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A B S T R A C T

Video frame-rate up-conversion (FRUC) is one of the common temporal-domain opera-

tions. From the earlier frame repetition and linear interpolation, FRUC has been developed

to motion compensated frame interpolation (MCFI), which effectively overcomes the tem-

poral jerkiness and ghosting shadows. In a broad sense, FRUC can be regarded as a video

forgery operation. By experiments, it is observed that FRUC still leads to edge dis-

continuity or over-smoothing artifacts around object boundaries. In this paper, an edge-

intensity based passive forensics approach is proposed to detect the possible FRUC operation

in candidate video. After computing the edge intensities of every frame, Kaufman adap-

tive moving average (KAMA) is exploited to define an adaptive threshold to distinguish the

interpolating frames by FRUC from the original frames. Moreover, the original frame-rate

of up-converted video can be inferred. Experimental results show that the proposed ap-

proach is not only effective for simple frame repetition and linear interpolation, but also

valid for advanced FRUC techniques such as MCFI. The detection accuracy is up to 94.5%

on average. Its computation is simple as well.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The rapid development of various video editing tools such as
VideoEdit facilitates the improvement of visual quality for digital
video. However, it is becoming much easier for video tamper-
ing and forgery as well. As a consequence, the forensics
techniques are anticipated to verify the authenticity and in-
tegrity of digital video (Edward et al., 2009; Li et al., 2015). Active
forensics techniques require pre-embed auxiliary informa-
tion such as digital watermark into videos (Tian et al., 2015),
or pre-designed side information such as forensics hash (Wei

et al., 2015) in advance, and then the tampering is deter-
mined then by detecting the integrity of pre-embedded auxiliary
information or pre-designed side information. Passive foren-
sics is to detect the inconsistent regularities or specific artifacts
of digital video for forgery detection (Milani et al., 2012). For
example, Wang and Farid (2009) proposed a video forgery de-
tection approach by exposing double quantization artifacts. In
addition, Wang and Farid (2007) proposed a forensic ap-
proach to detect traces of tampering in interlaced and de-
interlaced videos. Subramanyam and Emmanuel (2012)
presented a blind detection approach for the spatial and tem-
poral copy paste tampering, which is based on Histogram of
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Oriented Gradients (HOG) feature matching and video com-
pression properties. Subramanyam and Emmanuel (2013) also
proposed a double quantization detection approach by ex-
ploiting the principles of estimation theory. Each pixel of a given
frame is estimated from the spatially colocated pixels of all
the other frames in a Group of Picture (GOP).The error between
the true and estimated value is subjected to a threshold to iden-
tify the double compressed frame or frames in a GOP.
Apparently, passive video forensics does not need any priori
information, which makes it more suitable for practical ap-
plications. Thus, passive video forensics is recently becoming
one of the hottest topics in the field of video information se-
curity (Rocha et al., 2011).

Compared with still image, digital video brings extra tem-
poral dimension. Frame-based video manipulation is specific
to digital video. Until now, there are some representative works
about the blind forensics of frame duplication, frame dele-
tion and frame-adding. Yang et al. (2014) presented a detection
approach for frame duplication forgery using frame-level simi-
larity analysis. Shanableh (2013) proposed a machine learning
based detection approach for frame deletion. The discrimina-
tive features are based on prediction residuals, percentage of
intra-coded macroblocks, quantization scales and reconstruc-
tion quality. Wang and Li (2014) presented an inter-frame forgery
identification approach based on the consistency of correla-
tion coefficients of gray values. Moreover, velocity field
consistency and optical flow consistency are exploited to expose
the video inter-frame forgery, respectively (Chao et al., 2013;
Wu et al., 2014). Zernike opponent chromaticity moments and
coarseness analysis are also exploited to expose video inter-
frame forgery (Liu and Huang, 2015). Stamm et al. (2012)
presented a theoretical model of the forensically detectable fin-
gerprints that frame deletion or addition leaves behind. This
model is further exploited in temporal forensics and anti-
forensics for motion compensated video and better detection
performances are achieved for frame deletion or addition than
the approach by Wang and Farid (2007).

