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Abstract—Rollback recovery is a trustworthy and key 
approach to fault tolerance in high performance computing and to 
parallel program debugging. In various rollback recovery 
protocols, causal message logging shows some desirable 
characteristics, but its high piggybacking overhead obstructs its 
applications, especially in large-scale distributed systems. Its high 
overhead arises from its conservation in the assumption on 
program execution model. This paper identifies the influence of 
non-deterministic message delivery on the correct outcome of a 
process, and then gives a scheme to relax the constraints from the 
piecewise deterministic execution model. Subsequently, a 
lightweight implementation of causal message logging is proposed 
to decrease the overhead of piggybacking and rolling forward. 
The experimental results of 3 NAS NPB2.3 benchmarks show that 
the proposed scheme achieves a significant improvement in the 
overhead reduction. 

Keywords—High performance computing; fault tolerance; 
rollback recovery; execution model; message logging 

I. INTRODUCTION 
Driven by modern scientific and engineering applications, 

the node scale of a computing system is constantly expanded to 
achieve higher computing performance. For example, the 
number of nodes of IBM's Blue Gene/P high performance 
computer has reached to 163,840 [1]. The expansion of the 
node scale has improved computing performance. However, it 
also leads to serious dependability problems, since faults 
increase dramatically with the node scale [2]. At present, for 
many high performance computing systems, their continuously 
normal running time is usually less than 40 hours [3]. But 
many of scientific and engineering computations may require a 
processing time of tens of hours even several days to obtain a 
final outcome. So fault tolerance is indispensable for high 
performance computing (HPC). Rollback recovery [1], [4] is a 
key approach to fault tolerance in HPC due to its simplicity, as 
it is based on time redundancy strategy to achieve fault 
tolerance, no node redundancy introduced [2].  

In HPC, the execution of an application consists of many 
processes, each of which runs in a node of a system. These 
processes coordinate to complete computing task by message 
passing. In rollback recovery, every process takes a checkpoint 
periodically and logs the passing messages in its normal 
execution time. Upon a fault, the failed process stops executing 
and its state data in memory is lost. For the fault recovery, an 

incarnation process is created in a normal node to displace the 
failed process. The lost process state is recovered by first 
resetting to its last checkpoint and then replaying the logged 
messages. This course of replaying is called as rolling forward. 
So the fault loss is limited to the computation done during the 
period from its last checkpoint to the fault occurrence, rather 
than the whole from the startup to the failure. The overhead of 
rollback recovery refers to checkpointing and logging, as well 
as restarting and rolling forward. In various rollback recovery 
protocols, causal message logging [4] can achieve independent 
fault recovery to any one failed process as compared to others. 
Therefore, it is widely applied to fault tolerance of high 
performance computing [1-2] and parallel program debugging. 
However, its high overhead of message logging is hardly 
acceptable, especially in large-scale systems [5] and in 
application scenarios with frequent message passing.   

For existing causal message logging protocols [6-9], one 
source of their high message logging overhead is associated 
with their assumption on program execution model. The 
piecewise deterministic execution model [4], called as PWD 
model, is adopted in almost all existing causal message logging 
protocols. The model is based on the consideration that, as to a 
process, the transition of its process state is driven by events of 
message reception and delivery. Since the arrival of any 
message is non-deterministic in a process due to no assumption 
on communication and response latency, the process state is 
also non-deterministic. The protocols address that, in order to 
guarantee a process to behave in its recovery completely same 
as it did before the fault occurrence, it must replay all logged 
messages since its last checkpoint serially in the same order as 
it delivered in the past. This treatment is of conservation. It can 
be inferred that PWD is a sufficient condition to obtain a 
correct recovery, but not a necessary one. This conservation 
leads to a high message logging overhead, because the meta of 
a delivered message must record its delivery order number in 
its receiver, and is piggybacked to all other processes 
depending on it directly or transitively. Furthermore, it causes a 
high rolling forward overhead due to waiting for some 
specified message. For example, process P delivered message 
m1 and then message m2 in its normal execution time, as m1 
arrived in P before m2. Later on, assume P fails. In the period 
of its recovery, it is possible that the logged m2 arrives in P 
first before the logged m1, because of no assumption on 
communication and response latency. According to the PWD 
model, P must wait for m1 before delivering m2. Actually, 
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perhaps delivering m2 first and then m1 doesn’t impact the 
correctness of its recovery at all.  

In existing causal logging protocols, another reason for 
having to employ the PWD model is to achieve the 
independence of the rollback recovery module [10] on the 
application module in a process. Consequently, the rollback 
recovery module is general and can adapt to any kind of 
applications. The cost of the achievement is that the application 
module of a process has to be considered as a black box. Thus 
every message delivery also has to be considered as a non-
deterministic event to ensure the correctness of rollback 
recovery. In this frame, the PWD model is a natural choice. 
However, the choice is of conservatism, resulting in a high 
overhead [5], [10]. This paper identifies the influence of non-
deterministic message delivery on the correct outcome of a 
process, and then gives a scheme to relax the PWD constraint. 
Subsequently, a lightweight causal message logging protocol is 
proposed to decrease the overhead of message logging and of 
process’s rolling forward. 

This paper is organized as follows. Section 2 presents the 
system model. Section 3 describes our message logging 
scheme in normal execution time, and fault recovery scheme 
when a process fails. In section 4, the effectiveness of the 
proposed scheme is evaluated by experiments. Section 5 
introduces the related work. The last section is the conclusion. 

II. THE PWD MODEL AND THE RELAXATION TO IT 

A.   The PWD model 
A high-performance computing task is delivered to n 

processes, each one in a node of a computing system, 
executing in parallel. The n processes, denoted by P1, P2, ..., Pi, 
..., Pn, cooperate with each other by message passing to finish 
the computing task. Message passing makes n processes 
interrelated with and depended on each other, thereby leading 
to the consistency issue of the processes’ states in fault 
recovery. In fault tolerance based on rollback recovery, every 
process does checkpointing periodically in its normal execution 
time, and does message logging as well. Upon a fault, the 
failed process stops executing and its state data in memory is 
lost. To recover from the fault, an incarnation process is 
created in a normal node. The lost process state is recovered by 
resetting the process state to its last checkpoint and then 
replaying the logged messages. This course is called as rolling 
forward.  

