
A Lightweight Causal Message Logging Protocol to
Lower Fault Tolerance Overhead

Jin-Min Yang
Department of Computer Science and Electronic Engineering, Hunan University

 Changsha, China
E-mail: rj_jmyang@hnu.edu.cn

Abstract—Rollback recovery is a trustworthy and key
approach to fault tolerance in high performance computing and to
parallel program debugging. In various rollback recovery
protocols, causal message logging shows some desirable
characteristics, but its high piggybacking overhead obstructs its
applications, especially in large-scale distributed systems. Its high
overhead arises from its conservation in the assumption on
program execution model. This paper identifies the influence of
non-deterministic message delivery on the correct outcome of a
process, and then gives a scheme to relax the constraints from the
piecewise deterministic execution model. Subsequently, a
lightweight implementation of causal message logging is proposed
to decrease the overhead of piggybacking and rolling forward.
The experimental results of 3 NAS NPB2.3 benchmarks show that
the proposed scheme achieves a significant improvement in the
overhead reduction.

Keywords—High performance computing; fault tolerance;
rollback recovery; execution model; message logging

I. INTRODUCTION
Driven by modern scientific and engineering applications,

the node scale of a computing system is constantly expanded to
achieve higher computing performance. For example, the
number of nodes of IBM's Blue Gene/P high performance
computer has reached to 163,840 [1]. The expansion of the
node scale has improved computing performance. However, it
also leads to serious dependability problems, since faults
increase dramatically with the node scale [2]. At present, for
many high performance computing systems, their continuously
normal running time is usually less than 40 hours [3]. But
many of scientific and engineering computations may require a
processing time of tens of hours even several days to obtain a
final outcome. So fault tolerance is indispensable for high
performance computing (HPC). Rollback recovery [1], [4] is a
key approach to fault tolerance in HPC due to its simplicity, as
it is based on time redundancy strategy to achieve fault
tolerance, no node redundancy introduced [2].

In HPC, the execution of an application consists of many
processes, each of which runs in a node of a system. These
processes coordinate to complete computing task by message
passing. In rollback recovery, every process takes a checkpoint
periodically and logs the passing messages in its normal
execution time. Upon a fault, the failed process stops executing
and its state data in memory is lost. For the fault recovery, an

incarnation process is created in a normal node to displace the
failed process. The lost process state is recovered by first
resetting to its last checkpoint and then replaying the logged
messages. This course of replaying is called as rolling forward.
So the fault loss is limited to the computation done during the
period from its last checkpoint to the fault occurrence, rather
than the whole from the startup to the failure. The overhead of
rollback recovery refers to checkpointing and logging, as well
as restarting and rolling forward. In various rollback recovery
protocols, causal message logging [4] can achieve independent
fault recovery to any one failed process as compared to others.
Therefore, it is widely applied to fault tolerance of high
performance computing [1-2] and parallel program debugging.
However, its high overhead of message logging is hardly
acceptable, especially in large-scale systems [5] and in
application scenarios with frequent message passing.

For existing causal message logging protocols [6-9], one
source of their high message logging overhead is associated
with their assumption on program execution model. The
piecewise deterministic execution model [4], called as PWD
model, is adopted in almost all existing causal message logging
protocols. The model is based on the consideration that, as to a
process, the transition of its process state is driven by events of
message reception and delivery. Since the arrival of any
message is non-deterministic in a process due to no assumption
on communication and response latency, the process state is
also non-deterministic. The protocols address that, in order to
guarantee a process to behave in its recovery completely same
as it did before the fault occurrence, it must replay all logged
messages since its last checkpoint serially in the same order as
it delivered in the past. This treatment is of conservation. It can
be inferred that PWD is a sufficient condition to obtain a
correct recovery, but not a necessary one. This conservation
leads to a high message logging overhead, because the meta of
a delivered message must record its delivery order number in
its receiver, and is piggybacked to all other processes
depending on it directly or transitively. Furthermore, it causes a
high rolling forward overhead due to waiting for some
specified message. For example, process P delivered message
m1 and then message m2 in its normal execution time, as m1
arrived in P before m2. Later on, assume P fails. In the period
of its recovery, it is possible that the logged m2 arrives in P
first before the logged m1, because of no assumption on
communication and response latency. According to the PWD
model, P must wait for m1 before delivering m2. Actually,

2016 IEEE International Conference on Cluster Computing

2168-9253/16 $31.00 © 2016 IEEE

DOI 10.1109/CLUSTER.2016.64

392

perhaps delivering m2 first and then m1 doesn’t impact the
correctness of its recovery at all.

In existing causal logging protocols, another reason for
having to employ the PWD model is to achieve the
independence of the rollback recovery module [10] on the
application module in a process. Consequently, the rollback
recovery module is general and can adapt to any kind of
applications. The cost of the achievement is that the application
module of a process has to be considered as a black box. Thus
every message delivery also has to be considered as a non-
deterministic event to ensure the correctness of rollback
recovery. In this frame, the PWD model is a natural choice.
However, the choice is of conservatism, resulting in a high
overhead [5], [10]. This paper identifies the influence of non-
deterministic message delivery on the correct outcome of a
process, and then gives a scheme to relax the PWD constraint.
Subsequently, a lightweight causal message logging protocol is
proposed to decrease the overhead of message logging and of
process’s rolling forward.

This paper is organized as follows. Section 2 presents the
system model. Section 3 describes our message logging
scheme in normal execution time, and fault recovery scheme
when a process fails. In section 4, the effectiveness of the
proposed scheme is evaluated by experiments. Section 5
introduces the related work. The last section is the conclusion.

II. THE PWD MODEL AND THE RELAXATION TO IT

A. The PWD model
A high-performance computing task is delivered to n

processes, each one in a node of a computing system,
executing in parallel. The n processes, denoted by P1, P2, ..., Pi,
..., Pn, cooperate with each other by message passing to finish
the computing task. Message passing makes n processes
interrelated with and depended on each other, thereby leading
to the consistency issue of the processes’ states in fault
recovery. In fault tolerance based on rollback recovery, every
process does checkpointing periodically in its normal execution
time, and does message logging as well. Upon a fault, the
failed process stops executing and its state data in memory is
lost. To recover from the fault, an incarnation process is
created in a normal node. The lost process state is recovered by
resetting the process state to its last checkpoint and then
replaying the logged messages. This course is called as rolling
forward.