Frame-rate up-conversion (FRUC) is the procedure of in-
creasing the frame-rate of a video by temporal interpolation
of frames (Choi et al., 2000; Kang et al., 2007). From simple frame
repetition and linear interpolation, FRUC has been developed
to advanced motion compensated frame interpolation (MCFI)
techniques. By introducing all kinds of assumptions to refresh
the motion vectors and optimize the texture, MCFI can achieve
better visual quality of the resultant video (Xue et al., 2015; Yoo
et al., 2013). Apparently, FRUC is a special frame-adding op-
eration, which is originally proposed to improve the visual
quality of low frame-rate video. However, FRUC can also be used
for video forgery purpose. For example, when two videos with
different frame rates are needed to be spliced together, the low
frame-rate video is usually up-converted by FRUC to match the
relatively high frame-rate video. In recent years, the detec-
tion of video FRUC has attracted the attention from the
community of video information security. Bian et al. pro-
posed a similarity-analysis-based detection approach for frame
duplication (Bian et al., 2014). After dividing the video se-
quence into overlapping sub-sequences, the similarities between
the sub-sequences are calculated, which are exploited to iden-
tify those video sequences with high similarity as candidate
duplication frames. However, it only reports the detection results

of simple FRUC approaches such as frame repetition and linear
weighting average. Moreover, Huang and Chen (2011) propose
to a video forgeries detection approach based on bidirec-
tional motion vectors. It does not investigate advanced FRUC
techniques as well.

Actually, there are lots of advanced MCFI approaches in
recent years (Choi et al., 2000; Kang et al., 2007; Stamm et al.,
2012; Yoo et al., 2013). They consider the motion between suc-
cessive frames by overlapped block motion compensation
(OBMC) and adaptive motion compensation. These advanced
FRUC techniques obtain more natural and realistic videos, which
consequently bring extra technical challenges for their passive
forensics. In essence, FRUC is a special type of frame-adding
operation. The interpolated frames are obtained by block-
based average, no matter whether the inter-frame motion is
compensated or not. Therefore, FRUC inevitably leads to blur-
ring artifacts to some extent, especially for those pixels near
the edge. That is, the edge intensity might be decreased for
those interpolated frames. Moreover, since the interpolated
frames are periodically inserted into the original frames, the
frame-level edge intensity of up-converted video will exhibit
some periodicity along the temporal axis. Motivated by this,
a novel passive forensics approach is proposed to detect FRUC
by exploiting the temporal periodicity of frame edge inten-
sity. A local adaptive threshold is determined by using Kaufman
adaptive moving average (KAMA) (Kaufman, 1995). Since the
adaptive threshold considers the dynamic change of video
content, it can expose the abnormal change of edge intensity
caused by frame interpolation and differentiate interpolated
frames from the original frames. Moreover, since FRUC inserts
the interpolation frames into the original frame periodically,
the frame rate of original video sequence can also be inferred.

The rest of this paper is organized as follows. Section 2 briefly
describes the FRUC techniques, and comparisons are made
among them in terms of the visual qualities of interpolated
frames. Section 3 presents the proposed blind detection ap-
proach. Section 4 discusses the experimental results and
analysis. We conclude this paper in Section 5.

2. Preliminaries of video FRUC techniques

The simplest FRUC techniques are frame repetition (FR) and
frame averaging (FA).They do not consider the motion between
successive frames, which easily lead to temporal jerkiness and
Ghosting shadow for non-static regions. To improve the visual
quality, advanced MCFI techniques have been proposed in recent
years. The basic idea behind MCFI is to estimate the motions
as close as possible to the true motions by introducing various
assumptions. Thus, more complex searching pattern is de-
signed or the estimated motion vectors are refined to make
the resultant up-converted video more realistic.

2.1. Simple FRUC techniques

Simple video FRUC approaches include frame repetition and
linear interpolation (Tekalp, 1995), which can be modeled with
a weighted linear averaging of forward and backward refer-
ence frames. That is,
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′( ) = ( ) + ( )− +f i j f i j f i jn n n, , ,ω ϕ1 1 (1)

where (i, j) is the pixel position in the horizontal and vertical
directions, respectively. fn(i, j) and f i jn+ ( )1 , are the forward and
backward reference frames, and f’(i, j) is the estimated inter-
polation frame. ω and φ are the weighting coefficients, and the
sum of them is 1. When ω = 1 and φ = 0 or ω = 0 and φ = 1, it is
apparent that Eq. (1) will be simplified to frame repetition.When
ω and φ are not zeros, it indicates a linear frame interpola-
tion. Especially, when ω = φ = 0.5, it is a simple frame average.
That is, frame average is actually a special case of linear frame
interpolation.

2.2. MCFI

MCFI uses motion information between successive video frames
to generate the interpolated frames. The accuracy of motion
vectors, which is obtained by block-matching based motion es-
timation (ME), determines the visual quality of interpolated
frame. However, the ME involved in MCFI is to estimate true
motion for interpolated frame, instead of minimal prediction
residual in the conventional ME of video encoder. The exist-
ing MCFI techniques can be divided into four categories as
follows.