  The transition of the process state is driven by message 
delivery. Suppose that the process Pi, with the initial state Pi

0, 
receives and then deliveries messages mi

1, mi
2, ... , mi

x in 
sequence from other processes (also including itself) in its 
lifetime. In Pi, the delivery of mi

1 drives its state to transit from 
Pi

0 to Pi
1. During the period from Pi

s to Pi
s+1, called as process 

state interval Ii
s+1, it is possible for Pi to send one or more 

messages to other processes. Assume that the last checkpoint 
of Pi is taken at Pi

s, 1� s� x, and then a fault makes Pi failure 
after Pi has delivered the messages mi

s+1, mi
s+2, ..., and mi

t in 
sequence, s< t� x. The procedure of its fault recovery is as 
follows. The incarnation process is created in a normal node, 
with Pi’s last checkpoint as its initial state first, and then rolls 

forward by redelivering the logged messages mi
s+1, mi

s+2, ... , 
and mi

t in sequence. In order to ensure that any process can be 
recovered from a fault, all delivered messages must be logged 
in normal execution time.  

 In causal message logging protocols, message logging 
consists of metadata logging and raw-data logging. The 
metadata of a message is distributed adaptively to those 
processes depending on it by the way of piggybacking, while 
the raw-data of a message is buffered in memory by its sender. 
The metadata of a message is referred to its unique identifier, 
including the sender identifier sender_id and the sending order 
number send_index, as well as the receiver identifier 
receiver_id and the delivery order number deliver_index.  

B. A perspective to high overhead in existing causal message 
logging protocols under the PWD model 
In causal message logging protocols, for a message m, its 

raw data may be logged in memory of its sender. When its 
receiver fails, its sender resends it to the incarnation of the 
receiver for recovery. If both its sender and its receiver fail, the 
raw data of m is lost. But fault recovery is not impacted, 
because m will be regenerated and resent by the incarnation of 
m’s sender in the period of rolling forward. However, this 
logging strategy cannot be applied to the metadata of m. The 
reason is that the delivery order number of m becomes 
unknown when both its sender and its receiver fail. For two 
messages mv and mu, it is possible that the process Pi delivers 
mv first and then mu in its normal execution time, but first mu 
and then mv in its rolling forward, because their arrival time is 
random. If this case happens, Pi may not be recovered strictly 
consistently, leading to the problem of the occurrence of 
orphan message [4] under the PWD model.   

In existing causal message logging protocols, the metadata 
of a message is logged in those processes depending on it 
directly or transitively to avoid the occurrence of orphan 
message. When a process sends a message m, it piggybacks on 
m the metadata of all messages it depends on. When a process 
delivers a message m, it merges the piggybacked metadata on 
m into its own set of dependency to update its current 
dependency set. This scheme leads to a very high overhead. 
The reasons are as follows: 

1) When a process sends a message, all metadata it 
depends on directly or transitively has to be piggybacked. For 
example, in Fig.1, the process P1 has to piggyback the 
metadata of m0, m1 and m2 on m3 to the process P2, when it 
sends m3 to P2. For those applications with a lot of message 
passing, the high piggybacking overhead is hardly acceptable. 

 

 
 
 
 
 
 

Fig. 1. The dependency among messages 

2) There exist a lot of unnecessary piggybacks. For 
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example, in Fig.1, when P1 sends m3 to P2, the piggyback of 
the metadata of m1 is unnecessary. The reason is that P2 already 
has held it. But P1 does not know this situation. So it has to 
piggyback all metadata. In addition, assume at most f 
simultaneous failed processes. For any fault recovery, even 
though it is sufficient to let only f+1 processes log the metadata 
of a message, there is no way to let a process know how many 
processes have logged the metadata of the message. Therefore, 
every process has to conservatively piggyback all metadata 
onto every message it sends, leading to a high piggybacking 
overhead. 

3) The protocols enforce too serious control in message 
delivery order. For example, the process P1 delivered the 
message m0 first and then message m2 in its normal execution 
time, as m0 arrived in P1 before m2. Later on, in a P1’s fault 
recovery, it is completely possible that the logged m2 arrives in 
P1 before m0, because of no assumption on communication and 
response latency. According to the PWD constraint, P1 must 
wait for m0 before delivering m2. Actually, perhaps delivering 
m2 first and then m0 doesn’t impact the correctness of recovery 
at all. So the PWD constraint leads to a high recovery 
overhead. 

C. An observation to non-determinism in parallel computing 
In high performance computing, the sequence of messages 

a process delivers in the course of its execution is decided by 
its program logic. Non-determinism of message delivery 
should be obedient to the program logic. That is to say, non-
deterministic message delivery is allowed to the degree that 
does not impact the correct outcome of program execution. For 
example, in a system with n processes, suppose every process 
sends its result to the process P0 to calculate their sum. For 
those n messages, any delivery order in P0 does not impact its 
correct outcome. So the program of P0 may be designed to 
deliver any message it receives, no care about the arrival order 
of those messages. In this situation, although non-deterministic 
message delivery exists, the outcome of program execution is 
same. In contrast, for two messages mi and mj from other two 
different processes, if their delivery order impacts the correct 
outcome in P0, the programmer of P0 will indicate their 
delivery order. So the deliveries of mi and mj are deterministic. 
This observation has been confirmed to be true in all 
applications we investigated.  

