two result rows are identical or interleaved, the oper-

ation of compression with lower compression ratio should be can-

celed, leading to maximum compression ratio. This paper presents

a complete implementation of the identifier assignment and tran-

sition table compression. Experimental results on real-world Regex

sets verify that the proposed scheme is significantly more effective,

reducing 87.4% of power consumption, 93.2% of memory space, and

improving throughput up to 114.7% on average compared to prior

work.

Acknowledgments

The authors would like to sincerely thank the editor and the

anonymous reviewers for their careful reviews and helpful improve-

ment suggestions. This work was supported in part by national nat-

ural science foundation of China under grant 61272401, key science

& technology plan of Hunan province under grant 2013GK2003, and

the prospective research project on future networks of Jiangsu future

networks innovation institute under grant by 2013095-1-05.

References

[1] M. Becchi, P. Crowley, A hybrid finite automaton for practical deep packet inspec-
tion, in: Proceedings of International Conference on Emerging Networking EXper-

iments and Technologies, ACM CoNEXT, 2007, doi:10.1145/1364654.1364656.

[2] S. Jayashree, N. Shivashankarappa, Deep packet inspection using ternary con-
tent addressable memory, in: Proceedings of International Conference on Co-

mutational Intelligence for Modeling Control and Automation, IEEE CIMCA, 2014,
pp. 441–447, doi:10.1109/CIMCA.2014.7057841.

[3] Y.-K. Chang, M.-L. Tsai, C.-C. Su, Improved TCAM-based pre-filtering for network
intrusion detection systems, in: Proceedings of International Conference on Ad-

vanced Information Networking and Applications (AINA), 2008, pp. 985–990,

doi:10.1109/AINA.2008.120.
[4] Y. Weinsberg, S. Tzur-David, D. Dolev, et al., High performance string match-

ing algorithm for a network intrusion prevention system (NIPS), in: Pro-
ceedings of Workshop on High Performance Switching and Routing, 2006,

doi:10.1109/HPSR.2006.1709697.
[5] Y.-Y. Gong, Q.-R. Liu, X. Shan, et al., A novel regular expression match-

ing algorithm based on multi-dimentional finite automata, in: Proceedings

of High Performance Switching and Routing, IEEE HPSR, 2014, pp. 90–97,
doi:10.1109/HPSR.2014.6900887.
[6] M. Becchi, P. Crowley, Efficient regular expression evaluation: theory to prac-
tice, in: Proceedings of The 12th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ACM/IEEE ANCS, 2008, pp. 50–59,
doi:10.1145/1477942.1477950.

[7] The bro network security monitor, 2015, http://www.bro.org.
[8] Snort rules, 2015, http://www.snort.org.

[9] Cisco Services for Intrusion Prevention System (IPS), 2015, http://www.cisco.com.
[10] S.K. Maurya, L.T. Clark, A dynamic longest prefix matching content addressable

memory for IP routing, IEEE Trans. Very Large Scale Integr. Syst. 19 (6) (2011)

963–972, doi:10.1109/TVLSI.2010.2042826.
[11] Z. Ullah, M.K. Jaiswal, R.-C.-C. Cheung, Z-TCAM: an SRAM-based architecture

for TCAM, IEEE Trans. Very Large Scale Integr. Syst. 23 (2) (2015) 402–406,
doi:10.1109/TVLSI.2014.2309350.

[12] B. Agrawal, T. Sherwood, Modeling TCAM power for next generation network de-
vices, IEEE Symposium on Performance Analysis of Systems and Software (2006)

120–129, doi:10.1109/ISPASS.2006.1620796.

[13] Y. Ma, S. Banerjee, A smart pre-classifier to reduce power consumption of TCAMs
for multi-dimensional packet classification, ACM SIGCOMM (2012) 335–346,

doi:10.1145/2342356.2342428.
[14] L.-X Ding, K. Huang, D.-F. Zhang, Low-power TCAMs for regular expres-

sion matching, J. Commun. 25 (8) (2014) 162–168, doi:10.3969/j.issn.1000-
436x.2014.08.020.

[15] C.R. Meiners, J. Patel, E. Norige, et al., Fast regular expression match-

ing using small TCAM, IEEE/ACM Trans. Netw. 22 (1) (2014) 94–109,
doi:10.1109/TNET.2013.2256466.