2.2.1. Linear average compensation
For every pixel in the interpolated frame, its grayscale value
is computed by the linear averaging of corresponding pixels
in the previous and successive frames, which are defined by
the estimated motion vectors. This is the basic MCFI method.

2.2.2. Motion compensation with median filter
This approach is derived from linear average compensation.
That is, the estimated motion vectors are firstly filtered with

median filter.Then, the interpolated frame is generated similar
to linear average compensation.

2.2.3. OBMC
By extending traditional ME, OBMC is employed in FRUC for
its superior performance in reducing the blocking artifacts (Kang
et al., 2007; Xue et al., 2015; Yoo et al., 2013). OBMC can gen-
erate much smoother interpolated frame. However, OBMC may
result in blurring or over-smoothing artifacts in case of non-
consistent motion regions since fixed weights are assigned for
neighboring blocks.

2.2.4. Adaptive OBMC (AOBMC)
To better adjust the weights of OBMC, AOBMC is proposed to
adjust the weights of different blocks in terms of the confi-
dence of neighboring motion vectors (Lee et al., 2003). It actually
integrates the four compensation methods including frame av-
eraging without motion compensation, linear average
compensation, OBMC and linear average compensation with
multiple candidate vectors. The selection of motion compen-
sation methods depends on the motion pattern of current block,
which is determined by a motion analyzer. The motion ana-
lyzer divides image blocks into four types including static block,
local moving block, boundary moving block and global moving
block, which corresponds to the above four compensation
modes, respectively. AOBMC can achieve better visual quality
since it inherits the advantage of various compensation
methods.

Fig. 1 compares the interpolated frame of Foreman se-
quence by FA and MCFI, where Fig. 1a shows the forward and
backward frames for interpolation, Fig. 1b shows the interpo-
lated frames by linear interpolation and frame averaging, and
Fig. 1c shows the interpolated frames of the advanced MCFI

(a)Forward and backward frames

(b)Interpolated frame by linear interpolation and FA

(c)Interpolated frame by Yoo et al [20] and Xue et al [21]

Fig. 1 – Interpolated frame generated by advanced MCFI approaches.
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approaches by Yoo et al. (2013) and Xue et al. (2015), respec-
tively. To highlight the differences among different FRUC
approaches, a block is selected from every frame and high-
lighted at the right side. In general, FR and FA can achieve
desirable visual qualities when there is only slight motion in
the original video sequence. However, for video sequences with
complex motion, FR and FA will lead to temporal jerkiness and
motion blur, respectively. Since MCFI exploits the motion in-
formation, it achieves better visual quality of interpolated frame
than FA and FR. However, there still exist some artifacts such
as motion blur and edge reduction in the interpolated frames.
Fig. 2 shows the interpolated frames for Stefan sequence, which
is a typical sequence with acute motion. It is apparent that there
are serious motion blur and edge reduction. In the following,
further analysis is made to find out the reasons behind the de-
crease of edge and texture details.

Both FA and MCFI generate the interpolated frame by pixel
prediction from forward and backward frames. Specifically, they
contain the mechanism of average and weighted average. This
shows some similarity with image smoothing in spatial domain.
Consequently, this leads to the loss of image edge informa-
tion. Fig. 3 shows the edge detection results by Kirsch edge

detector. The same original frame and interpolated frames in
Fig. 1 are used. It can be observed that the edges of interpo-
lated frames are less than those of adjacent original frames.
The differences between them are shown in Fig. 3c and d, which
are marked with red and purple boxes, respectively. It is ap-
parent that there are more serious edge losses in Fig. 3c than
Fig. 3d. These preliminary experimental results motivate us to
differentiate the interpolated frames from the original video
frames by utilizing the abnormal changes of edge-intensity
along temporal axis as the clue for blind forensics. Actually,
this is the main idea behind the proposed passive forensics
approach for video FRUC.

3. Proposed blind forensics method

For digital video, there are high temporal correlations among
adjacent frames. The edge-intensity of video frames is also
consistent for the original sequence. After FRUC, the
edge-intensity of interpolated frame will be significantly
less than that of its adjacent original frame. That is, frame

(a) FA (b)Yoo et al [20] (c) Xue et al [21]

Fig. 2 – Interpolated frames of Stefan sequence by FA and MCFI.

(a) Original frames of Foreman sequence (b) Original frames of Stefan sequence

(c) Interpolated frames by FA (d) Interpolated frames by Yoo et al [20]

Fig. 3 – Edge detection results by Kirsch operator.
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interpolation breaks the consistency of edge-density along the
temporal axis. Moreover, since FRUC performs frame interpo-
lation along the motion trajectory periodically to increase the
frame rate, the discontinuity of edge-intensity also shows some
periodicity. Thus, this kind of periodicity can be used to esti-
mate the original frame rate of video sequence.