Almost all parallel programming interfaces, like MPI [10-
11], support the expressions of both non-deterministic and 
deterministic message delivery. For example, an API function 
in MPI, MPI_Recv, is defined as follow: int MPI_Recv(void 
*buf, int count, MPI_Datatype datatype int source, int tag, 
MPI_Comm comm, MPI_Status *status), where buf is the 
memory buffer to store the received message, source is the 
sender identifier, and tag is the specified identifier for the 
desired message, such as the type of message. In an program, 
when source is set to MPI_ANY_SOURCE, non-deterministic 
message delivery is introduced, or else deterministic message 
delivery is indicated.  

Based on the above observation, we can find that it is 
unnecessary to track the delivery order of every message in 
every process for rollback recovery. Hence the PWD constraint 

can be relaxed to reduce the overhead. After the PWD 
constraint is relaxed, causal dependency among messages 
becomes the sole necessary constraint in rollback recovery. For 
example, in Fig. 1, assume that the process P1 delivers m0 and 
m2 in a non-deterministic mode. In a P1’s fault recovery, it is 
completely possible that message m5 arrives in P1 earlier than 
m2, since they come from two independent log components in 
P2 and P3, respectively. If there is no causal dependency 
constraint, P1 would deliver m5 before m2 due to the use of 
non-deterministic mode. It is obvious that the recovery is 
wrong, because m5 depends on m2 causally. Therefore, a 
scheme should be developed to track the causal dependency 
among messages in normal execution time and to follow it in 
the course of rollback recovery of any process. 

III. A LIGHTWEIGHT CAUSAL MESSAGE LOGGING PROTOCOL 

A. Basic ideas 
From the above analyses, we can find that the PWD model 

assumes that any non-deterministic message delivery would 
impact the correct outcome of a recovery process. Hence the 
track of causal dependency among messages is intensified to 
every message, which leads to a high tracking overhead in 
normal execution time and a high rolling forward overhead in 
fault recovery time. In fact, non-deterministic message delivery 
is allowed in those places that the correct outcome is not 
impacted. Therefore, the track of causal dependency among 
messages can be relaxed to the level of process state interval. 
This kind of relaxation would reduce significantly both the 
tracking overhead and the rolling forward overhead. 

For example, in Fig.1, with #m denoting the metadata of 
message m, the causal dependency set of message m5 is the set 
S (#m0, #m1, #m2, #m3, #m4) in the PWD model. In the existing 
causal dependency tracking protocols, it is necessary to let the 
message m5 piggyback S to the process P1. After the PWD 
constraint is relaxed, the causal dependency set of m5 can be 
simplified into a vector comprised of the process state interval 
index of every process, i.e. V (0, 2, 2, 1). Since the size of the 
metadata of a message is 4, we can see that the size of the 
causal dependency set of m5 is reduced from 20 to 4. 
Furthermore, with this simplification, non-determinism of 
message delivery can still keep valid in rolling forward of a 
process. This kind of benefit can be seen in the following 
example. Suppose that the process P1 uses the non-
deterministic mode to deliver messages, and fails after 
delivering the message m5. As to m0 and m2, the process state 
interval indices of P1 they depend on are both 0 in the logs, 
which means that no message was delivered before m0 and m2. 
Therefore, P1 can deliver any one of them in its rolling forward 
for fault recovery as soon as it arrives in P1. But this situation 
is not true for the message m5, because the process state 
interval index of P1 that m5 depends on is 2 in the log. This 
means that P1 cannot deliver m5 until it has delivered other 2 
messages. Therefore, with the relaxation to the PWD 
constraint, the correctness of recovery is still achieved. 

B. Data structure for the lightweight dependency tracking  
In causal message logging protocols, the dependency 

among messages must be followed in rollback recovery. For 
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the process P in rollback recovery, when it receives a logged 
message m from other processes, whether P can deliver it or 
not? This is a key question to address. Based on the above 
observations and ideas, the dependency among massages 
means that message m cannot be delivered until all messages it 
depends on have been delivered by P. It is unnecessary to care 
about the delivery order of those depended messages in P. As 
long as this rule is applied to every message in rollback 
recovery, the correctness of rollback recovery can be achieved. 
Therefore, the following data structure is built up for rollback 
recovery. 

Every process maintains a vector depend_interval[n] to 
track the index of the process state interval of all processes a 
message depends on, where n is the number of processes in the 
system. For the process Pi, its vector element 
depend_interval[i] records Pi’s current process state interval 
index, with an initial value 0. Whenever Pi delivers a message, 
its depend_interval[i] is incremented by 1, tracking the number 
of messages that it has delivered. Later on, suppose that Pi 
sends a message mi to the process Pj, it is obvious that mi 
depends on depend_interval[i] messages that Pi has delivered. 
Therefore, Pi’s depend_interval[i] is piggybacked on mi. 
Subsequently, when Pj sends back a message mj to Pi, Pj logs 
mj along with Pi’s depend_interval[i] to record the number of 
messages in Pi that mj depends on. With this tracking scheme, 
when Pi fails and rolls back, it knows what time to redeliver mj 
from the log of Pj. That is to say, Pi can not deliver mj until it 
has delivered depend_interval[i] messages. 

Additionally, it is known that the dependency among 
messages can be transitive. For example, in Fig.1, the message 
m5 depends on the messages m0 and m2 transitively. So other 
elements in the vector depend_interval are used to track the 
index of the process state interval of all other processes in the 
system a process depends on at the present time. When a 
process sends a message, its vector depend_interval should be 
piggybacked on it, as the sent message depends on it. 
Correspondingly, when a process delivers a message, the 
piggybacked vector depend_interval should be merged into the 
vector depend_interval of its own to report the new 
dependency of its current process state interval. For example, 
in Fig.1, before P1 delivers the message m5, its vector 
depend_interval is (0, 2, 1, 0). The piggybacked vector on m5 is 
(0, 2, 2, 1). When P1 delivers m5, its vector depend_interval is 
updated to (0, 2, 2, 1) by merging the piggybacked one. 

