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a b s t r a c t 

Seam carving is a popular content-aware image resizing technique by removing unnoticeable seams with 

low energies for aesthetic purpose. However, it might also be used for malicious forgeries such as object 

removal. In this paper, a blind forensics approach is proposed to detect resized images by seam carving. 

Since seam carving mainly changes local textures, two excellent texture descriptors including Weber Lo- 

cal Descriptor (WLD) and Local Binary Patterns (LBP) are exploited for seam carving forgery detection. 

Specifically, the histogram features of WLD and LBP are extracted from candidate images, respectively. 

Then, Kruskal–Wallis statistic is exploited to select a subset of more discriminative features. Finally, sup- 

port vector machine (SVM) is exploited as classifier to judge whether an image is original or suffered 

from seam carving. Extensive experiment results on a large set of test images show that the proposed 

approach achieves better performance than the state-of-the-art approaches. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the popularity of inexpensive and portable image cap-

ure devices such as mobile phone, almost everybody can conve-

iently record and share digital images nowadays. Meanwhile, it

s increasingly easier for ordinary users to create tampered images

ith various image editing software such as PhotoShop. Moreover,

he tampered images are very difficult, if not impossible, to be dis-

inguished from authentic photographs by naked eyes. Thus, image

orgery detection is an active topic in the field of information se-

urity [1] . Seam carving is a widely-accepted content-aware image

esizing technique for aesthetic purpose. It achieves superior re-

izing performance by compromising well between protecting im-

ortant region and keeping overall content. Seam carving has been

dopted in PhotoShop CS 6 and GIMP as adaptive scaling [2] . How-

ver, seam carving can also be used for malicious purposes. Firstly,

t might be used to correct photo composition, which will be a

heating when the resultant image is used for photo competition.

econdly, it can also be deliberately used for object removal, which

sually changes image semantics. Therefore, it is worthy of inves-
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igation to design a detection approach to expose those retargeted

mages after seam carving. 

In recent years, there exist several approaches for seam carv-

ng forgery detection. Lu et al. presented an active approach to

etect seam carving by exploiting the well-designed side informa-

ion called forensic hash [3] . It is effective for seam carving detec-

ion and can even estimate some key parameters. However, foren-

ic hash is usually forgery-specific and should be built in advance.

oreover, it might be removed by falsifiers. For blind detection,

arkar et al. made the first attempt by exploiting 324D Markov

eatures from candidate images to unveil seam carving [4] . Later,

illion et al. proposed a detection approach by exploiting a set of

ntuitively motivated features such as wavelet absolute moments.

or the resized images with more than 30% shrinkage, it improves

he detection accuracy up to 91% [5] . Wei et al. presented a patch

nalysis approach for seam carving detection [6] . Suspicious im-

ges are divided into mini-squares. Then, an optimal type of patch

s searched from nine types for each mini-square, which is likely

o recover a mini-square from seam carving. Finally, Markov fea-

ures are constructed by considering patch transition probabilities

or connecting mini-squares in the subdiagonal, vertical and diag-

nal directions. It achieves detection accuracies up to 92.2%, 92.6%

nd 95.8% for resized images with 20%, 30% and 50% shrinkages,

espectively. Motivated by the changes of energy and noise distri-

http://dx.doi.org/10.1016/j.jisa.2017.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2017.09.003&domain=pdf
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bution, Ryu et al. presented an energy bias and noise based ap-

proach for seam carving detection [7] . In our recent work, local

binary pattern (LBP) is introduced into seam carving detection [8] .

It exploits the same features of energy and noise bias, which are

extracted in LBP domain instead of pixel-domain. Since LBP high-

lights the texture changes caused by seam carving, it leads to bet-

ter performances over the state-of-the-art approaches. 