3.1. Edge-intensity calculation

Firstly, the original video sequence is converted into succes-
sive frames. Then, the luminance component of every frame
is extracted, and Kirsch edge detector is used to detect the
edges. Finally, the edge-intensity is calculated by counting the
number of edge pixels. The steps of edge-intensity calcula-
tion are summarized as follows.

(1) Convert candidate video into consecutive frames {Ik},
where k is the frame index and m is the total number
of frames, k m= 1 2, , ,… .

(2) Extract the luminance component of each frame Ik, which
forms a new sequence {Yk}.

(3) Extract the edge of luminance sequence {Yk} by Kirsch
detector.

(4) Count the number of edge pixels {Nk} in each frame.

Let S be the number of pixels in a frame, the edge-intensity
is defined as follows.

ρk
kN

S
= (2)

Since frame interpolation contains the mechanism of av-
eraging and weighted averaging, the calculation of edge
intensity does not need any smoothing filter to remove image
noise before edge detection. Moreover, image smoothing is con-
tradictory to edge detection to some extent, since the averaging
involved in frame interpolation leads to the losses of edge in-
formation. Considering the fact that the conventional edge
detectors such as Sobel, Prewitt, Canny and Log are easy to
smooth image edges, Kirsch operator is exploited for the cal-
culation of edge intensity in this paper (Tekalp, 1995). Kirsch
detector is a non-linear edge detector which finds the maximum
edge magnitude in eight predetermined directions. Specifi-
cally, it takes a single kernel mask (as shown below) and rotates
with an angular increment of 45.
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The edge magnitude of traditional Kirsch operator is defined
as the maximum magnitude across the above eight direc-
tions. That is,

h g pn m z ij
z

ji
n i m j, , , ,max= ∗=

( )

=−=−
+ +∑∑1 8

1

1

1

1

… (3)

where z enumerates the eight direction kernels, pn i m j+ +, is a 3 × 3
pixel block and * is the convolution operation. For example, if
pA is the central pixel of a 3 × 3 pixel block, and pi is its adja-
cent pixels i =( )1 2 8, , ,… . Then, the first edge detection result
d1 is the convolution of the first Kirsch operator g 1( ) and the
pixel block as follows.
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Similarly, d d d2 3 8, , ,… are obtained by utilizing the rest seven
Kirsch operators g 2( ), g 3( ), …, g 8( ), respectively. Then, the
maximum magnitude is found among d2, d3,… and d8 as the
output of original Kirsch operator. In this paper, the modulus
of these eight edge magnitudes is defined as the final value
of edge pixel A. That is,

d d d d d d d d dA = + + + + + + +1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2 (5)

Then, a threshold T is needed to judge whether pixel A is
an edge pixel or not. If dA ≥ T, pixel A is judged as an edge pixel,
and vice versa. Fig. 4 shows the edge detection results of Flower
sequence after converting its frame rate from 15 fps (frames
per second) to 30 fps by Yoo et al. (2013). Here, we manually
set the threshold T = 1200 by experiments. It is apparent that
Kirsch operator achieves the most significant difference of edge-
intensity between the interpolated frames and the original
frames.Thus, Kirsch edge operator is most suitable for our pro-
posed forensics approach.

It is well-known that the video captured by different devices
has different frame rates. For instance, the video captured
mobile cameras are usually 15 fps or 20 fps, those taken by
digital cameras are 25 fps, whereas some professional digital
video recorders can capture videos with the frame rate as high
as 30 fps or 60 fps. With the aid of FRUC approaches, the cap-
tured videos can be easily converted to high frame rate by
inserting frames in different ways. Table 1 summarizes some
typical ways of frame interpolation, where num_1 denotes that
a frame generated by FRUC is inserted into the original video
sequence every num frames. For instance, 3_1 means that a
frame is inserted every 3 frames. (num_1, num_1) denotes that
there are twice conversions. For example, (3_1, 4_1) means that
a frame is firstly inserted into the original sequence every 3
frames, and then a frame is inserted every 4 frames.