When a process fails, in order to understand which 
messages are lost due to the failure, every process also 
maintains two counting vectors last_send_index[n] and 
last_deliver_index[n] to record the number of the sent 
messages and of the delivered ones respectively, where n is the 
number of processes. For the process Pi, when it delivers a 
message m from process Pj, its vector element 
last_deliver_index[j] is incremented by 1 to record the total 
number of the messages delivered from Pj. When Pi sends a 
message m to Pj, its vector element last_send_index[j] is 
incremented by 1 to record the total number of the messages 
sent to Pj. When Pi takes a checkpoint, its vectors 
last_send_index and last_deliver_index are also saved as a part 
of the checkpoint. Later on, suppose Pi fails. Its incarnation is 
created in a normal node and its initial process state is reset to 

its last checkpoint. In the situation, all messages that Pi has 
received since its last checkpoint are lost. In order to let other 
processes understand which messages are lost, Pi’s incarnation 
broadcasts its vector last_deliver_index in the system. 
Therefore, other processes can understand to send which 
logged messages to Pi for its recovery. 

 
Algorithm 1 Rollback Recovery protocol 

Local Variables: 
1:  n, Pi {the number of processes, the ID of the process i} 
2:  Logi �  {the set of logged messages in Pi} 
3:  depend_intervali� (0, ..., 0)  {the vector of the current dependency in Pi } 
4:  last_send_indexi� (0, … ,0)  {the vector of the last send index in Pi } 
5:  last_deliver_indexi� (0, …, 0) {the vector of the last delivery index in Pi } 
6:  last_ckpt_deliver_indexi� (0, …, 0) {the vector of the delivery index of the 

last checkpoint in Pi } 
7:  rollback_last_receive_indexi � (0, …, 0) {the vector of the last receiving 

index from other processes in the case of rollback } 
rollback_last_send_indexi[j] � (0, …, 0) {the vector of the last receiving 
index  from the failed process Pi in the case of rollback} 

8:  Upon sending message m to Pj 

9:    last_send_indexi[j] = last_send_indexi[j]+1; 
10:    if last_send_indexi[j] > rollback_last_send_indexi[j] then 
11:       Send (MESSAGE, depend_intervali, send_indexi[j], m) to Pj; 
12:    Logi � Logi  log_ item( j, last_send_indexi[j], depend_intervali, m) 

13:  Upon receiving (MESSAGE, depend_interval, send_index, m) from Pj 
14:    put the message m (j, depend_interval, send_index, m) into the receiving 

queue 

15:  Upon delivering message 
16:    suppose m is the first message in the receiving queue 
17:    If depend_intervali[i] >= m.depend_interval[i] then 
18:        j = m.sender_id 
19:        if m.send_index = last_deliver_indexi[j]+1 then 
20:           depend_intervali[i] = depend_intervali[i]+1 
21:           last_deliver_indexi[j] = last_deliver_indexi[j]+1 
22:           for k = 1 to n 
23:              if k � i and m.depend_interval[k] > depend_intervali[k] then 
24:                 depend_intervali[k] = m.depend_interval[k] 
25:           get_deliverable_message = TRUE 
26:           takeout m from the receiving queue and deliver it to the application 
27:        else 
28:           Discard m from receiving queue 
29:    If get_deliverable_message ≠ TRUE then 
30:        let m is the next message in the receiving queue 
31:        if m ≠ null  then goto 17th row   else  wait; 

32:  Upon checkpointing 
33:   Save (Imagei, Logi, last_deliver_indexi, last_send_indexi, 

depend_intervali) of Pi on stable storage 
34:    for k = 1 to n 
35:       if last_deliver_indexi[k]> last_ckpt_deliver_indexi[k] then 
36:          send(CHECKPOINT_ADVANCE, last_deliver_indexi[k]) to Pk 
37:          last_ckpt_deliver_indexi[k] = last_deliver_indexi[k] 

38:  Upon Receiving (CHECKPOINT_ADVANCE, last_deliver_index) from 
Pj 

39: Release the log items with receiver_id = j and send_index <= 
CHECKPOINT_ADVANCE.last_deliver_index in Logi 

40:  Upon recovering from a failure 
41:    Pi’s process image�Pi’s last checkpoint.Image 
42:    depend_intervali�Pi’s last checkpoint.depend_intervali 

43:    last_send_indexi�Pi’s last checkpoint.depend_intervali 
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44:    last_deliver_indexi�Pi’s last checkpoint.depend_intervali 
45:    last_ckpt_deliver_indexi�depend_intervali  
46:    Broadcast (ROLLBACK, last_deliver_indexi) to all other processes 

47:  Upon receiving (ROLLBACK, last_deliver_index) from Pj 
48:    Send (RESPONSE, last_deliver_indexi[j]) to Pj; 
49:    while (∃ log item m in logi and m.receriver_id = j and  
        m.send_index = ROLLBACK.last_deliver_index [i] + 1 then 
50:        send (MESSAGE, m.depend_interval, m.send_index, m.msg) to Pj 
51:       ROLLBACK.last_deliver_index[i] = ROLLBACK.last_deliver_index [i

] + 1 

52:  Upon receiving (RESPONSE, last_receive_index) from Pj 
53:    rollback_last_send_indexi[j] = RESPONSE.last_receive_index 

C. Rollback recovery protocol 
The rollback recovery protocol consists of three parts: 

logging and checkpointing, recovering from a fault, and 
identifying repetitive messages as shown in Algorithm 1. 