We still believe that if the inherent mechanism of seam carv-

ing are fully considered and the visual distortions caused by seam

carving are further exploited, more discriminative features specific

to seam carving forgery are possible to be designed to improve

detection accuracy. The content-aware mechanism of seam carv-

ing makes the resized images without any common and noticeable

distortions such as blurriness in blind forensics. Instead, informa-

tion loss and possible shape distortions such as geometric defor-

mation are the main artifacts of seam carving. However, it is still

an open issue to measure geometric deformation and information

loss without reference image in the field of image quality assess-

ment (IQA). This is also a great challenge for seam carving detec-

tion. Thus, local and global texture changes are more feasible for

seam carving detection than explicitly modeling shape distortions

and information loss. In our earlier work [8] , LBP, which is a sim-

ple yet effective local texture descriptor, is exploited to unveil local

texture changes for seam carving detection. However, LBP consid-

ers only the signs of pixel differences between central pixel and

its neighboring pixels. That is, LBP-based feature is an index of dis-

crete patterns rather than a numerical feature, and can not provide

any intensity information about image texture [9] . Luckily, weber

local descriptor (WLD) is also an excellent texture descriptor for

texture description and classification. It is composed of differential

excitation and orientation [10] . Motivated by the fact that multi-

ple texture descriptors might significantly improve texture classi-

fication performance compared with single descriptor, we attempt

to simultaneously exploit LBP and WLD for feature extraction to

improve the accuracy of seam carving forgery detection. Specif-

ically, candidate images are firstly divided into blocks, and both

LBP-based and WLD-based histogram features are extracted from

each block. Then, Kruskal–Wallis statistic is exploited to select a

subset of more discriminative features from them. Finally, SVM is

exploited as classifier to judge whether an image has been suffered

from seam carving or not. 

The rest paper is organized as follows: Section 2.1 summaries

image seam carving and makes a preliminary analysis of its detec-

tion. Section 3 briefly introduces LBP and WLD. Section 4 presents

the proposed blind detection approach. Section 5 reports the ex-

perimental results and analysis, and we conclude this paper in

Section 6 . 

2. Image seam carving and its possible artifacts for blind 

forensics 

2.1. Preliminaries of seam carving 

Seam carving is a content-aware image resizing technique. A

seam is an 8-connected path of single pixel width, either from top

to bottom or from left to right. Let I be an image of size M × N .

Let a vertical seam be an example. It is restricted by the horizontal

offsets of no more than one pixel between adjacent rows. That is,

s v = { ( i, col ( i ) ) } n i =1 , s.t. ∀ i, | col(i ) − col(i − 1) | ≤ 1 (1)

where i and col ( i ) are the row and column coordinates, respec-

tively. A vertical seam s is defined by summing the energies of

those pixels along a connected path from top to bottom. Please

note that the optimal seam s ∗ is found by minimizing the energy

via dynamic programming, as shown in Eq. (2) . The energy value
f single pixel is given by Eq. (3) , which is a Sobel-operator-based

unction. 

 

∗ = min 

s 
{ E(s ) } = min 

s,s = { s i } n i =1 

{ 

n ∑ 

i =1 

e (I(s i )) 

} 

(2)

 (I) = 

∣∣∣∣ ∂ 

∂x 
I 

∣∣∣∣ + 

∣∣∣∣ ∂ 

∂y 
I 

∣∣∣∣ (3)

o remove a vertical seam, the most adjacent pixels, which are lo-

ated at the right side of those pixels along this seam, are moved

eft one pixel to fit the gap left by seam removal. Since a seam

s a connected path with minimum energy, removing such a seam

as less impact on the resultant image. In most cases, image seam

arving preserves well visually important content by successively

emoving unnoticeable seams. Fig. 1 is an example of image seam

arving with 30% vertical shrinkage. Fig. 1 (a) is the original image.

rom Figs. 1 (b) and (c), we observe that seams firstly pass through

hose pixels with lower energies. Fig. 1 (d) is the resultant image.

pparently, seam carving keeps well the most important region of

nterests such as the castle, and does not leave any visually notice-

ble artifacts such as blurriness. In such a natural manner, seam

arving is attractive for content-aware image retargeting. 

However, seam carving still might lead to three types of possi-

le artifacts, which include global structure deformation, local tex-

ure distortion and information loss [11] . Fig. 2 shows an over-

queezed image by seam carving, in which there is global struc-

ural deformation. It is straightforward that objective quality as-

essment of retargeted image might play an important role in seam

arving detection. In the literature, there exist a few approaches

or the quality assessment of seam carving. Fang et al. proposed a

tructural similarity-based objective assessment method for image

etargeting [12] . A structural similarity map (SSIM) is defined to in-

icate how the structural information in source image is preserved

n retargeted image. Hsu et al. also presented an objective qual-

ty assessment approach for image retargeting by exploiting per-

eptual geometric distortion and information loss [11] . However,

o the best of our knowledge, these existing approaches are full-

eference image quality assessment (IQA) approaches [13] , which

akes them unsuitable for the purpose of blind detection. That is,

t is still an open issue to explicitly model retargeting distortions

ithout reference images. 