[16] S. Kumar, S. Dharmapurikar, F. Yu, et al., Algorithms to accelerate multiple regular
expressions matching for deep packet inspection, ACM SIGCOMM (2006) 339–

350, doi:10.1145/1159913.1159952.
[17] M. Becchi, P. Crowley, An improved algorithm to accelerate regular expression

evaluation, in: Proceedings of The 12th ACM/IEEE Symposium on Architectures

for Networking and Communications Systems, ACM/IEEE ANCS, 2007, pp. 145–
154, doi:10.1145/1323548.1323573.

[18] S. Kumar, J. Turner, J. Williams, Advanced algorithms for fast and scalable deep
packet inspection, in: Proceedings of The 12th ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems, ACM/IEEE ANCS, 2006,
pp. 81–92, doi:10.1145/1185347.1185359.

[19] K. Peng, S. Tang, M. Chen, et al., Chain-based DFA deflation for fast and scal-

able regular expression matching using TCAM, in: Proceedings of The 12th
ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, ACM/IEEE ANCS, 2011, pp. 24–35, doi:10.1109/ANCS.2011.13.
[20] K. Huang, L.X. Ding, G.G. Xie, et al., Scalable TCAM-based regular expression

matching with compressed finite automata, in: Proceedings of The 12th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems,

ACM/IEEE ANCS, 2013, pp. 83–93.

[21] O. Naoya, W.J. Gross, T. Hanyu, A low-energy variation-tolerant asynchronous
TCAM for network intrusion detection systems, in: Proceedings of The Inter-

national Symposium on Asynchronous Circuits and Systems IEEE ASYNC, 2013,
pp. 8–15, doi:10.1109/ASYNC.2013.16.

22] A. Bremler-Barr, D. Hay, Y. Koral, CompactDFA: scalable pattern match-
ing using longest prefix match solutions, 22, 2014, pp. 415–428,

doi:10.1109/TNET.2013.2253119.
23] Regular expression processor, 2015, http://regex.wustl.edu/index.php/Main_Page.

[24] Lhmily/regex_compress_tcam, 2015, https://github.com/Lhmily/regex_compress_

tcam.git.
25] Memory modeling, 2015, http://www.cs.ucsb.edu/∼arch/mem-model/.

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.1145/1364654.1364656
http://dx.doi.org/10.1109/CIMCA.2014.7057841
http://dx.doi.org/10.1109/AINA.2008.120
http://dx.doi.org/10.1109/HPSR.2006.1709697
http://dx.doi.org/10.1109/HPSR.2014.6900887
http://dx.doi.org/10.1145/1477942.1477950
http://www.bro.org
http://www.snort.org
http://www.cisco.com
http://dx.doi.org/10.1109/TVLSI.2010.2042826
http://dx.doi.org/10.1109/TVLSI.2014.2309350
http://dx.doi.org/10.1109/ISPASS.2006.1620796
http://dx.doi.org/10.1145/2342356.2342428
http://dx.doi.org/10.3969/j.issn.1000-436x.2014.08.020
http://dx.doi.org/10.1109/TNET.2013.2256466
http://dx.doi.org/10.1145/1159913.1159952
http://dx.doi.org/10.1145/1323548.1323573
http://dx.doi.org/10.1145/1185347.1185359
http://dx.doi.org/10.1109/ANCS.2011.13
http://refhub.elsevier.com/S0140-3664(15)00287-X/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00287-X/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00287-X/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00287-X/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00287-X/sbref0017
http://dx.doi.org/10.1109/ASYNC.2013.16
http://dx.doi.org/10.1109/TNET.2013.2253119
http://regex.wustl.edu/index.php/Main_Page
https://github.com/Lhmily/regex_compress_tcam.git
http://www.cs.ucsb.edu/~arch/mem-model/

	A compression approach to reducing power consumption of TCAMs in regular expression matching
	1 Introduction
	2 Related work
	3 The scheme for power-efficient DFA (PEDFA) compression in TCAM
	3.1 DFA-based TCAM architecture
	3.2 Transition table compression
	3.2.1 Pre-processing
	3.2.2 Recoverable compression
	3.2.3 Feasible compression

	3.3 Proofing the validity of PEDFA

	4 Experimental evaluation
	4.1 Experimental methodology
	4.2 Results on power consumption
	4.3 Results on memory consumption
	4.4 Results on throughput

	5 Conclusion
	 Acknowledgments
	 References