1) Logging and checkpointing 

The logging protocol is shown from the 8th line to the 31th

 line in Algorithm 1, in which sender-based logging strategy is 
employed due to its desirable characteristics, such as 
asynchronous memory buffering. When the process Pi sends a 
message m to the process Pj, it increments its vector element 
last_send_index[j] by 1 to count the total number of messages 
sent to Pj, and piggybacks it and the vector depend_interval

 onto m to notify Pj of the dependency of m. In the meantime, P
i builds up a log item with the destination j, the sending index 

last_send_index[j], the vector depend_interval, and m itself, 
and puts it in the memory buffer as m’s log. When Pi delivers a 
message m from Pj, Pi increments its vector element 
depend_interval[i], and last_deliver_index[j] by 1, 
respectively, and merges the piggybacked vector 
depend_interval on m into its own vector depend_interval to 
update its current dependency, and then delivers m. 

The checkpointing protocol is shown in Algorithm 1 (from 
the 32th line to the 39th line). Every process may take 
independently a checkpoint before it is going to deliver a 
message. Besides the application state, the vectors 
depend_interval, last_deliver_index and last_send_index, and 
the logged messages should also be the content of the 
checkpoint. After a process takes a checkpoint, the messages 
the process has delivered are not rolled back any more due to a 
fault. Therefore, their corresponding logs may be discarded. 
The vector ckpt_last_deliver_index serves this purpose. 

2) Recovering from a fault  

As to fault recovery, suppose that the process Pi fails. An 
incarnation is created in a spare normal node to take over and 
act on Pi’s behalf. Thus the incarnation becomes Pi and it 
executes the following recovery operations, shown in 
Algorithm 1 (from the 40th line to the 53th line):  

(1) Reads Pi’s last checkpoint, including the vectors 
depend_interval, last_deliver_index and last_send_index, and 
then sets its process state to the last checkpoint.  

(2) Broadcasts a rollback notification containing the vector 
last_deliver_index to other processes. The purpose of 

last_deliver_index is to let other processes know which 
messages are lost due to the fault of Pi. 

For any process getting the rollback notification from Pi, 
supposing Pj, it sends to Pi a response with its vector element 
last_deliver_index[i], letting Pi avoid sending some repetitive 
messages to Pj during its rolling forward. In the meantime, Pj 
also resends to Pi those logged messages with the destination 
equal to i and the sending index larger than 
last_deliver_index[j] contained in the notification. Note that 
every resent message should be piggybacked with the logged 
vector depend_interval as in normal execution mode to let Pi 
understand what time to deliver it, as well as rebuild Pi’s vector 
depend_interval. 

Let’s shift to the side of Pi. There is a receiving queue in Pi. 
The received messages are first put in the receiving queue. 
Whenever Pi is going to deliver a message, the dependency 
among messages must be followed. That is to say, for any 
message in the receiving queue, only when Pi’s vector element 
depend_interval[i] is larger than or equal to the piggybacked 
depend_interval[i] on it, the message can be delivered. Or else 
the message has to remain staying in the receiving queue. This 
control is shown from the 16th line to the 31th line in Algorithm 
1. 

3) Identifying repetitive messages  

During the period of rolling forward in a fault recovery, 
when the process Pi sends a message m to another process, 
supposing Pj, perhaps m is a repetitive message as to Pj. For a 
repetitive message, it is unnecessary for Pi to send it. If the 
response from Pj has been gotten, and Pi’s vector element 
last_send_index[j] is less than or equal to the piggybacked 
last_deliver_index[i] on the response, Pi knows that m is 
repetitive, and then omits sending it. Or else Pi sends m. 

Before Pi gets the response from Pj, it cannot judge whether 
m is repetitive or not. So Pi has to send it conservatively. 
Therefore, it is possible for a process to receive a repetitive 
message from Pi. Before a process delivers a message m from 
Pi, it first checks if the piggybacked send_index on m is less 
than or equal to the vector element last_deliver_index[i] of its 
own. If so, m is repetitive, and Pj discards it. 

The identification of repetitive messages is shown from the 
52th line to the 53th line and from the 10th line to the 11th line in 
Algorithm 1.  

D. The correctness of the protocol 
Any rollback recovery protocol should ensure that the 

dependency among messages is not violated and there is no 
any lost message and no any repetitive message in the course 
of fault recovery. In our logging protocol shown in the above 
subsection, every sent message depends on the current process 
state interval of its sender, while the current process state 
interval of a process depends on both its last process state 
interval and the last delivered message. Our protocol tracks 
both the dependency of every message by the way of 
piggyback, and the dependency of the current process state 
interval by merging two dependency vectors. Therefore, for 
messages sent to a process, their dependency is tracked directly 
or transitively. This kind of track means that, when a message 
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is logged in normal execution time, its dependency can be 
logged along with it. Upon a fault with one failed process, for 
all messages needed for the fault recovery, the recovery 
process can obtain them from the logs in the surviving 
processes. The logged dependency is used to control the 
delivery order.  

When multiple simultaneous process failures take place, the 
logged messages in failed processes are lost. For example, 
suppose that P1, P2 and P3 fail at the same time as shown in Fig 
2, thus the logged messages m1, m2, m3, m4, and m5 are lost. 
Although P1 possibly delivers m0 first and then m2 when it rolls 
forward in its recovery, not same as it did before the failure, 
the execution is correct. The reason is that m0 and m2 are 
independent on each other, thus their delivery order does not 
impact P1’s correct outcome. That is to say, m6 does not 
become an orphan message. Nevertheless, as to m7, the 
situation is completely different. Although P1 possibly receives 
m7 before m2 in its recovery, but it cannot deliver m7 before m2. 
The reason is that the dependency of m7 indicates that m7 
cannot be delivered until P1 has already delivered other 2 
messages. In addition, even though the logs of m1, m2, m3, m4, 
and m5 are lost due to the failures of P 1, P 2 and P 3, these 
messages, along with their dependencies, are regenerated by P 

1, P 2 and P 3 in the period of their rolling forward in recovery, 
respectively. Their logs are also rebuilt correctly. As a result, in 
the case of multiple simultaneous failed processes, the 
dependency among messages is still followed, and no any 
orphan message appears in rollback recovery. 