Let ρk be the edge-intensity of the kth frame. It is previ-
ously claimed that the edge-intensity of interpolated frame is
less than that of the original frame. Since the generated frames
by FRUC are inserted into the original video sequence in a pe-
riodical way summarized in Table 1, the edge-intensities of all
the frames will exhibit local minimum in a way similar to the
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pattern of frame interpolation in video FRUC. Fig. 5 shows the
tendency of edge-intensity change for Flower sequence, which
is up-converted from 20 fps to 25 fps using Yoo et al. (2013).
The way of frame of interpolation is (4_1). The blue curve is
the edge-intensity of the original video sequence, and the green
curve is the edge-intensity of resultant video sequence after
FRUC. (For interpretation of the references to color in this text,
the reader is referred to the web version of this article.) Ap-
parently, the edge-intensity of the original video sequence
shows some continuity, but there is dis-continuity in the po-
sitions of interpolated frames. Specifically, the frame indexes
of interpolated frames are 5, 10, 15 and so on. In those posi-
tions, there are local minimums for their edge-intensities, which
seem like downward spikes. Moreover, these spikes exhibit
obvious periodicity.
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Fig. 4 – Edge detection by different operators.

Table 1 – Patterns of frame interpolation.

Original frame
rate (fps)

Up-conversion patterns Resultant frame
rate (fps)

15 3_1 20
15 (3_1,4_1); (4_1,3_1); (3_2)
20 4_1 25
15 1_1 30
20 2_1 30
25 5_1 30
15 (1_1,1_1); (1_3) 60
20 (2_1,1_1); (1_1,2_1); (1_2) 60
25 (5_1,1_1); (1_1,5_1) 60
30 1_1 60
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Fig. 5 – The comparison of edge-intensity for the original sequence and up-converted sequence.
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3.2. Adaptive threshold for the localization of
interpolated frames

The local minimum of edge intensity provides significant clue
for the detection and further location of interpolated frames.
However, the downward spikes in Fig. 5 are actually local mini-
mums. Because of the diversity of video content, especially the
possible shot switching in video capturing, a fixed threshold
is not suitable for the detection of these local minimums, which
is closely related with the classification of original frames and
interpolated frames for FRUC forensics. We also use Flower se-
quence as an example. Its frame rate is up-converted from the
original 20 fps to 25 fps by Yoo et al. (2013), with the interpo-
lation pattern of (4_1). Fig. 6 shows its edge-intensities before
and after FRUC, where the red curve is the KAMA curve and
the green curve is the resultant video after FRUC. Apparently,
a relatively fixed threshold, no matter it is relatively high (blue
line) or low (black line), inevitably leads to false detection. (For
interpretation of the references to color in this text, the reader
is referred to the web version of this article.) Therefore, a local
adaptive threshold is a requisite for the detection of local
minimums.

Let {ρk} be the edge-intensity sequence, where

k m= 1 2 3, , , ,… . Since {ρk} varies significantly among different
frames, the concept of “Moving Average”, which is widely used
in statistics analysis such as stock information, is borrowed
to define an adaptive threshold. In general, there are two types
of moving average, i.e., long-term moving average and short-
term moving average.They are suitable for the analysis of long-
term and short-term data trends, respectively. In this paper,
Kaufman adaptive moving average (KAMA) (Kaufman, 1995) is
exploited to define the adaptive threshold because it com-
bines the long-term moving average and short-term moving
average.The KAMA value for the kth frame with edge-intensity
value {ρk}, which is referred as AMAk, is defined in an itera-
tive way as follows.

AMA AMA c AMAk k k k k= + ⋅ −( )− −1 1ρ (6)

where ck is the smoothing factor for each iteration. When the
variation of edge-intensity is small, the value of ck should be
adjusted to achieve long-term moving average. When the edge-
intensity varies greatly among successive frames, the value of
ck should be adjusted to achieve short-term moving average.
Thus, it can reflect the local trend of edge-intensity and detect
the local abnormity of edge-intensity due to frame interpolation.

Let Ek be the efficiency coefficient of edge-intensity, which is
defined as the ratio between the direction and the volatility
of edge-intensity. The edge-intensity direction is the net varia-
tion of edge-intensity in the interval of len and the volatility
of edge-intensity is the sum of edge-intensity variation in the
interval of len. Thus, Ek is defined as follows:
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Then, ck is defined as follows.
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where fastlen and slowlen are the adjustment coefficients, which
can follow the slow trend for the slow variation of edge-
intensity and also follow the fast trend for the high variation
of edge-intensity.

In this paper, the local minimums of frame edge-intensity
after those videos after FRUC are utilized by combining KAMA
to highlight the discontinuity and inconsistency of edge-
intensity. Thus, the local average value of AMAs is decreased,
which is bigger than those of interpolated frames but less than
those of original frames. Fig. 6 shows the adaptive threshold
curve, which is depicted as the red curve. (For interpretation
of the references to color in this text, the reader is referred to
the web version of this article.) Apparently, it is becoming easier
to discriminate the interpolated frames from the original
frames. Specifically, if the edge intensity ρk of the kth frame
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Fig. 6 – Threshold selection for distinguishing the interpolated frames from the original frames.