 The transition of the process state is driven by message
delivery. Suppose that the process Pi, with the initial state Pi

0,
receives and then deliveries messages mi

1, mi
2, ... , mi

x in
sequence from other processes (also including itself) in its
lifetime. In Pi, the delivery of mi

1 drives its state to transit from
Pi

0 to Pi
1. During the period from Pi

s to Pi
s+1, called as process

state interval Ii
s+1, it is possible for Pi to send one or more

messages to other processes. Assume that the last checkpoint
of Pi is taken at Pi

s, 1� s� x, and then a fault makes Pi failure
after Pi has delivered the messages mi

s+1, mi
s+2, ..., and mi

t in
sequence, s< t� x. The procedure of its fault recovery is as
follows. The incarnation process is created in a normal node,
with Pi’s last checkpoint as its initial state first, and then rolls

forward by redelivering the logged messages mi
s+1, mi

s+2, ... ,
and mi

t in sequence. In order to ensure that any process can be
recovered from a fault, all delivered messages must be logged
in normal execution time.

 In causal message logging protocols, message logging
consists of metadata logging and raw-data logging. The
metadata of a message is distributed adaptively to those
processes depending on it by the way of piggybacking, while
the raw-data of a message is buffered in memory by its sender.
The metadata of a message is referred to its unique identifier,
including the sender identifier sender_id and the sending order
number send_index, as well as the receiver identifier
receiver_id and the delivery order number deliver_index.

B. A perspective to high overhead in existing causal message
logging protocols under the PWD model
In causal message logging protocols, for a message m, its

raw data may be logged in memory of its sender. When its
receiver fails, its sender resends it to the incarnation of the
receiver for recovery. If both its sender and its receiver fail, the
raw data of m is lost. But fault recovery is not impacted,
because m will be regenerated and resent by the incarnation of
m’s sender in the period of rolling forward. However, this
logging strategy cannot be applied to the metadata of m. The
reason is that the delivery order number of m becomes
unknown when both its sender and its receiver fail. For two
messages mv and mu, it is possible that the process Pi delivers
mv first and then mu in its normal execution time, but first mu
and then mv in its rolling forward, because their arrival time is
random. If this case happens, Pi may not be recovered strictly
consistently, leading to the problem of the occurrence of
orphan message [4] under the PWD model.

In existing causal message logging protocols, the metadata
of a message is logged in those processes depending on it
directly or transitively to avoid the occurrence of orphan
message. When a process sends a message m, it piggybacks on
m the metadata of all messages it depends on. When a process
delivers a message m, it merges the piggybacked metadata on
m into its own set of dependency to update its current
dependency set. This scheme leads to a very high overhead.
The reasons are as follows:

1) When a process sends a message, all metadata it
depends on directly or transitively has to be piggybacked. For
example, in Fig.1, the process P1 has to piggyback the
metadata of m0, m1 and m2 on m3 to the process P2, when it
sends m3 to P2. For those applications with a lot of message
passing, the high piggybacking overhead is hardly acceptable.

Fig. 1. The dependency among messages

2) There exist a lot of unnecessary piggybacks. For

P1

P2

P3

m3 m2

m1

P0
 m0

m4 m5

393

example, in Fig.1, when P1 sends m3 to P2, the piggyback of
the metadata of m1 is unnecessary. The reason is that P2 already
has held it. But P1 does not know this situation. So it has to
piggyback all metadata. In addition, assume at most f
simultaneous failed processes. For any fault recovery, even
though it is sufficient to let only f+1 processes log the metadata
of a message, there is no way to let a process know how many
processes have logged the metadata of the message. Therefore,
every process has to conservatively piggyback all metadata
onto every message it sends, leading to a high piggybacking
overhead.

3) The protocols enforce too serious control in message
delivery order. For example, the process P1 delivered the
message m0 first and then message m2 in its normal execution
time, as m0 arrived in P1 before m2. Later on, in a P1’s fault
recovery, it is completely possible that the logged m2 arrives in
P1 before m0, because of no assumption on communication and
response latency. According to the PWD constraint, P1 must
wait for m0 before delivering m2. Actually, perhaps delivering
m2 first and then m0 doesn’t impact the correctness of recovery
at all. So the PWD constraint leads to a high recovery
overhead.

C. An observation to non-determinism in parallel computing
In high performance computing, the sequence of messages

a process delivers in the course of its execution is decided by
its program logic. Non-determinism of message delivery
should be obedient to the program logic. That is to say, non-
deterministic message delivery is allowed to the degree that
does not impact the correct outcome of program execution. For
example, in a system with n processes, suppose every process
sends its result to the process P0 to calculate their sum. For
those n messages, any delivery order in P0 does not impact its
correct outcome. So the program of P0 may be designed to
deliver any message it receives, no care about the arrival order
of those messages. In this situation, although non-deterministic
message delivery exists, the outcome of program execution is
same. In contrast, for two messages mi and mj from other two
different processes, if their delivery order impacts the correct
outcome in P0, the programmer of P0 will indicate their
delivery order. So the deliveries of mi and mj are deterministic.
This observation has been confirmed to be true in all
applications we investigated.

Almost all parallel programming interfaces, like MPI [10-
11], support the expressions of both non-deterministic and
deterministic message delivery. For example, an API function
in MPI, MPI_Recv, is defined as follow: int MPI_Recv(void
*buf, int count, MPI_Datatype datatype int source, int tag,
MPI_Comm comm, MPI_Status *status), where buf is the
memory buffer to store the received message, source is the
sender identifier, and tag is the specified identifier for the
desired message, such as the type of message. In an program,
when source is set to MPI_ANY_SOURCE, non-deterministic
message delivery is introduced, or else deterministic message
delivery is indicated.

Based on the above observation, we can find that it is
unnecessary to track the delivery order of every message in
every process for rollback recovery. Hence the PWD constraint

can be relaxed to reduce the overhead. After the PWD
constraint is relaxed, causal dependency among messages
becomes the sole necessary constraint in rollback recovery. For
example, in Fig. 1, assume that the process P1 delivers m0 and
m2 in a non-deterministic mode. In a P1’s fault recovery, it is
completely possible that message m5 arrives in P1 earlier than
m2, since they come from two independent log components in
P2 and P3, respectively. If there is no causal dependency
constraint, P1 would deliver m5 before m2 due to the use of
non-deterministic mode. It is obvious that the recovery is
wrong, because m5 depends on m2 causally. Therefore, a
scheme should be developed to track the causal dependency
among messages in normal execution time and to follow it in
the course of rollback recovery of any process.