 

 

 

 

 

 

Fig. 2. Rollback recovery in the case of multiple simultaneous faults 

Furthermore, our protocol identifies every message by its 
receiver and its sender via the vectors last_send_index and 
last_deliver_index respectively to guarantee no lost message 
and no repetitive message in rollback recovery. As to any 
process, its last checkpoint records the vector 
last_deliver_index, each element of which indicates the last 
message that is not lost due to a later fault. Once a process 
fails, its checkpointed vector last_deliver_index can let other 
processes know which messages are lost and should be resent 
by comparing the received last_deliver_index with their own 
last_send_index. Hence, all lost messages are identified and 
resent to let the failed process get recovery. For example, in 
Fig.2, As to P1, the checkpointed vector element 
last_deliver_index[0] is equal to 0, indicating no any message 
delivery from P0. After the incarnation of P1 broadcasts a 
recovery notification with the vector last_deliver_index in the 
system,  P0 knows that P1 lost the last 2 messages from P0, as 
P0’s vector element last_send_index[1] is equal to 2.  

In the meantime, our protocol also ensures that any process 
does not deliver any repetitive message. Although a process 
possibly sends a repetitive message in the period of its rolling 
forward, its receiver can identify it by comparing its 
last_deliver_index with the piggybacked sending_index. For 
example, in Fig.3, suppose that the process P1 fails, it is 
possible for P1 to send a repetitive message m3 to P3 in the 
period of its rolling forward in recovery, as P1 does not get the 
response from P3 yet before sending m3. Nevertheless, the 
repetition can be identified by P3, because the piggybacked 
sending_index on m3 is 1, less than or equal to the vector 
element last_deliver_index[1] in P3. Thus P3 discards the 
repetitive message m3. 

 

 

 

 

 

Fig. 3. The situation of repetitive messages 

From the above analyses, it can be concluded that, in our 
protocol, the dependency among messages is followed, and no 
lost message and repetitive message appears. So it is correct. 

E. The implementation of complete non-blocking 
There are two other issues to address in the implementation 

of rollback recovery. The first one is that many communication 
components are implemented in a synchronization mode in 
message passing in parallel computing, such as MPICH [12]. 
That is to say, when a process sends a message by calling a 
communication API, its execution is blocked until the message 
has been received by its receiver. If the receiver fails, the 
sending will fails and the execution of the sender will be 
blocked until the receiver recovers. So the failure of a process 
hampers the execution of other normal processes. The second 
one is that, during the period of recovery of a process, those 
messages for rolling forward do not arrive in the same order as 
in normal execution time. The reason is that there is no any 
constraint in communication latency on sending a logged 
message to a recovery process. Hence there appears a possible 
situation that, even though a message arrives, it cannot be 
delivered in recovery until all depended messages arrive and 
are delivered. Therefore, it is vital for rollback recovery to 
have a scheme to manage sending, receiving and delivering 
messages effectively. This paper proposes a scheme based on 
buffering and multithreading as shown in Fig. 4. 

In the proposed scheme, the rollback recovery component 
is embedded between the application component and the 
communication component, as shown in Fig.4. Moreover, two 
message buffering queues A and B are created in memory in 
the rollback recovery component. The queue A is for receiving 
messages, while the queue B is for sending messages. 
Corresponding to two buffer queues, two other threads are 
created for sending and receiving messages, respectively. 
When the application thread sends a message m to the process 
Pj, it attaches j as the receiver identifier and the vector element 
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last_send_index[j] as the sending index to m, puts m into the 
queue A, and then returns to continue its computation. 
Therefore, its execution is not blocked. The sending thread is 
responsible for sending the messages in the queue A based on 
the sending protocol shown in Algorithm 1. Note that after a 
message has been sent, it keeps in memory and is transformed 
into a log. On the other side, the receiving thread puts every 
received message in the queue B. When the application thread 
is going to deliver a message, the delivery manager chooses the 
desired one in the queue B according to the delivery protocol 
shown in Algorithm 1. If there is no desired message in the 
queue B, the application thread waits until the arrival of a 
desired message. 

 

 

 
 
 
 
 

 

 

 

 
 (a) the original architecture                 (b) the scheme for non-blocking 

Fig. 4. The implementation scheme of complete non-blocking 

It can be seen that this scheme completely eliminates 
blocking of computation rooted in other process’s failure by 
the way of buffering and multithreading. Moreover, it enables 
computing, sending message and receiving message to execute 
concurrently. It contributes to a lower overhead of rollback 
recovery. Its effectiveness will be shown in the next section. 

IV. EXPERIMENTAL EVALUATION RESULTS 
In this section, we compare the protocol presented in 

section 3 to the two existing representative protocols, one 
based on antecedence graph [7] and the other based on event 
logger [5], by several experiments to investigate the effect of 
our lightweight causal message logging protocol. Additionally, 
we evaluate the gain from the elimination of computation 
blocking rooted in other process’s failure. 

In research of rollback recovery, NAS NPB2.3 benchmark 
[13] is a widespread adoption to evaluate and compare the 
performance of various protocols. In our experiments, three 
NAS NPB2.3 benchmarks, LU, BT and SP, were used to 
compare the performance of 3 rollback recovery protocols. 
These benchmarks are MPI programs about molecular 
dynamics calculations written in Fortran language. They have 
different representative features: LU with high message 
frequency and relatively small checkpoint size, BT with large 
checkpoint size, large message data size and relatively low 
message frequency, and SP with moderate message frequency 
and checkpoint size, relative to LU and BT. 

We have established an experimental testbed to execute 
parallel computing. The lightweight causal message logging 
protocols as well as the non-blocking communication scheme 
described in the section 3 were implemented in our rollback 
recovery support library WINDAR [14], while WINDAR was 
embedded in MPI support library MPICH [12] consisting of 
MPI API, ADI2 and  NT_IPVISHM. The software hierarchy of 
the system is shown in Fig. 5. In our experiment 
configurations, every application consisted of 4, 8, 16, and 32 
processes respectively, each of which runs on a PC with a 
AMD Athlon 2.3GHZ CPU, 896M RAM, a 640G hard disk 
and Windows XP operating system. All PCs are connected by 
100M Ethernet. We set the checkpoint interval to 180 seconds 
effective computation. We examined logging overhead and 
recovery overhead in a checkpoint interval.  