45j o u rna l o f i n f o rma t i on s e cu r i t y and a p p l i c a t i on s 2 6 ( 2 0 1 6 ) 3 9 – 5 0



is less than the local threshold AMAk, this frame is deter-
mined as the interpolated frame. On the contrary, if the edge
intensity ρk of the kth frame is bigger than the local thresh-
old AMAk, this frame is determined as the original frame. Thus,
we can obtain the binary classifications of all the frames in a
candidate video sequence. Fig. 7 shows such an example after
this kind of binary classification of interpolated frames and

original frames. It is intuitive to observe the periodicity of in-
terpolated frames for video FRUC.

However, due to the diversities of video FRUC approaches,
it is difficult to always obtain such intuitive and ideal classi-
fication results. Actually, the complexity of video content,
especially its motion complexity, is also closely related with
the detection accuracy. Figs. 8 and 9 show the edge intensity
along the temporal axis for Stefan and Foreman sequences after
FRUC, respectively. FRUC adopts the approach by Yoo et al.
(2013). The periodicity of interpolated frame is (3_1) in Table 1.
That is, there is an interpolated frame every three original
frames. In these two figures, the green curves are the edge in-
tensities and the blue curves are their AMA values. (For
interpretation of the references to color in this text, the reader
is referred to the web version of this article.) It is obvious that
for most frames, the difference between the edge intensity and
its corresponding AMA value is not small. For some frames,
their edge intensities are quite near to their corresponding AMA
values, which are highlighted at the left side.

Fig. 10 shows the results of binary classification by com-
paring the edge intensity and its corresponding AMA value in
Figs. 8 and 9, respectively. From it, we can easily observe
the intervals between those frames which are classified as
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Fig. 7 – Binary classification of candidate video frames.

Fig. 8 – The edge-intensity and AMA curves of Stefan sequence after FRUC.

Fig. 9 – The edge-intensity and AMA curves of Foreman sequence after FRUC.
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interpolated frames. The majority of these intervals are the
same, which actually reflect the periodicity of frame interpo-
lation. However, there are also some exceptions, which are
marked with red ovals. (For interpretation of the references to
color in this text, the reader is referred to the web version of
this article.) The intervals between two interpolated frames are
too close. Actually, these are the cases where the differences
between the edge intensity and its corresponding AMA value
are too small, which leads to mis-classification.

3.3. Estimation of the original frame rate

After the binary classification of frames in candidate video, the
interpolated frames are discriminated from the original frames.
That is, the interpolated frames are located. Then, the origi-
nal frame rate can be estimated from the up-converted video
after FRUC. Let M be the total number of frames and N be the
number of interpolated frames. If R2 is the frame rate after FRUC,
then the original frame rate R1 can be inferred as follows.

R R
N
M

1 2 1= ⋅ −⎛
⎝

⎞
⎠ (9)

Please note that the frame rates of digital video are usually
fixed for some applications. The commonly-used frame rates
are 15 fps, 20 fps, 25 fps, 30 fps and 60 fps, respectively. There-
fore, we can choose a frame rate which is mostly close to the
commonly-used frame rates.

4. Experimental results and analysis

To demonstrate the performance of the proposed approach,
experiments are done on typical test video sequences.The hard-
ware configuration is a personal computer (Intel(R) Pentium(R)
CPU G630@2.70 GHz, 2.0 GB RAM), and the forensics detector
is implemented with MATLAB R2014a. Until now, there is still
no open video database of FRUC. Thus, we build a set of test
video sequences for FRUC forensics by ourselves. In this ex-
periment, we collect 15 uncompressed YUV sequences with
different contents, motion and texture complexities. There are
four typical categories of videos: single object with intense
motion, single object with slight motion, more objects with
intense motion, more objects with slight motion. They include
Flower, Bus, Stefan, Mobile, Foreman, Mother & Daughter, Coastguard

and so on. They are directly downloaded from http://
trace.eas.asu.edu/yuv/. Their spatial resolutions vary from
176 × 144 to 1920 × 1080 pixels. Five commonly used frame rates
including 15 fps, 20 fps, 25 fps, 30 fps and 60 fps have been
tested. Then, these original video sequences are up-converted
to different higher frame rates using the approach by Yoo et al.
(2013). In summary, we obtain 15 × 9 = 135 video sequences after
FRUC. Together with the 15 original sequences, there are 150
video sequences for experimental tests. Moreover, to show the
detection performance against lossy video compression, H.264/
AVC reference code JM10.2 is used to encode these video
sequences into video streams. Thus, we also obtain 150 video
sequences after video compression for test.