III. A LIGHTWEIGHT CAUSAL MESSAGE LOGGING PROTOCOL

A. Basic ideas
From the above analyses, we can find that the PWD model

assumes that any non-deterministic message delivery would
impact the correct outcome of a recovery process. Hence the
track of causal dependency among messages is intensified to
every message, which leads to a high tracking overhead in
normal execution time and a high rolling forward overhead in
fault recovery time. In fact, non-deterministic message delivery
is allowed in those places that the correct outcome is not
impacted. Therefore, the track of causal dependency among
messages can be relaxed to the level of process state interval.
This kind of relaxation would reduce significantly both the
tracking overhead and the rolling forward overhead.

For example, in Fig.1, with #m denoting the metadata of
message m, the causal dependency set of message m5 is the set
S (#m0, #m1, #m2, #m3, #m4) in the PWD model. In the existing
causal dependency tracking protocols, it is necessary to let the
message m5 piggyback S to the process P1. After the PWD
constraint is relaxed, the causal dependency set of m5 can be
simplified into a vector comprised of the process state interval
index of every process, i.e. V (0, 2, 2, 1). Since the size of the
metadata of a message is 4, we can see that the size of the
causal dependency set of m5 is reduced from 20 to 4.
Furthermore, with this simplification, non-determinism of
message delivery can still keep valid in rolling forward of a
process. This kind of benefit can be seen in the following
example. Suppose that the process P1 uses the non-
deterministic mode to deliver messages, and fails after
delivering the message m5. As to m0 and m2, the process state
interval indices of P1 they depend on are both 0 in the logs,
which means that no message was delivered before m0 and m2.
Therefore, P1 can deliver any one of them in its rolling forward
for fault recovery as soon as it arrives in P1. But this situation
is not true for the message m5, because the process state
interval index of P1 that m5 depends on is 2 in the log. This
means that P1 cannot deliver m5 until it has delivered other 2
messages. Therefore, with the relaxation to the PWD
constraint, the correctness of recovery is still achieved.

B. Data structure for the lightweight dependency tracking
In causal message logging protocols, the dependency

among messages must be followed in rollback recovery. For

394

the process P in rollback recovery, when it receives a logged
message m from other processes, whether P can deliver it or
not? This is a key question to address. Based on the above
observations and ideas, the dependency among massages
means that message m cannot be delivered until all messages it
depends on have been delivered by P. It is unnecessary to care
about the delivery order of those depended messages in P. As
long as this rule is applied to every message in rollback
recovery, the correctness of rollback recovery can be achieved.
Therefore, the following data structure is built up for rollback
recovery.

Every process maintains a vector depend_interval[n] to
track the index of the process state interval of all processes a
message depends on, where n is the number of processes in the
system. For the process Pi, its vector element
depend_interval[i] records Pi’s current process state interval
index, with an initial value 0. Whenever Pi delivers a message,
its depend_interval[i] is incremented by 1, tracking the number
of messages that it has delivered. Later on, suppose that Pi
sends a message mi to the process Pj, it is obvious that mi
depends on depend_interval[i] messages that Pi has delivered.
Therefore, Pi’s depend_interval[i] is piggybacked on mi.
Subsequently, when Pj sends back a message mj to Pi, Pj logs
mj along with Pi’s depend_interval[i] to record the number of
messages in Pi that mj depends on. With this tracking scheme,
when Pi fails and rolls back, it knows what time to redeliver mj
from the log of Pj. That is to say, Pi can not deliver mj until it
has delivered depend_interval[i] messages.

Additionally, it is known that the dependency among
messages can be transitive. For example, in Fig.1, the message
m5 depends on the messages m0 and m2 transitively. So other
elements in the vector depend_interval are used to track the
index of the process state interval of all other processes in the
system a process depends on at the present time. When a
process sends a message, its vector depend_interval should be
piggybacked on it, as the sent message depends on it.
Correspondingly, when a process delivers a message, the
piggybacked vector depend_interval should be merged into the
vector depend_interval of its own to report the new
dependency of its current process state interval. For example,
in Fig.1, before P1 delivers the message m5, its vector
depend_interval is (0, 2, 1, 0). The piggybacked vector on m5 is
(0, 2, 2, 1). When P1 delivers m5, its vector depend_interval is
updated to (0, 2, 2, 1) by merging the piggybacked one.

When a process fails, in order to understand which
messages are lost due to the failure, every process also
maintains two counting vectors last_send_index[n] and
last_deliver_index[n] to record the number of the sent
messages and of the delivered ones respectively, where n is the
number of processes. For the process Pi, when it delivers a
message m from process Pj, its vector element
last_deliver_index[j] is incremented by 1 to record the total
number of the messages delivered from Pj. When Pi sends a
message m to Pj, its vector element last_send_index[j] is
incremented by 1 to record the total number of the messages
sent to Pj. When Pi takes a checkpoint, its vectors
last_send_index and last_deliver_index are also saved as a part
of the checkpoint. Later on, suppose Pi fails. Its incarnation is
created in a normal node and its initial process state is reset to

its last checkpoint. In the situation, all messages that Pi has
received since its last checkpoint are lost. In order to let other
processes understand which messages are lost, Pi’s incarnation
broadcasts its vector last_deliver_index in the system.
Therefore, other processes can understand to send which
logged messages to Pi for its recovery.