.2. Most possible clue for seam carving detection 

Among the possible artifacts caused by seam carving, geomet-

ic distortion is the most annoying since it usually leads to visually

npleasant shape deformation of prominent object. This implies

hat even without the aid of passive forensics, geometric distor-

ion is highly likely to be perceived by naked eyes. Thus, geometric

istortion seldom occurs in practical seam carving detection cases.

or information loss, it is also a common concern for seam carv-

ng, its quality assessment and blind detection. However, it can be

esolved in seam carving by integrating with other resizing tech-

iques such as cropping and adaptive scaling or taking saliency

ap into the definition of energy function. Actually, seam carving

eeps well the main content that an image conveys, especially its

emantic information. Unluckily, it is still an unresolved problem

o objectively measure the information loss caused by seam carv-

ng. Even for full-reference IQA approach, it is not trivial to assess

he information loss with the original image as ground truth. In

11] , a simple saliency loss ratio (SLR) is presented to measure the

nformation loss. SLR is defined as the percentage of lost saliency

ap in image retargeting with respect to the original saliency map.

pparently, SLR is image content-dependent, which makes it con-

ribute just a little for IQA. Since original images are unavailable
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Fig. 1. Removing vertical seams: (a) original image; (b) original image with seams marked in red; (c) gradient map with seams marked in red; (d) resultant image after 

removing 30% seams. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. An over-squeezed image by seam carving. (a) original image; (b) resized 

image with structure deformation. 

f  

f

 

c  

a  

p  

f  

t  

c  

i  

t  

t  

c

3

3

 

c  

c  

f

L  

w  

i  

R  

g  

o  

b  

t

H

w  

·  

e  

i  

s

3

 

d  

p  

T  

o  

a  

x

v

w  

p  

t  

p

G

w  

i  

c

ξ

 

L  

t  

t

θ

or the blind detection of seam carving, information loss is not a

easible clue, at least not a good choice at present. 

Local texture distortion is the most possible clue for seam

arving forgery detection. Firstly, local texture distortion is not

s visually unpleasant as geometric deformation, but still brings

erceptual impairments to users. Secondly, it makes more sense

or the blind forensics of retargeted images without global struc-

ure/geometric deformation. This motivates us to address seam

arving forgery detection in an analytical and practical way. That

s, local texture distortion is further exploited for seam carving de-

ection. Moreover, instead of explicitly modeling local texture dis-

ortion, more discriminative texture features are designed by fully

onsidering its perceptual impairments. 

. Brief introduction of LBP and WLD 

.1. LBP 

LBP is a simple yet efficient texture descriptor to describe lo-

al image pattern. Given a pixel g c in an image, a pixel-wise LBP

ode is computed by comparing it with its neighborhood pixels as

ollows. 

BP P,R (x c , y c ) = 

P−1 ∑ 

n =0 

δ(g n − g c )2 

n (4)

here g c is the central pixel with coordinate ( x c , y c ), and g n are

ts neighboring pixels. P is the number of neighboring pixels, and

 is the radius of neighborhood. δ( · ) is a sign function. If it meets

 n ≥ g c , δ( · ) is given a value of 1, or else 0. Fig. 3 shows the process

f basic LBP operator. For an image I of size N × M , let LBP P, R ( i, j )

e the identified LBP pattern of each pixel ( i, j ). Then, the image

exture is represented by a histogram vector h of length K : 

(k ) = 

N ∑ 

i =0 

M ∑ 

j=0 

δ(LBP P,R (i, j) , k ) , k ∈ [0 , K (5) 

here 0 ≤ k ≤ K − 1 , and K = 2 p is the number of LBP codes. δ( · ,

) is the Dirac delta function. If LBP P, R ( i, j ) equals k , then δ( · , · )
quals 1 or else 0. The LBP-based histogram is a widely-used in

mage analysis applications including texture classification and de-

cription. 

.2. WLD 

WLD is also a simple yet robust local texture descriptor for

igital image [10] , which was inspired by Weber’s Law. It is com-

osed of two components: differential excitation and orientation.

he differential excitation component is to reflect the changes

f current pixel. Firstly, the differences between current pixel

nd its neighbors are computed using the filter f 00 as follows.

 s = 

[ 

x 0 x 1 x 2 
x 7 x c x 3 
x 6 x 5 x 4 

] 

, f 00 = 

[ +1 +1 +1 

+1 −8 +1 

+1 +1 +1 

] 

, 

f 01 = 

[ 

0 0 0 

0 +1 0 

0 0 0 

] 

, f 10 = 

[ 

0 −1 0 

0 0 0 

0 +1 0 

] 

, 

f 11 = 

[ 

0 0 0 

+1 0 −1 

0 0 0 

] 

 

00 
s = 

p−1 ∑ 

i =0 

(�x i ) = 

p−1 ∑ 

i =0 

(x i − x c ) (6) 

here x i ( i = 0 , 1 , · · · , p − 1 ) is the i th neighboring pixel of x c and

 is the number of neighbors. Then, the ratio of the differences to

he intensity of current pixel is computed by combining the out-

uts of two filters f 00 and f 01 as follows. 