For the performance evaluation metrics, the well-known
False Negative Rate (FNR) and the False Positive Rate (FPR) are
used simply because they are widely used for pattern classi-
fication tasks. In this paper, the correct detection ratio (DR) is
defined as follows.

DR
FNR FPR= − +

1
2

(10)

4.1. Parameters selection

From the definition of AMAk in Eq. (6), it is easy to under-
stand that this adaptive threshold depends on the selection
of three parameters len, fastlen and slowlen. That is, these three
parameters have great impacts on the detection perfor-
mance of the proposed approach. len is a parameter used to
define Ek. It has influences on the threshold selection when it
takes different values. Fig. 11 shows the four KAMA curves when
len is set with 1, 2, 3 and 4, respectively. It is apparent that when
len takes different values, the degrees of edge-intensity curve’s
approximation to these KAMA curves are quite different. In
general, with the increase of len, the approximation degree is
reduced. fastlen and slowlen are the adjustment coefficients for
the definition of smooth factor ck, which achieves the adap-
tive moving average of video edge-intensity. And fastlen should
be smaller than slowlen. In this paper, we choose len = 2,
fastlen = 2 and slowlen = 30 by experiments.

4.2. Experimental results

Tables 2 and 3 show the detection results for uncompressed
videos and H.264/AVC compressed videos in different
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Fig. 10 – Binary classification of Stefan and Foreman sequences after FRUC.
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interpolation patterns of FRUC (the 300 video mentioned above).
From Table 2, we can see that all the DRs are above 93% and
the average DR is 94.05%. We also note that for those test se-
quences with relatively lower motion, their DRs are also lower.
For example, there is only slight motion around the woman’s
lip for News sequence. Thus, the difference of edge-densities
between the original frame and the interpolated frames is also
small. As a consequence, the local minimums for their edge-
intensities are not obvious, which might confuse the binary
classification of interpolated frames and original frames. Fur-
thermore, it will also significantly confuse the inference of the
interpolation period, simply because the estimated interpo-
lation frames are not always correct. From Table 3, it can be
known that all the DRs are above 92% and the average DR is
93.2%. Although they are a little lower that those in Table 2,
they are still desirable for most practical applications. Actu-
ally, the slight decrease of DR is caused by the lossy video
compression. Specifically, the lossy video compression by H.264/
AVC will lead to a loss of edge and texture details. Thus, the
accuracy of measured edge intensity is slightly decreased. In

summary, the experimental results in Tables 2 and 3 show the
effectiveness of the proposed approach.

Moreover, to further verify the effectiveness of the pro-
posed forensics approach, different FRUC approaches are used
to generate the high frame-rate videos. Specifically, five dif-
ferent FRUC methods include three motion compensation based
FRUC approaches (MCFI) (Choi et al., 2000; Kang et al., 2007;
Xue et al., 2015), linear frame interpolation and frame aver-
aging are used in the experiments. The later two approaches
are typical non-motion compensation approaches. Similar to
the above experiments, these FRUC approaches are used to gen-
erate high frame-rate videos with different interpolation
patterns. We found that the edge-intensities obtained by these
FRUC approaches are coincident with each other. Especially for
those MCFI methods (Choi et al., 2000; Kang et al., 2007; Xue
et al., 2015; Yoo et al., 2013), their edge-intensities are very close
to each other, which are shown in Fig. 12. In this figure, the
MC-FRUC-EI is denoted as the edge-intensity obtained by MCFI,
whereas NMC-FRUC-EI is denoted as the edge-intensity ob-
tained by linear frame interpolation and frame averaging.

0 5 10 15 20 25 30
0.2

0.21

0.22

0.23

0.24

0.25

Frame number

E
dg

e−
in

te
ns

ity

 

 

len=1
len=2
len=3
len=4
edge intensity

Fig. 11 – The influences of different values of len toward threshold selection.

Table 2 – DRs of uncompressed video sequences (%).

(fps) Interpolation
patterns

Accuracy (%)

Original
frame
rate

Resulting
frame rate

FPR FNR DR

15 20 (3_1) 0 13 93.5
15 25 (3_2) 13 0 93.5
20 25 (4_1) 0 13 93.5
15 30 (1_1) 0 13 93.5
20 30 (2_1) 0 15 92.5
25 30 (5_1) 0 13 93.5
15 60 (1_3) 13 0 93.5
20 60 (1_2) 0 13 93.5
30 60 (1_1) 0 13 93.5
Original video 0 0 100
Average 2.6 9.3 94.05

Table 3 – DRs for encoded video sequences by
H.264/AVC(%).