Algorithm 1 Rollback Recovery protocol

Local Variables:
1: n, Pi {the number of processes, the ID of the process i}
2: Logi � {the set of logged messages in Pi}
3: depend_intervali� (0, ..., 0) {the vector of the current dependency in Pi }
4: last_send_indexi� (0, … ,0) {the vector of the last send index in Pi }
5: last_deliver_indexi� (0, …, 0) {the vector of the last delivery index in Pi }
6: last_ckpt_deliver_indexi� (0, …, 0) {the vector of the delivery index of the

last checkpoint in Pi }
7: rollback_last_receive_indexi � (0, …, 0) {the vector of the last receiving

index from other processes in the case of rollback }
rollback_last_send_indexi[j] � (0, …, 0) {the vector of the last receiving
index from the failed process Pi in the case of rollback}

8: Upon sending message m to Pj

9: last_send_indexi[j] = last_send_indexi[j]+1;
10: if last_send_indexi[j] > rollback_last_send_indexi[j] then
11: Send (MESSAGE, depend_intervali, send_indexi[j], m) to Pj;
12: Logi � Logi log_ item(j, last_send_indexi[j], depend_intervali, m)

13: Upon receiving (MESSAGE, depend_interval, send_index, m) from Pj
14: put the message m (j, depend_interval, send_index, m) into the receiving

queue

15: Upon delivering message
16: suppose m is the first message in the receiving queue
17: If depend_intervali[i] >= m.depend_interval[i] then
18: j = m.sender_id
19: if m.send_index = last_deliver_indexi[j]+1 then
20: depend_intervali[i] = depend_intervali[i]+1
21: last_deliver_indexi[j] = last_deliver_indexi[j]+1
22: for k = 1 to n
23: if k � i and m.depend_interval[k] > depend_intervali[k] then
24: depend_intervali[k] = m.depend_interval[k]
25: get_deliverable_message = TRUE
26: takeout m from the receiving queue and deliver it to the application
27: else
28: Discard m from receiving queue
29: If get_deliverable_message ≠ TRUE then
30: let m is the next message in the receiving queue
31: if m ≠ null then goto 17th row else wait;

32: Upon checkpointing
33: Save (Imagei, Logi, last_deliver_indexi, last_send_indexi,

depend_intervali) of Pi on stable storage
34: for k = 1 to n
35: if last_deliver_indexi[k]> last_ckpt_deliver_indexi[k] then
36: send(CHECKPOINT_ADVANCE, last_deliver_indexi[k]) to Pk
37: last_ckpt_deliver_indexi[k] = last_deliver_indexi[k]

38: Upon Receiving (CHECKPOINT_ADVANCE, last_deliver_index) from
Pj

39: Release the log items with receiver_id = j and send_index <=
CHECKPOINT_ADVANCE.last_deliver_index in Logi

40: Upon recovering from a failure
41: Pi’s process image�Pi’s last checkpoint.Image
42: depend_intervali�Pi’s last checkpoint.depend_intervali

43: last_send_indexi�Pi’s last checkpoint.depend_intervali

395

44: last_deliver_indexi�Pi’s last checkpoint.depend_intervali
45: last_ckpt_deliver_indexi�depend_intervali
46: Broadcast (ROLLBACK, last_deliver_indexi) to all other processes

47: Upon receiving (ROLLBACK, last_deliver_index) from Pj
48: Send (RESPONSE, last_deliver_indexi[j]) to Pj;
49: while (∃ log item m in logi and m.receriver_id = j and
 m.send_index = ROLLBACK.last_deliver_index [i] + 1 then
50: send (MESSAGE, m.depend_interval, m.send_index, m.msg) to Pj
51: ROLLBACK.last_deliver_index[i] = ROLLBACK.last_deliver_index [i

] + 1

52: Upon receiving (RESPONSE, last_receive_index) from Pj
53: rollback_last_send_indexi[j] = RESPONSE.last_receive_index

C. Rollback recovery protocol
The rollback recovery protocol consists of three parts:

logging and checkpointing, recovering from a fault, and
identifying repetitive messages as shown in Algorithm 1.

1) Logging and checkpointing

The logging protocol is shown from the 8th line to the 31th

 line in Algorithm 1, in which sender-based logging strategy is
employed due to its desirable characteristics, such as
asynchronous memory buffering. When the process Pi sends a
message m to the process Pj, it increments its vector element
last_send_index[j] by 1 to count the total number of messages
sent to Pj, and piggybacks it and the vector depend_interval

 onto m to notify Pj of the dependency of m. In the meantime, P
i builds up a log item with the destination j, the sending index

last_send_index[j], the vector depend_interval, and m itself,
and puts it in the memory buffer as m’s log. When Pi delivers a
message m from Pj, Pi increments its vector element
depend_interval[i], and last_deliver_index[j] by 1,
respectively, and merges the piggybacked vector
depend_interval on m into its own vector depend_interval to
update its current dependency, and then delivers m.

The checkpointing protocol is shown in Algorithm 1 (from
the 32th line to the 39th line). Every process may take
independently a checkpoint before it is going to deliver a
message. Besides the application state, the vectors
depend_interval, last_deliver_index and last_send_index, and
the logged messages should also be the content of the
checkpoint. After a process takes a checkpoint, the messages
the process has delivered are not rolled back any more due to a
fault. Therefore, their corresponding logs may be discarded.
The vector ckpt_last_deliver_index serves this purpose.

2) Recovering from a fault

As to fault recovery, suppose that the process Pi fails. An
incarnation is created in a spare normal node to take over and
act on Pi’s behalf. Thus the incarnation becomes Pi and it
executes the following recovery operations, shown in
Algorithm 1 (from the 40th line to the 53th line):

(1) Reads Pi’s last checkpoint, including the vectors
depend_interval, last_deliver_index and last_send_index, and
then sets its process state to the last checkpoint.

(2) Broadcasts a rollback notification containing the vector
last_deliver_index to other processes. The purpose of

last_deliver_index is to let other processes know which
messages are lost due to the fault of Pi.

For any process getting the rollback notification from Pi,
supposing Pj, it sends to Pi a response with its vector element
last_deliver_index[i], letting Pi avoid sending some repetitive
messages to Pj during its rolling forward. In the meantime, Pj
also resends to Pi those logged messages with the destination
equal to i and the sending index larger than
last_deliver_index[j] contained in the notification. Note that
every resent message should be piggybacked with the logged
vector depend_interval as in normal execution mode to let Pi
understand what time to deliver it, as well as rebuild Pi’s vector
depend_interval.

Let’s shift to the side of Pi. There is a receiving queue in Pi.
The received messages are first put in the receiving queue.
Whenever Pi is going to deliver a message, the dependency
among messages must be followed. That is to say, for any
message in the receiving queue, only when Pi’s vector element
depend_interval[i] is larger than or equal to the piggybacked
depend_interval[i] on it, the message can be delivered. Or else
the message has to remain staying in the receiving queue. This
control is shown from the 16th line to the 31th line in Algorithm
1.