Application 

MPI API of MPICH 

ADI2 of MPICH 

WINDAR 

Windows API 

Fig. 5. Software stack in the rollback recovery experiment 

A. Comparisons of the piggybacking overhead in 3 protocols 
We first investigated the piggybacking overhead in three 

causal message logging protocols: TDI (Tracking based on 
dependent interval presented in section 3), TAG (tracking 
based on antecedence graph [7]) and TEL (tracking based on 
event logger [5]), respectively. The piggybacking overhead 
was measured in the two criteria: data amount and time.  

The experimental results are shown in Fig. 6 and Fig. 7, 
respectively. We can observe that both time overhead and data 
amount overhead are remarkably smaller in our protocol than 
in other two protocols. Especially when applications have 
frequent message passing, such as LU, the effectiveness of our 
protocol is more prominent. It is also true for a large-scale 
system indicated by the number of processes. The reason is 
that, for our protocol to achieve correct recovery, it is sufficient 
only to track the current number of delivered messages in 
every process. In contrast, the other two protocols need to track 
the whole history of all events of message delivery in every 
process. Therefore, the data amount of piggyback is 
significantly reduced in our protocol, which also leads to a 
positively proportional reduction in time overhead. The large 
amount of piggyback is one source of high time overhead. 
Another source is the calculation of the increment of 
antecedence graph. The purpose of this calculation is to reduce 
of the amount of piggyback. Such a calculation does not exist 
in our protocol, while it refers to a traverse to an antecedence 
graph in the other two protocols. Consequently, our protocol 
has no calculation overhead.  

The experimental results also show that our protocol has a 
better scalability in contrast to the other two protocols. The 
reason is that, for a process going to send a message, since 
there is no way for it to precisely know the antecedence graph 
that the receiver currently holds, it has to piggyback 
conservatively sufficient metadata to the receiver. Such a 
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conservative scheme leads to a lot of redundant piggyback of 
metadata. This redundancy is in the order of a vector in our 
protocol, while it is in the order of a two-dimensional graph of 
message meta in the other two protocols. Therefore, the 
effectiveness of our protocol is more significant in the 
scenarios of large system scale or frequent message passing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The comparison of the average amount of piggyback in 3 protocols on 
3 benchmarks LU,BT and SP 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The comparison of the time overhead of tracking in 3 protocols on 3 
benchmarks LU,BT and SP 

Additionally, we can observe that three applications have 
very different time overhead. The reason is that they have 
different message passing frequency and communication 
pattern. For example, LU has a frequent message passing, so its 
time overhead is much higher than that of BT and SP. TAG 
and TEL protocols need to maintain an antecedence graph for 
dependency tracking. The size of the antecedence graph is 
positively proportional to the frequency of message passing. So 
the piggyback amount and time overhead increase sharply with 
the frequency of message passing and the system scale in TAG 
and TEL protocols.  In contrast, our protocol maintains only a 
vector with the size of node scale in the system, and has no 
increment calculation .Therefore, its piggyback overhead 
increase linearly with the system scale, while its time overhead 
is hardly relevant to the system scale. 

B. 4.2 The gain from eliminating blocking of computation 
Our second experiment was conducted to evaluate the gain 

from eliminating blocking of computation rooted in other 
process’s failure presented in subsection 3.5. In this experiment, 
we constructed two communication modes shown in Fig.4 (a) 
and (b) respectively, and employed our protocol TDI for 
rollback recovery. After a process took a checkpoint, we let it 
run for 180 seconds, and then triggered a fault and then 
immediately carried out the rollback recovery. The gain is 
defined as the normalized difference of the accomplishment 
time of computation task in two communication modes: 
blocking and non-blocking. 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 8. The gain from non- blocking on 3 benchmarks LU,BT and SP 

The gain is shown in Fig.8. It can be observed that it is 
explicit in 3 benchmarks, especially when the system scale 
becomes large. Additionally, we note that, although the gain in 
application LU is largest when the number of processes is 32, it 
is not positively proportional to the number of messages. The 
explanation is that the data amount of messages also plays an 
important role in the gain. Bigger is the size of a message, 
longer is its transmission time. Hence the blocking time of 
computation is also correspondingly longer when the blocking 
mode is employed. Moreover, the receiver of a message also 
plays an important role in blocking. When a process is sending 
a big message, if the receiver is executing a recovery or 
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application computation, it has to wait. The reason is that the 
buffering memory in communication subsystem is limit and 
not enough to cache the whole message. The blocking of the 
sending process does not end until the receiving process 
transits from recovering or computing to receiving a message. 
Therefore, for performance improvement, it is significant to 
eliminate blocking by the way of buffering and multithreading 
presented in Section 3.5. 

Although the experimental results show some gain from the 
non-blocking of computation, it is not very significant. The 
reason is that all processes are close coupled with each other in 
three applications. Once a process fails, other processes cannot 
advance in their computation at all, as they need messages 
from the failed process. Therefore, they have to wait for the 
recovery of the failed process.   