 ratio (x c ) = 

v 00 
s 

v 01 
s 

= 

p−1 ∑ 

i =0 

(
x i − x c 

x c 

)
(7) 

here v 01 
s is the output of filter f 01 , which is actually the original

mage. Finally, the differential excitation ξ ( x c ) of current pixel x c is

omputed as 

(x c ) = arctan (G ratio (x c )) = arctan ( 
v 00 

s 

v 01 
s 

) = arctan 

[ 

p−1 ∑ 

i =0 

( 
x i − x c 

x c 
) 

]

(8) 

et v 11 
s and v 10 

s are the outputs of two filters f 11 and f 10 , respec-

ively. That is, v 11 
s = x 5 − x 1 and v 10 

s = x 7 − x 3 . The gradient orien-

ation component of current pixel is computed as: 

(x c ) = arctan 

(
v 11 

s 

v 10 
s 

)
(9) 
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Fig. 3. basic LBP operator. 
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where θ is within [ −π/ 2 , π/ 2] . Following the values of v 11 
s and

v 10 
s , θ is mapped to θ

′ ∈ [ 0 , π ] as follows. 

θ
′ 
(x c ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

θ v 11 
s < 0 and v 10 

s < 0 

θ + π v 11 
s > 0 and v 10 

s > 0 

θ + π v 11 
s < 0 and v 10 

s > 0 

θ + 2 π v 11 
s > 0 and v 10 

s < 0 

(10)

For simplicity, θ
′ 
(x c ) is further linearly quantized into T dominant

orientations as follows. 

�t = f q (θ
′ 
) = 

2 t 

T 
π and t = mod 

(⌊
θ

′ 

2 π/T 
+ 

1 

2 

⌋
, T 

)
(11)

where T is the number of dominant orientations. If T = 8 ,

these dominant orientations are �t = (tπ) / 4 , (t = 1, 2, …, T-1).

After computing each pixel’s differential excitation ξ ( x c ) using

Eq. (8) and orientation �t using Eq. (11) , we compute the 2D his-

togram WLD ( ξ i , �t ), i = 0 , 1 , . . . p − 1 , t = 0 , 1 , . . . T − 1 . Since the

WLD-based histogram is computed pixel-wise, it is a dense de-

scriptor with strong capability of texture description. 

4. Proposed method 

As claimed in Section 2.2 , local texture distortion is the most

feasible trace to expose the artifacts left by seam carving. LBP has

excellent properties such as low computational cost and strong ro-

bustness to illumination variations [14,15] . However, LBP is sen-

sitive to noise and does not provide sufficient information about

texture direction. Even different texture patterns might share sim-

ilar LBP codes in some cases. WLD is a dense descriptor computed

for each pixel, which provides stronger texture representation than

LBP, especially in capturing local salient patterns. Thus, WLD pro-

vides some supplementary texture description with respect to LBP.

Inspired by the success of LBP in our earlier approach [8] , WLD

and LBP are jointly exploited to better reflect the texture variations

caused by seam carving. Fig. 4 is the block diagram of the proposed

approach. Firstly, color candidate images are transformed into gray-

scale images. Secondly, the WLD and LBP-based histogram features

are extracted from them. Thirdly, Kruskal–Wallis analysis is ex-

ploited to select a subset of discriminative features, which are sim-

ply fused by concatenation. Finally, SVM is exploited as classifier

to decide whether a candidate image is seam-carved or non-seam-

carved. 

4.1. Extraction of LBP-based and WLD-based histogram features 

The dimension of LBP-based features depends on the selection

of R and corresponding P . In this paper, we select R = 1 and P = 8

(since LBP is computed in a 3 × 3 neighborhood) by experiments.

That is, only 8-connected neighboring pixels are involved in com-

puting LBP. By recursively computing the LBP value for each pixel,
he input image is transformed into LBP domain. Thus, the LBP(8,1)

perator produces a 256D histogram feature. 

For the WLD-based histogram { WLD ( ξ j , θ t )}, ( j = 0, 1,…, N -1, t = 0,

, …, T -1), it is computed from both differential excitation ξ ( x c )

nd orientation θ . N is the dimensionality of an image, and T is

he number of dominant orientations. Thus, the dimension of this

istogram is T × C , where C is the number of cells in each orien-

ation. That is, each column corresponds to a direction θ and each

ow corresponds to a differential excitation histogram with S bins.

he WLD-based histogram is computed for each block. Fig. 5 shows

he procedure of WLD histogram { WLD ( ξ j , θ t )}. Let M be the num-

er of segments of each sub-histogram. In this paper, an image is

ivided into 3 × 3 blocks, and θ is divided into 8 orientations

from −π /2 to π /2) for each block. Moreover, an 8D histogram

s extracted from each orientation. That is, the selected parame-

ers are T = 3, M = 8, S = 8. Finally, the whole image is considered as

 block to obtain the 64D histogram features from 8 orientations.

hus, the dimension of the WLD-based histogram features is 640,

hich equals to [(3 × 3) + 1] × 8 × 8. 