3) Identifying repetitive messages

During the period of rolling forward in a fault recovery,
when the process Pi sends a message m to another process,
supposing Pj, perhaps m is a repetitive message as to Pj. For a
repetitive message, it is unnecessary for Pi to send it. If the
response from Pj has been gotten, and Pi’s vector element
last_send_index[j] is less than or equal to the piggybacked
last_deliver_index[i] on the response, Pi knows that m is
repetitive, and then omits sending it. Or else Pi sends m.

Before Pi gets the response from Pj, it cannot judge whether
m is repetitive or not. So Pi has to send it conservatively.
Therefore, it is possible for a process to receive a repetitive
message from Pi. Before a process delivers a message m from
Pi, it first checks if the piggybacked send_index on m is less
than or equal to the vector element last_deliver_index[i] of its
own. If so, m is repetitive, and Pj discards it.

The identification of repetitive messages is shown from the
52th line to the 53th line and from the 10th line to the 11th line in
Algorithm 1.

D. The correctness of the protocol
Any rollback recovery protocol should ensure that the

dependency among messages is not violated and there is no
any lost message and no any repetitive message in the course
of fault recovery. In our logging protocol shown in the above
subsection, every sent message depends on the current process
state interval of its sender, while the current process state
interval of a process depends on both its last process state
interval and the last delivered message. Our protocol tracks
both the dependency of every message by the way of
piggyback, and the dependency of the current process state
interval by merging two dependency vectors. Therefore, for
messages sent to a process, their dependency is tracked directly
or transitively. This kind of track means that, when a message

396

is logged in normal execution time, its dependency can be
logged along with it. Upon a fault with one failed process, for
all messages needed for the fault recovery, the recovery
process can obtain them from the logs in the surviving
processes. The logged dependency is used to control the
delivery order.

When multiple simultaneous process failures take place, the
logged messages in failed processes are lost. For example,
suppose that P1, P2 and P3 fail at the same time as shown in Fig
2, thus the logged messages m1, m2, m3, m4, and m5 are lost.
Although P1 possibly delivers m0 first and then m2 when it rolls
forward in its recovery, not same as it did before the failure,
the execution is correct. The reason is that m0 and m2 are
independent on each other, thus their delivery order does not
impact P1’s correct outcome. That is to say, m6 does not
become an orphan message. Nevertheless, as to m7, the
situation is completely different. Although P1 possibly receives
m7 before m2 in its recovery, but it cannot deliver m7 before m2.
The reason is that the dependency of m7 indicates that m7
cannot be delivered until P1 has already delivered other 2
messages. In addition, even though the logs of m1, m2, m3, m4,
and m5 are lost due to the failures of P 1, P 2 and P 3, these
messages, along with their dependencies, are regenerated by P

1, P 2 and P 3 in the period of their rolling forward in recovery,
respectively. Their logs are also rebuilt correctly. As a result, in
the case of multiple simultaneous failed processes, the
dependency among messages is still followed, and no any
orphan message appears in rollback recovery.

Fig. 2. Rollback recovery in the case of multiple simultaneous faults

Furthermore, our protocol identifies every message by its
receiver and its sender via the vectors last_send_index and
last_deliver_index respectively to guarantee no lost message
and no repetitive message in rollback recovery. As to any
process, its last checkpoint records the vector
last_deliver_index, each element of which indicates the last
message that is not lost due to a later fault. Once a process
fails, its checkpointed vector last_deliver_index can let other
processes know which messages are lost and should be resent
by comparing the received last_deliver_index with their own
last_send_index. Hence, all lost messages are identified and
resent to let the failed process get recovery. For example, in
Fig.2, As to P1, the checkpointed vector element
last_deliver_index[0] is equal to 0, indicating no any message
delivery from P0. After the incarnation of P1 broadcasts a
recovery notification with the vector last_deliver_index in the
system, P0 knows that P1 lost the last 2 messages from P0, as
P0’s vector element last_send_index[1] is equal to 2.

In the meantime, our protocol also ensures that any process
does not deliver any repetitive message. Although a process
possibly sends a repetitive message in the period of its rolling
forward, its receiver can identify it by comparing its
last_deliver_index with the piggybacked sending_index. For
example, in Fig.3, suppose that the process P1 fails, it is
possible for P1 to send a repetitive message m3 to P3 in the
period of its rolling forward in recovery, as P1 does not get the
response from P3 yet before sending m3. Nevertheless, the
repetition can be identified by P3, because the piggybacked
sending_index on m3 is 1, less than or equal to the vector
element last_deliver_index[1] in P3. Thus P3 discards the
repetitive message m3.

Fig. 3. The situation of repetitive messages

From the above analyses, it can be concluded that, in our
protocol, the dependency among messages is followed, and no
lost message and repetitive message appears. So it is correct.

E. The implementation of complete non-blocking
There are two other issues to address in the implementation

of rollback recovery. The first one is that many communication
components are implemented in a synchronization mode in
message passing in parallel computing, such as MPICH [12].
That is to say, when a process sends a message by calling a
communication API, its execution is blocked until the message
has been received by its receiver. If the receiver fails, the
sending will fails and the execution of the sender will be
blocked until the receiver recovers. So the failure of a process
hampers the execution of other normal processes. The second
one is that, during the period of recovery of a process, those
messages for rolling forward do not arrive in the same order as
in normal execution time. The reason is that there is no any
constraint in communication latency on sending a logged
message to a recovery process. Hence there appears a possible
situation that, even though a message arrives, it cannot be
delivered in recovery until all depended messages arrive and
are delivered. Therefore, it is vital for rollback recovery to
have a scheme to manage sending, receiving and delivering
messages effectively. This paper proposes a scheme based on
buffering and multithreading as shown in Fig. 4.

In the proposed scheme, the rollback recovery component
is embedded between the application component and the
communication component, as shown in Fig.4. Moreover, two
message buffering queues A and B are created in memory in
the rollback recovery component. The queue A is for receiving
messages, while the queue B is for sending messages.
Corresponding to two buffer queues, two other threads are
created for sending and receiving messages, respectively.
When the application thread sends a message m to the process
Pj, it attaches j as the receiver identifier and the vector element

P1

P2

P3

m3 m2

m1

P0
m0

m4 m5

m6 m7 m8

m0
P0

P1
m2

m3
P2

m1
P3

397

last_send_index[j] as the sending index to m, puts m into the
queue A, and then returns to continue its computation.
Therefore, its execution is not blocked. The sending thread is
responsible for sending the messages in the queue A based on
the sending protocol shown in Algorithm 1. Note that after a
message has been sent, it keeps in memory and is transformed
into a log. On the other side, the receiving thread puts every
received message in the queue B. When the application thread
is going to deliver a message, the delivery manager chooses the
desired one in the queue B according to the delivery protocol
shown in Algorithm 1. If there is no desired message in the
queue B, the application thread waits until the arrival of a
desired message.