V. THE RELATED WORK 
  In various rollback recovery protocols, causal message 

logging [4] shows many good characteristics. For example, 
every process can take its checkpoints independently, and 
recover independently from a fault. Moreover, there is no  
synchronization constraint in message logging and delivering. 
Therefore, they are widely applied to fault tolerance of high 
performance computing and parallel program debugging. 
However, their piggybacking overhead is hardly acceptable, 
especially in large-scale systems [15-16] and in the scenarios 
of frequent message passing. Manetho [6] is the first to address 
the piggybacking overhead. It used an antecedence graph to 
describe the causal relationship between non-deterministic 
events of message delivery. In order to remove redundant 
piggybacking, when a process sends a message to another one, 
it does not piggyback the complete graph, but an incremental 
part. For those metadata that the sender knows that the receiver 
already holds, they do not need to be sent back to the receiver. 
LogOn [7] did an improvement to Manetho. It partially 
reorders events from the inheritance relationship in the 
antecedence graph by exploiting the semantics of the metadata 
of message. This treatment enables an adequate utilization of 
the semantics of the antecedence graph to easy and accurate the 
calculation of an incremental part. 

The above two approaches do not have any assumption on 
the number of simultaneous faults in a system. Thus the 
condition ending the piggyback of the metadata of a message is 
that all processes hold it and know that all other processes 
already hold it. This situation inevitably gives rise to many 
unnecessary piggyback, thereby leading to an unacceptable 
piggybacking overhead. Alvisi [8] proposed 3 schemes to 
control the propagation of the metadata of a message under the 
assumption of at most f simultaneous faults in the system. With 
the assumption, it is sufficient for the metadata of a message to 
be piggybacked to only f+1 processes. To know how many 
processes already hold the metadata of a message, extra 
tracking information is introduced and also needs to be 
piggybacked as the metadata of messages does. The size of 
tracking information can be O(n2), O(n) or O(1), where n is the 
number of processes in the system. Of course, little tracking 
information generally corresponds to poor control accuracy. 
However, no matter how much extra tracking information is 
piggybacked, there is no way for a process to precisely know 

how many other processes already hold the metadata of a 
message. 

To address the above problem, Event logger [5],[9] was 
proposed. It introduces a stable storage to save metadata, and 
keep asynchronous message logging. In this scheme, the 
piggyback of the metadata of a message ends as soon as it is 
saved on the stable storage. Although the piggyback overhead 
is remarkably reduced, besides the stable storage, extra 
notification messages are also introduced in the system.  

As to the piggybacking overhead, the above-mentioned 
causal message logging protocols are poor in scalability. To 
address this problem, system partition schemes [15],[17-18] 
came out. After a big system is structured into some small 
units, conventional causal logging is conducted in a small 
scale. For those messages across the boundary, their 
dependency is dealt with via various measures, such as 
pessimistic logging [17], transformation [15], and replication 
[10]. 

All the above-mentioned researches are under the 
assumption of the PWD execution model. The track of the 
dependency refers to the delivery order number of every 
message. Although some improvements are achieved, they are 
not essential. In contrast with the PWD execution model, the 
send deterministic execution model [11], [19-20] was proposed 
to address the conservative characteristics of PWD, which 
argues that the sequence of messages sent by each process is 
the same in any correct execution of the application. This new 
model enables new rollback-recovery protocols to lower the 
message logging overhead [21]. 

Our protocol in Section 3 is similar to the send 
deterministic execution model. It is different from the existing 
causal message logging protocols in that it considers the 
correct recovery of a failed process can be achieved by 
following the dependency among messages, not necessarily by 
the strictly same delivery sequence of messages. Therefore, in 
the normal time, the track of dependency can be relaxed from 
logging the delivery order of every message to logging the 
number of delivered messages. Furthermore, this kind of 
logging only happens at the time of sending a message. This 
kind of relaxation leads to a significant reduction of the 
logging overhead from piggybacking a much smaller data 
amount of dependency and from eliminating the calculation of 
the incremental part of piggyback. In our protocol, the 
piggyback onto a message refers to only a vector of integer. In 
contrast, it involves a two-dimensional graph of message meta 
in existing causal logging protocols.  

Additionally, our protocol achieves a proactive perception 
of delivery order of messages. In existing causal logging 
protocols, as to a message, its metadata log and its raw data log 
are completely separated in different time and places. 
Specifically, its sender logs its raw data. Afterwards, its 
metadata is constructed when it is delivered, and then is logged 
in other processes depending on it. As a result, when a failed 
process rolls back for recovery, only after it receives both the 
metadata and the raw data of a message from different 
processes, it can determine what time to deliver this message. 
In our protocol, when a process sends a message, it knows the 
dependency of the message. Thus the dependency information 
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and the raw data of a message are logged together in its sender. 
Therefore, our protocol achieves a proactive perception of 
delivery order of messages. As to a logged message, it delivery 
order is determined as soon as it arrives in the recovering 
process. Consequently, the overhead of rolling forward is also 
reduced significantly.  

VI. CONCLUSIONS  
In various rollback recovery protocols, as causal message 

logging does not require any rollback of normal process in the 
case of fault recovery, and has no any synchronization 
constraint on message logging and delivering, it becomes a 
widespread adoption to fault tolerance in high performance 
computing and to parallel program debugging. However, 
existing causal message logging protocols have a hardly 
acceptable piggybacking overhead, especially when the system 
scale has been enlarging or there is frequent message passing. 
The high overhead arises from their conservation in the 
assumption of the piecewise deterministic execution model. As 
to correct rollback recovery, this model is sufficient, but not 
necessary. Correct rollback recovery can be achieved by 
following the dependency among messages, not necessarily by 
strictly same delivery sequence of messages. Therefore, in our 
causal logging protocol, the track of dependency is relaxed 
from logging the delivery order of every message to logging 
the number of delivered messages. This kind of relaxation 
leads to an effective reduction of the data amount of piggyback 
onto a message from a two-dimensional graph of message meta 
to a vector of integer. Consequently, the piggybacking 
overhead is significantly reduced, with a subsidiary benefit of 
the decrease of the rolling forward overhead in fault recovery. 
In addition, our protocol completely eliminates blocking of 
computation rooted in other process’s failure by the way of 
buffering and multithreading, leading to a further decrease in 
the rollback recovery overhead. Our protocol achieves a good 
scalability, as its time overhead is hardly relevant to the node 
scale of the system. 
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