Though WLD also computes the difference between center pixel

nd its neighbors as LBP, the differences are summed and then di-

ided by the value of center pixel to obtain the differential excita-

ion. Moreover, WLD has extra gradient orientation to describe tex-

ure directions. Thus, WLD provides stronger texture descriptions,

hich motivates us to exploit both WLD-based and LBP-based his-

ogram features. To prove the effectiveness of the LBP-based and

LD-based histogram features, a preliminary experiment is con-

ucted to show their changes when an original image is removed

0%, 20% and 30% seams, respectively. Fig. 6 reports the experi-

ental results. Fig. 6 (a) is the original image, Figs. 6 (b)–(d) are the

mages with 10%, 20% and 30% seams to be removed, respectively.

igs. 6 (e) and (f) are the LBP-based and WLD-based histograms for

he original image and the resized images. From Figs. 6 (e) and (f),

e can observe that with the increment of scaling ratios, there are

rends of local peak descending for both LBP-based and WLD-based

istograms. 

.2. Kruskal–Wallis test for feature selection 

The LBP-based and WLD-based histogram features are 256D and

40D, respectively. Thus, we obtain 896D features. Since some fea-

ures may contribute little to detection accuracy but bring com-

utational complexity, feature selection is used to remove irrele-

ant and/or redundant features. In this paper, Kruskal–Wallis test

s selected for feature selection due to its simplicity [16,17] . The

ruskal–Wallis method is a non-parametric, one-way ANOVA (i.e.,

nalysis of variance) test. It tests the hypothesis whether the sam-

les from two or more groups have equal medians, and returns a

alue p . If p is close to zero for some specific feature, this feature

s selected as it is expected to have good discriminative power. For

he details about the Kruskal–Wallis test, please refer to [17] . Here,



D. Zhang et al. / Journal of Information Security and Applications 0 0 0 (2017) 1–10 5 

Fig. 4. Block diagram of the proposed approach. 

Fig. 5. The extration and representation of WLD features. 
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a  
he Kruskal–Wallis method is adopted to select the LBP-based and

LD-based histogram features, respectively. Those features that

ave p values less than a threshold are selected, and their indices

re stored. During the testing stage, only those selected features

re used for final classification. 
a  
.3. SVM For blind forensics 

Blind forensics is actually a binary classification problem. Thus,

ome conventional classifiers widely used in pattern classification

re also exploited for image forensics. It is well-known that SVM is

 supervised learning model for binary linear classifier [18] , which
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Fig. 6. The changes of the WLD and LBP histogram features before and after seam carving: (a) original image; (b) original image with 10% seams; (c) original image with 

20% seams; (d)original image with 30% seams;(e) the LBP histogram;(f) the WLD histogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Number of features selected using different p values. 

P value 0.001 0.003 0.005 0.007 0.009 Full 

number of LBP features 27 58 106 155 204 256 

number of WLD features 153 245 352 446 515 640 
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is based on the concept of decision planes that define decision

boundaries. In this paper, SVM is also adopted as classifier for its

simplicity to train and test the feature sets, which are extracted

from candidate images. Radial Basis Function (RBF) is adopted as

the kernel function to non-linearly project the extracted feature

vectors into a high dimensional feature space. In the training stage,

two classes of images (seam-carved or not-carved) are described

by both selected WLD histogram and LBP histogram features. Then,

SVM attempts to find an optimal linear decision surface called the

maximum margin hyper plane by maximizing the geometric mar-

gin between the closest instances on either side. In the final classi-

fication stage, the feature vectors extracted from candidate images

are input into SVM for binary classification. That is, each candidate

image will be classified into either class of seam-carved image or

non-carved image. 