(fps) Interpolation
patterns

Accuracy (%)

Original
frame
rate

Resulting
frame rate

FPR FNR DR

15 20 (3_1) 0 15 92.5
15 25 (3_2) 15 0 92.5
20 25 (4_1) 0 15 92.5
15 30 (1_1) 0 15 92.5
20 30 (2_1) 0 16 92
25 30 (5_1) 0 15 92.5
15 60 (1_3) 15 0 92.5
20 60 (1_2) 0 15 92.5
30 60 (1_1) 0 15 92.5
Original video 0 0 100
Average 3.0 10.6 93.2
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The performance of detection rates is summarized in Table 4.
From Table 4, we can see that most accuracies are above 93%,
and the average detection accuracy for these six FRUC methods
is 94.5%. It is apparent that the detection ratios for frame av-
eraging and linear interpolation are a little higher than the rest
four FRUC approaches. This is simply because for frame aver-
aging and linear interpolation, they do not consider the motion
between video frames, thus the local minimums of edge-
intensities are highlighted. Choi et al. (2000) utilize the
overlapped block motion compensation (OBMC) technique to
reduce the blocking artifacts. Kang et al. (2007) use the weighted
index-based bidirectional MCFI and the OBMC scheme to reduce
block artifacts. Yoo et al. (2013) and Xue et al. (2015) also use
the popular bidirectional overlapped block motion compen-
sated interpolation (OBMCI) method to generate the interpolated
frames. The methods reduce the blocking artifacts, but over-
smoothing artifacts around object boundaries still exist.
Therefore, the proposed approach is effective for both motion
compensation and non-motion compensation based FRUC
approaches.

4.3. Execution time

Table 5 shows the execution times of the proposed algorithm
for five test videos used in the experiments. Clearly, from
Table 5, our algorithm exhibits an outstanding performance in

time efficiency, and the average runtime of each frame is less
than 0.1 s. The key reason for this result is that our algorithm
uses the edge-intensity as the forensics solution of each frame
and the KAMA algorithm is effective, which greatly reduces the
amount of computation.

5. Concluding remarks and future works

FRUC is a popular temporal operation for digital video to
improve the frame rate, which might be used for video forgery
as well. From the earlier frame repetition and linear interpo-
lation, FRUC has been developed to advance MCFI technique,
which effectively reduces the temporal jerkiness and ghost-
ing shadows. Based on our extensive experiments, we observe
that by analyzing the edge-intensity variations among suc-
cessive frames for a candidate video sequence, it is possible
to unveil the interpolated frames and further estimate its pe-
riodicity. In this paper, an edge-intensity based passive forensics
approach is proposed to detect the presence of FRUC in a can-
didate video sequence. The proposed approach is not
only effective for simple frame averaging and linear frame in-
terpolation, but also valid for advanced MCFI techniques.
Moreover, the original frame-rate of up-converted video can
be inferred as well. The detection accuracy is up to 94.5%
on average. In future work, we will further investigate the
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Fig. 12 – The edge-intensity obtained by different FRUC methods.

Table 4 – Detection accuracy (%) of different FRUC
methods.

FRUC method Accuracy (%)

FPR FNR DR

Choi et al. (2000) 4.1 8.3 93.80
Kang et al. (2007) 0 12.5 93.75
Yoo et al. (2013) 3.9 8.5 93.80
Xue et al. (2015) 0 12.3 93.85
Frame average 0 8.2 95.90
Linear interpolation 0 10.0 95.00
Average 1.3 9.7 94.50

Table 5 – Execution times of the test videos under the
proposed algorithm.

Test
videos

The length
of video

Resolution Execution times

Total
time (s)

Time(s)/
frame

Flower 60 352 × 288 5.191 0.087
Stefan 60 352 × 288 5.551 0.093
Foreman 60 352 × 288 4.918 0.082
Bus 60 352 × 288 4.998 0.083
Mobile 60 352 × 288 5.243 0.087
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inherent mechanisms of advanced MCFI approaches and
attempt to discriminate them from each other. If possible, we
will also attempt to estimate the key parameters in various MCFI
approaches.

Furthermore, we will investigate the least significant bit (LSB)
features of interpolated frames for forensics. The reasons are
two-folds: First, video forgery shows similarities with video
steganagraphy, and thus the passive video forensics can benefit
from the advancement of video steganalysis. Second, LSB fea-
tures are frequently exploited by image and video steganalysis
(Xia et al., 2014a, 2014b).
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