 (a) the original architecture (b) the scheme for non-blocking

Fig. 4. The implementation scheme of complete non-blocking

It can be seen that this scheme completely eliminates
blocking of computation rooted in other process’s failure by
the way of buffering and multithreading. Moreover, it enables
computing, sending message and receiving message to execute
concurrently. It contributes to a lower overhead of rollback
recovery. Its effectiveness will be shown in the next section.

IV. EXPERIMENTAL EVALUATION RESULTS
In this section, we compare the protocol presented in

section 3 to the two existing representative protocols, one
based on antecedence graph [7] and the other based on event
logger [5], by several experiments to investigate the effect of
our lightweight causal message logging protocol. Additionally,
we evaluate the gain from the elimination of computation
blocking rooted in other process’s failure.

In research of rollback recovery, NAS NPB2.3 benchmark
[13] is a widespread adoption to evaluate and compare the
performance of various protocols. In our experiments, three
NAS NPB2.3 benchmarks, LU, BT and SP, were used to
compare the performance of 3 rollback recovery protocols.
These benchmarks are MPI programs about molecular
dynamics calculations written in Fortran language. They have
different representative features: LU with high message
frequency and relatively small checkpoint size, BT with large
checkpoint size, large message data size and relatively low
message frequency, and SP with moderate message frequency
and checkpoint size, relative to LU and BT.

We have established an experimental testbed to execute
parallel computing. The lightweight causal message logging
protocols as well as the non-blocking communication scheme
described in the section 3 were implemented in our rollback
recovery support library WINDAR [14], while WINDAR was
embedded in MPI support library MPICH [12] consisting of
MPI API, ADI2 and NT_IPVISHM. The software hierarchy of
the system is shown in Fig. 5. In our experiment
configurations, every application consisted of 4, 8, 16, and 32
processes respectively, each of which runs on a PC with a
AMD Athlon 2.3GHZ CPU, 896M RAM, a 640G hard disk
and Windows XP operating system. All PCs are connected by
100M Ethernet. We set the checkpoint interval to 180 seconds
effective computation. We examined logging overhead and
recovery overhead in a checkpoint interval.

Application

MPI API of MPICH

ADI2 of MPICH

WINDAR

Windows API

Fig. 5. Software stack in the rollback recovery experiment

A. Comparisons of the piggybacking overhead in 3 protocols
We first investigated the piggybacking overhead in three

causal message logging protocols: TDI (Tracking based on
dependent interval presented in section 3), TAG (tracking
based on antecedence graph [7]) and TEL (tracking based on
event logger [5]), respectively. The piggybacking overhead
was measured in the two criteria: data amount and time.

The experimental results are shown in Fig. 6 and Fig. 7,
respectively. We can observe that both time overhead and data
amount overhead are remarkably smaller in our protocol than
in other two protocols. Especially when applications have
frequent message passing, such as LU, the effectiveness of our
protocol is more prominent. It is also true for a large-scale
system indicated by the number of processes. The reason is
that, for our protocol to achieve correct recovery, it is sufficient
only to track the current number of delivered messages in
every process. In contrast, the other two protocols need to track
the whole history of all events of message delivery in every
process. Therefore, the data amount of piggyback is
significantly reduced in our protocol, which also leads to a
positively proportional reduction in time overhead. The large
amount of piggyback is one source of high time overhead.
Another source is the calculation of the increment of
antecedence graph. The purpose of this calculation is to reduce
of the amount of piggyback. Such a calculation does not exist
in our protocol, while it refers to a traverse to an antecedence
graph in the other two protocols. Consequently, our protocol
has no calculation overhead.

The experimental results also show that our protocol has a
better scalability in contrast to the other two protocols. The
reason is that, for a process going to send a message, since
there is no way for it to precisely know the antecedence graph
that the receiver currently holds, it has to piggyback
conservatively sufficient metadata to the receiver. Such a

Communication component

Application component

Sending API Receiving API

Communication component

B

Receiving API

Application component

Delivery manager

SendingAPI Receiving API

Sending manager

Recovery component

Sending API

A

398

conservative scheme leads to a lot of redundant piggyback of
metadata. This redundancy is in the order of a vector in our
protocol, while it is in the order of a two-dimensional graph of
message meta in the other two protocols. Therefore, the
effectiveness of our protocol is more significant in the
scenarios of large system scale or frequent message passing.

Fig. 6. The comparison of the average amount of piggyback in 3 protocols on
3 benchmarks LU,BT and SP

Fig. 7. The comparison of the time overhead of tracking in 3 protocols on 3
benchmarks LU,BT and SP

Additionally, we can observe that three applications have
very different time overhead. The reason is that they have
different message passing frequency and communication
pattern. For example, LU has a frequent message passing, so its
time overhead is much higher than that of BT and SP. TAG
and TEL protocols need to maintain an antecedence graph for
dependency tracking. The size of the antecedence graph is
positively proportional to the frequency of message passing. So
the piggyback amount and time overhead increase sharply with
the frequency of message passing and the system scale in TAG
and TEL protocols. In contrast, our protocol maintains only a
vector with the size of node scale in the system, and has no
increment calculation .Therefore, its piggyback overhead
increase linearly with the system scale, while its time overhead
is hardly relevant to the system scale.

B. 4.2 The gain from eliminating blocking of computation
Our second experiment was conducted to evaluate the gain

from eliminating blocking of computation rooted in other
process’s failure presented in subsection 3.5. In this experiment,
we constructed two communication modes shown in Fig.4 (a)
and (b) respectively, and employed our protocol TDI for
rollback recovery. After a process took a checkpoint, we let it
run for 180 seconds, and then triggered a fault and then
immediately carried out the rollback recovery. The gain is
defined as the normalized difference of the accomplishment
time of computation task in two communication modes:
blocking and non-blocking.