5. Experimental results and analysis 

5.1. Experiment setup 

To test the proposed approach, experiments are conducted with

a personal computer (Intel Core i3-2400 CUP @3.4GHz, 4GB Mem-

ory, Windows XP) and the detector is implemented with Mat-

lab2010a. To the best of our knowledge, there is still no public-

available image database of seam carving, which can be directly

used for seam carving forgery detection. Thus, we build an im-

age dataset for seam carving detection by ourselves. Firstly, Un-

compressed Colour Image Database (UCID) [19] , which is widely

used for IQA, is chosen as the benchmark dataset. There are 1338

color images in UCID v2 database. These images have rich con-

tents including landscape, building, flowers, human, animals, and

so on. Then, these images are resized by the original seam carv-

ing method [2] with multiple scaling ratios. The resized images

are divided into three groups in the experiment. (1) images with

small scaling ratios; (2) images with large scaling ratios; and (3)

images with mixed scaling ratios. In the first case, the scaling ra-
ios vary from 3% to 21% with a step size of 3%. That is, the scaling

atios are 3%, 6%, 9%, 12%, 15%, 18% and 21%, respectively. Thus,

here are totally 1338 original images and 1338 × 7 = 9366 seam

arved images. In the second case, the scaling ratios vary from 10%

o 60% with a step size of 10%. Thus, there are 1338 × 6 = 8028

ampered images. In the third case, the tampered images for the

bove two cases are mixed to form a new image database for

est. Thus, there are 1338 original images and 9366 + 8028 = 17394

ampered images. To make sufficient comparisons, three state-of-

he-art approaches including Wei et al. [6] , Ryu et al. [7] and Yin

t al. [8] are chosen as benchmarks for performance evaluation.

hat is, there are totally four detectors including the proposed ap-

roach, which are tested in the same experimental environments

ncluding hardware, software and test image database. SVM is di-

ectly downloaded from [20] , and the Radial Basis Function(RBF) is

sed as the basic kernel function. To obtain the optimal parame-

ers of kernel function, a grid-search technique is exploited by a

-fold cross-validation strategy. Moreover, Python and Gnuplot are

sed for parameter optimization. 

.2. Feature selection 

The Kruskal–Wallis test is exploited to select discriminative fea-

ures from the LBP-based and WLD-based histogram features. To

nd an optimum threshold for discarding redundant histogram

eatures, the value of p (significance) varies within [0.001 0.01]

ith an increment of 0.002. Table 1 shows the number of selected

BP and WLD features with different p values. Fig. 7 shows the

etection accuracies for scaling ratios of 3%, 6%, 9% and 12% by se-
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Fig. 7. Effect of Krukal–Wallis technique: (a) Effect of Krukal–Wallis technique with LBP; (b) Effect of Krukal–Wallis technique with WLD. 

Table 2 

Comparisons of detection accuracy for carved images with small scaling ratios. 

Scaling ratio(%) Accuracy(%) 

Wei et al. [6] Ryu et al. [7] Yin et al. [8] Our approach 

3 50.22 54.48 55.53 68.26 

6 53.59 57.88 65.17 84.99 

9 56.99 60.99 74.55 89.86 

12 58.21 64.13 81.20 92.72 

15 63.13 70.59 90.17 95.03 

18 71.94 73.84 92.04 95.94 

21 74.78 76.91 94.32 96.02 

Table 3 

Comparisons among four detectors for the mixed dataset with small scaling ratios. 

Scaling ratio(%) Accuracy(%) 

Wei et al. [6] Ryu et al. [7] Yin et al. [8] Our approach 

3 22.32 34.18 29.29 31.32 

6 27.24 40.89 39.32 50.84 

9 34.14 45.16 51.77 69.86 

12 38.54 50.48 62.16 85.29 

15 47.59 58.06 87.01 92.65 

18 52.91 61.90 93.11 94.37 

21 56.64 67.31 97.21 97.38 
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ecting features with six representative p values. It is apparent that

he best detection accuracy is achieved with a p value of 0.03. Un-

er this case, the LBP-based and WLD-based histogram features are

8D and 245D, respectively. In the following, experimental results

re reported with the selected histogram features in the case of

 = 0.003. 

.3. Experimental results of seam carved images with different 

caling ratios 

For each scaling ratio, there are 1338 original images and 1338

etargeted images. To ensure the randomness of our experiments,

hey are equally divided into five shares of the same number of

amples. For each round of training and testing, four shares are

andomly chosen as a testing set and the rest share is used as a

raining set. The training and testing are repeated for five times

nd the average results are reported. 

.3.1. Images with small scaling ratios 

Those seam carved images with small scaling ratios are firstly

ested to evaluate the performance of the proposed approach.

able 2 compares the detection accuracies among four detectors.

e can observe that the detection accuracies also increase with

he increment of scaling ratio, and the proposed approach achieves
he best detection accuracies among them. For the patch-based ap-

roach [6] , it only considers the optimal type of patches for each

ini-square. Thus, it does not explicitly consider the changes of

ocal texture caused by image seam carving. The detector by Ryu

t al. [7] exploits the energy bias and noise level of an image to

xpose seam carving forgery. Compared with the patch-based de-

ector [6] , the energy bias-based approach [7] is more closely re-

ated with the inherent nature of seam carving. Therefore, its de-

ection accuracy is superior to the patch-based approach [6] . The

BP-based detector [8] extracts the energy bias, noise and half

eam-based features in LBP domain, instead of the conventional

ixel-domain. It is actually an improvement to the energy-based

pproach [7] by extracting features in LBP domain. For this sea-

on, the LBP-based detector [8] achieves superior detection accu-

acy over the patch-based detector [6] and the energy bias-based

pproach [7] , respectively. For the proposed approach, it simulta-

eously exploits two complimentary texture descriptors WLD and

BP to expose local texture changes. Thus, it is the most effective

o expose seam carving with small scaling ratios. 

Moreover, the mixed image set with small scaling ratios is fur-

her experimented. Firstly, we randomly select 268 images from

he 1338 seam carved images for each scaling ratio. Thus, there

re totally 268 × 7 = 1876 forgery images, which are merged with

he 1338 original images to form a mixed set with 3214 images for

raining. The rest 7490 resized images are used as the dataset for
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Table 4 

Comparison of detection accuracy for carved image with large scaling ratios. 

Scaling ratio(%) Accuracy(%) 

Wei et al. [6] Ryu et al. [7] Yin et al. [8] Our approach 

10 57.91 65.22 80 93.05 

20 74.18 75.37 94.48 95.99 

30 91.34 85.52 98.66 97.58 

40 89.70 91.94 99.85 98.64 

50 94.93 96.27 99.85 99.20 

Table 5 

detection accuracy of mixed sets with large scaling ratios. 

Scaling ratio(%) Accuracy(%) 

Wei et al. [6] Ryu et al. [7] Yin et al. [8] Our approach 

10 24.67 32.80 51.78 54.88 

20 61.59 61.68 93.55 97.53 

30 89.35 83.46 99.35 98.42 

40 91.03 95.23 99.81 98.82 

50 95.89 98.78 100 98.97 

Table 6 

The F 1 score comparison for the seam carved images on the different scaling ratios. 

Scaling ratio(%) F 1 score(%) 

Wei et al. [6] Ryu et al. [7] Yin et al. [8] Our approach 

3 50.12 59.97 57.52 67.10 

6 60.60 61.42 69.27 80.93 

9 61.54 62.49 79.91 89.82 

12 64.46 67.13 84.83 90.92 

15 96.98 73.07 95.23 96.73 

18 92.82 75.33 97.10 97.81 

21 83.02 79.07 97.97 98.31 

30 98.54 88.48 99.14 98.52 

40 96.00 95.91 99.81 99.32 

50 98.29 97.87 99.88 99.62 

Table 7 

Results with and without fusion. 

Scaling ratio(%) Accuracy(%) 

WLD WLD + feature selection LBP LBP + feature selection final LBP and WLD features 

3 51.34 51.26 60.43 60.16 68.26 

6 54.26 54.71 69.84 69.71 84.99 

9 63.15 64.55 74.91 74.55 89.86 

12 69.91 69.84 87.18 87.4 92.72 

15 79.11 79.25 91.94 92.10 95.03 

18 83.10 83.33 93.24 93.54 95.94 

21 85.16 85.36 95.50 95.65 96.02 

30 90.88 91.20 96.43 96.63 97.58 

40 92.89 93.10 97.70 97.88 98.64 

50 95.22 95.89 98.77 98.98 99.20 

Table 8 

comparisons of time consumption among 

four detectors. 

Detection method Computation time 

Wei et al. [6] 8.1123 

Ryu et al. [7] 0.7825 

Yin et al. [8] 0.6497 

Proposed approach 1.9881 
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performance evaluation. From the experimental results reported in

Table 3 , the proposed approach also achieves the best detection

performance. 
.3.2. Images with large scaling ratios 

Table 4 reports the experimental results for resized images with

arge scaling ratios including 10%, 20%, 30%, 40% and 50%, respec-

ively. For those images with scaling ratios of 10% and 20%, the pro-

osed approach achieves the best detection accuracies among four

etectors. Moreover, the detection accuracies are more than 90%

or the resized images with each scaling ratio. When the scaling

atios are over 30%, the detection accuracies of the proposed ap-

roach are slightly worse than the LBP-based approach [8] . Please

ote that as claimed in the introduction section, when an image is

esized with large scaling ratio up to 30%, there are usually visually

nnoying structure deformation. Under this case, it is not difficult

or users to judge seam carving forgery, even without the aid of

assive forensics. 