Fig. 8. The gain from non- blocking on 3 benchmarks LU,BT and SP

The gain is shown in Fig.8. It can be observed that it is
explicit in 3 benchmarks, especially when the system scale
becomes large. Additionally, we note that, although the gain in
application LU is largest when the number of processes is 32, it
is not positively proportional to the number of messages. The
explanation is that the data amount of messages also plays an
important role in the gain. Bigger is the size of a message,
longer is its transmission time. Hence the blocking time of
computation is also correspondingly longer when the blocking
mode is employed. Moreover, the receiver of a message also
plays an important role in blocking. When a process is sending
a big message, if the receiver is executing a recovery or

 TDI TEL

LU BT SP LU BT SP LU BT SP LU BT SP
4 4 4 8 9 8 16 16 16 32 25 32

 The number of processes

0

40

Average amount of Piggyback per message (the number of identifiers)

20

60

30

10

50

70

TAG

80

90

100

110

LU BT SP LU BT SP LU BT SP LU BT SP
4 4 4 8 9 8 16 16 16 32 25 32

The number of processes

0

60%

100%

Normalized accomplishment time

40%

20%

80%

Blocking mode Non-blocking
d

 TDI TEL

LU BT SP LU BT SP LU BT SP LU BT SP
4 4 4 8 9 8 16 16 16 32 25 32

 The number of processes

0

10%

The ratio of time overhead (overhead / effective execution time)

5%

15%

7.5%

2.5%

12.5%

17.5%

TAG

20%

22.5%

25%

27.5%

399

application computation, it has to wait. The reason is that the
buffering memory in communication subsystem is limit and
not enough to cache the whole message. The blocking of the
sending process does not end until the receiving process
transits from recovering or computing to receiving a message.
Therefore, for performance improvement, it is significant to
eliminate blocking by the way of buffering and multithreading
presented in Section 3.5.

Although the experimental results show some gain from the
non-blocking of computation, it is not very significant. The
reason is that all processes are close coupled with each other in
three applications. Once a process fails, other processes cannot
advance in their computation at all, as they need messages
from the failed process. Therefore, they have to wait for the
recovery of the failed process.

V. THE RELATED WORK
 In various rollback recovery protocols, causal message

logging [4] shows many good characteristics. For example,
every process can take its checkpoints independently, and
recover independently from a fault. Moreover, there is no
synchronization constraint in message logging and delivering.
Therefore, they are widely applied to fault tolerance of high
performance computing and parallel program debugging.
However, their piggybacking overhead is hardly acceptable,
especially in large-scale systems [15-16] and in the scenarios
of frequent message passing. Manetho [6] is the first to address
the piggybacking overhead. It used an antecedence graph to
describe the causal relationship between non-deterministic
events of message delivery. In order to remove redundant
piggybacking, when a process sends a message to another one,
it does not piggyback the complete graph, but an incremental
part. For those metadata that the sender knows that the receiver
already holds, they do not need to be sent back to the receiver.
LogOn [7] did an improvement to Manetho. It partially
reorders events from the inheritance relationship in the
antecedence graph by exploiting the semantics of the metadata
of message. This treatment enables an adequate utilization of
the semantics of the antecedence graph to easy and accurate the
calculation of an incremental part.

The above two approaches do not have any assumption on
the number of simultaneous faults in a system. Thus the
condition ending the piggyback of the metadata of a message is
that all processes hold it and know that all other processes
already hold it. This situation inevitably gives rise to many
unnecessary piggyback, thereby leading to an unacceptable
piggybacking overhead. Alvisi [8] proposed 3 schemes to
control the propagation of the metadata of a message under the
assumption of at most f simultaneous faults in the system. With
the assumption, it is sufficient for the metadata of a message to
be piggybacked to only f+1 processes. To know how many
processes already hold the metadata of a message, extra
tracking information is introduced and also needs to be
piggybacked as the metadata of messages does. The size of
tracking information can be O(n2), O(n) or O(1), where n is the
number of processes in the system. Of course, little tracking
information generally corresponds to poor control accuracy.
However, no matter how much extra tracking information is
piggybacked, there is no way for a process to precisely know

how many other processes already hold the metadata of a
message.

To address the above problem, Event logger [5],[9] was
proposed. It introduces a stable storage to save metadata, and
keep asynchronous message logging. In this scheme, the
piggyback of the metadata of a message ends as soon as it is
saved on the stable storage. Although the piggyback overhead
is remarkably reduced, besides the stable storage, extra
notification messages are also introduced in the system.

As to the piggybacking overhead, the above-mentioned
causal message logging protocols are poor in scalability. To
address this problem, system partition schemes [15],[17-18]
came out. After a big system is structured into some small
units, conventional causal logging is conducted in a small
scale. For those messages across the boundary, their
dependency is dealt with via various measures, such as
pessimistic logging [17], transformation [15], and replication
[10].

All the above-mentioned researches are under the
assumption of the PWD execution model. The track of the
dependency refers to the delivery order number of every
message. Although some improvements are achieved, they are
not essential. In contrast with the PWD execution model, the
send deterministic execution model [11], [19-20] was proposed
to address the conservative characteristics of PWD, which
argues that the sequence of messages sent by each process is
the same in any correct execution of the application. This new
model enables new rollback-recovery protocols to lower the
message logging overhead [21].

Our protocol in Section 3 is similar to the send
deterministic execution model. It is different from the existing
causal message logging protocols in that it considers the
correct recovery of a failed process can be achieved by
following the dependency among messages, not necessarily by
the strictly same delivery sequence of messages. Therefore, in
the normal time, the track of dependency can be relaxed from
logging the delivery order of every message to logging the
number of delivered messages. Furthermore, this kind of
logging only happens at the time of sending a message. This
kind of relaxation leads to a significant reduction of the
logging overhead from piggybacking a much smaller data
amount of dependency and from eliminating the calculation of
the incremental part of piggyback. In our protocol, the
piggyback onto a message refers to only a vector of integer. In
contrast, it involves a two-dimensional graph of message meta
in existing causal logging protocols.

Additionally, our protocol achieves a proactive perception
of delivery order of messages. In existing causal logging
protocols, as to a message, its metadata log and its raw data log
are completely separated in different time and places.
Specifically, its sender logs its raw data. Afterwards, its
metadata is constructed when it is delivered, and then is logged
in other processes depending on it. As a result, when a failed
process rolls back for recovery, only after it receives both the
metadata and the raw data of a message from different
processes, it can determine what time to deliver this message.
In our protocol, when a process sends a message, it knows the
dependency of the message. Thus the dependency information

400

and the raw data of a message are logged together in its sender.
Therefore, our protocol achieves a proactive perception of
delivery order of messages. As to a logged message, it delivery
order is determined as soon as it arrives in the recovering
process. Consequently, the overhead of rolling forward is also
reduced significantly.