To further explain the detection performance of the proposed

pproach, the mixed set of resized images with large scaling ra-
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Fig. 8. Comparison of ROC curves among four detectors,(a) scaling ratio of 6%; (b) scaling ratio of 10%; (c) scaling ratio of 15%; (d) scaling ratio of 20%; (e) scaling ratio of 

30%; (f) scaling ratio of 50%. 
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ios is also experimented. Table 5 reports the experimental results.

hen the scaling ratios are no more than 20%, the proposed ap-

roach also achieves the best detection accuracy among four de-

ectors. For the scaling ratios are more than 30%, the detection ac-

uracy of the proposed approach is only slightly lower than Yin

t al. [8] . 

.3.3. Images with mixed scaling ratios 

To verify the robustness of the proposed method, those retar-

eted images with large and small scaling ratios are mixed to-

ether for further experiments. Fig. 8 shows the ROC curves of

our detectors, in which each sub-figure represents the ROC per-

ormance under different scaling ratios from 6% to 50%, respec-

ively. When the scaling ratio exceeds 10%, the proposed approach

chieves the best performances among four detectors. Moreover,

he proposed approach has steadier ROC curves than the rest three

etectors when the scaling ratios are over 20%. 

.4. The F 1 score on the different scaling ratios 

In statistical analysis of binary classification, F1 score is a

idely-accepted measure for classification accuracy [21] . To further

rove the effectiveness of the proposed approach, we compare the

 1 score (also known as F-score or F-measure) among the four de-

ectors. The definition of the F 1 score is as follows. 

 1 = 

( γ 2 + 1) · P recision × Recall 

γ 2 · P recision + Recall 
(12) 

here 

P recision = 

T P 

T P + F P 
, Recall = 

T P 

T P + F N 

n Eq. (12) , γ controls the balance between Precision and Recall ,

nd γ is normally set to 1. Thus, the F1 score can be interpreted as

 weighted average of Precision and Recall . The higher the F-score

s, the better the classification is. An F1 score reaches its best value

t 1 and worst at 0. TP, FP and FN are true positive, false positive
nd false negative samples, respectively. In this paper, the original

mages and the seam carved images are denoted as positive sam-

les and negative samples, respectively. Table 6 summarizes the

esult of F 1 score comparisons among four detectors. From it, the

roposed approach achieves higher F 1 scores than three existing

ethods for those seam carved images with small scaling ratios.

or seam carved images with scaling ratios above 30%, Yin et al.

8] achieves slightly higher F 1 scores than the proposed approach. 

.5. Other analysis 

Table 7 compares the detection accuracies by LBP features, WLD

eatures and both. It also compares with the detection accuracies

efore and after feature selection with the Kruskal–Wallis test.

rom it, the combined LBP-based and WLD-based histogram fea-

ures achieves better accuracies than the LBP-based features or

he WLD-based features alone. This proves that the WLD-based

eatures provide complementary information to the LBP-based

eatures, which improves the accuracies. Moreover, the Kruskal–

allis test is effective for feature selection for the proposed ap-

roach,simply because there are no signification decreases of de-

ection accuracy after it. 

Computational complexities are also compared among the pro-

osed approach and three existing works. Because four detectors

re running under the same experimental environment, the com-

arison of computational complexity is directly made by their ac-

ual time consumptions. Because four detectors share similar clas-

ification mechanism, Table 8 only reports the actual time con-

umptions of feature extraction. From Table 8 , the proposed ap-

roach consumes much less time than the patch-based approach

6] , but consumes more time than the energy-based approach

7] and the single LBP-based approach [8] . Please note that the

omputational complexity of the proposed approach is still within

n acceptable range for practical forensics. 
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6. Conclusion 

Seam carving is a popular content-aware image resizing tech-

nique. However, it can also produce faked images without degrada-

tion of perceptual quality. From the qualitative analysis of possible

artifacts caused by seam carving, we infer that local texture distor-

tion is the most possible clue for its forgery detection. Instead of

explicitly modeling local texture distortion, we design some mea-

surable features to expose the texture change caused by seam carv-

ing. Specifically, we present a blind seam carving detection ap-

proach by exploiting both the WLD-based and LBP-based histogram

features. The Kruskal–Wallis test is exploited to select an optimal

feature subset from them. The experimental results show that the

proposed approach achieves better detection accuracies than the

state-of-the-art approaches. For future work, we will attempt to

exploit information loss and global geometric distortion for seam

carving forgery detection. Further, since there are a few image re-

sizing techniques besides seam carving, we will also attempt to

identify the adopted image resizing technique for resized images.

Since this is a multi-classification problem rather than binary de-

cision, more discriminative features should be designed from other

points of view [22–24] and stronger classifiers such as incremental

support vector learning [25–27] can be considered. 
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