VI. CONCLUSIONS
In various rollback recovery protocols, as causal message

logging does not require any rollback of normal process in the
case of fault recovery, and has no any synchronization
constraint on message logging and delivering, it becomes a
widespread adoption to fault tolerance in high performance
computing and to parallel program debugging. However,
existing causal message logging protocols have a hardly
acceptable piggybacking overhead, especially when the system
scale has been enlarging or there is frequent message passing.
The high overhead arises from their conservation in the
assumption of the piecewise deterministic execution model. As
to correct rollback recovery, this model is sufficient, but not
necessary. Correct rollback recovery can be achieved by
following the dependency among messages, not necessarily by
strictly same delivery sequence of messages. Therefore, in our
causal logging protocol, the track of dependency is relaxed
from logging the delivery order of every message to logging
the number of delivered messages. This kind of relaxation
leads to an effective reduction of the data amount of piggyback
onto a message from a two-dimensional graph of message meta
to a vector of integer. Consequently, the piggybacking
overhead is significantly reduced, with a subsidiary benefit of
the decrease of the rolling forward overhead in fault recovery.
In addition, our protocol completely eliminates blocking of
computation rooted in other process’s failure by the way of
buffering and multithreading, leading to a further decrease in
the rollback recovery overhead. Our protocol achieves a good
scalability, as its time overhead is hardly relevant to the node
scale of the system.

ACKNOWLEDGMENT
This work was supported in part by National Natural

Science Foundation of China under grant 61272401, Key
Science and Technology Plan of Hunan province under grant
2013GK2003, and the Prospective Research Project on Future
Networks of Jiangsu Future Networks Innovation Institute
under grant 2013095-1-05.

REFERENCES
[1] X. Yang, Z. Wang and J. Xue, “The reliability wall for exascale

supercomputing,” IEEE Transactions on Computers, 2012, Vol. 61, No.
6 , pp. 767–779.

[2] F. Cappello, A. Geis and W. Gropp et al,”Toward exascale resilience –
2014 update,” Journal of Supercomputing Frontiers and Innovations,
2014,vol. 1, No.1, pp.5–27.

[3] R. Gupta1, H. Naik and P. Beckman,”Understanding checkpointing
overheads on massive-scale systems: analysis of the IBM Blue Gene/P
system,” Int’l Journal of High Performance Computing Applications,
2011, Vol.25, No.2, pp.180–192.

[4] E. Elnozahy, L. Alvisi, and Y. Wang et al,”A survey of rollback recovery
protocols in message passing systems,” ACM Computing Surveys, 2002,
Vol.33, No.3, pp.375–408.

[5] A. Bouteiller, B. Collin and T. Herault et al,”Impact of event logger on
causal message logging protocols for fault tolerant MPI,” 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’05), 2005, pp. 97–106.

[6] E. Elnozahy and W. Zwaenepoel,”Replicated distributed processes in
manetho,” In 22nd International Symposium on Fault Tolerant
Computing, 1992, pp.18–27.

[7] B. Lee, T. Park and H. Yeom et al,”An efficient algorithm for causal
message logging,” In 17th Symposium on Reliable Distributed
Systems,1998, pp.19–25.

[8] K. Bhatia, K. Marzullo and L.Alvisi,”Tracking causality in causal
message logging protocols,” Distributed Computing, 2002, Vol.
15,No.1,pp. 1–15.

[9] T. Ropars, C. Morin,”Improving message logging protocols scalability
through distributed event logging,” Euro-Par 2010-Parallel Processing,
2010.

[10] E. Meneses, G. Bronevetsky and L. Kale, “Evaluation of simple causal
message logging for large-scale fault tolerant HPC systems,” IEEE
International Symposium on Parallel and Distributed Processing , 2011,
pp.1533–1540

[11] F. Cappello, A. Guermouche and M. Snir,”On communication
determinism in parallel HPC applications,” In 19th International
Conference on Computer Communications and Networks (ICCCN),
2010, pp.1–8.

[12] MPICH | high-performance portable MPI. https://www.mpich.org/, 2014.
[13] NAS parallel benchmarks. NASA Ames Research Center.

http://science.nas. nasa.gov/ Software/NPB/, 2012.
[14] J. Yang, D. Zhang and X. Yang,”WINDAR: a multithreaded rollback-

recovery toolkit on Windows,” In 10th IEEE Pacific Rim dependable
Computing International Symposium, 2004.

[15] K. Bhatia and K. Marzullo and L. Alvisi, ”Scalable causal
messagelogging for wide-area environments,” Concurrency and
Computation: Practice and Experience, 2003, Vol.15, No.3, pp. 873–889.

[16] J. Lifflander, E. Meneses and H. Menon et al,”Scalable replay with
partial-order dependencies for message-logging fault tolerance,” IEEE
International Conference onCluster Computing (CLUSTER), 2014,
pp.19–28

[17] A. Bouteiller, T. Herault and G. Bosilca et al,”Correlated set coordination
in fault tolerant message logging protocols for many-core clusters,”
Concurrency and Computation: Practice and Experience, 2013, Vol. 25,
pp.572–585

[18] Y. Ci, Z. Zhang and D.Zuo et al, ”Message fragment based causal
message logging,” Journal of Parallel and Distributed Computing. 2009,
Vol.69, pp. 915–921.

[19] A. Guermouche, T. Ropars and M.Snir et al, ”HydEE: Failure
containment without event logging for large-scale send-deterministic MPI
applications,” IEEE 26th International Parallel and Distributed
Processing Symposium, 2012, pp.1216–1227.

[20] A. Guermouche, T. Ropas and E. Brunet,”Uncoordinated checkpointing
without domino effect for send-deterministic MPI applications,” IEEE
Int’l Parallel & Distributed Processing Symp.(IPDPS), 2011, pp. 989–
1000.

[21] N. E. Sayed and B.Schroeder,” Understanding Practical Tradeoffs in
HPC Checkpoint-Scheduling Policies,” IEEE Transactions on
Dependable and Secure Computing, 2016, DOI 10.1109/TDSC.
2016.2548463

401

