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Abstract For compressed sensing (CS) recovery, the reconstruction quality is highly
dependent on the sparsity level of the representation for the signal. Motivated by the
observation that the temporal residual image is much sparser than its original image, a
temporal residual-domain dictionary learning method for CS video recovery is proposed
in this paper. The adaptive basis is learned from inter-frame differences by Karhunen–
Loeve transform (KLT) to represent the residuals. And a block-based motion estimation/
motion compensation (ME/MC) residual reconstruction strategy is incorporated for the
CS video recovery. Experimental results on common test sequences at various sampling
rates illustrate that the proposed algorithm gains great improvements over existing
approaches. For some video sequences, the proposed method outperforms the state-of-
art method near 1 dB in terms of peak signal noise rate (PSNR) at some higher sampling rate.

Keywords Compressedsensing .Dictionary learning .Residue-domain . Inter-framedifference .

Video recovery

1 Introduction

Compressed sensing (CS) [4, 5] has emerged as a new signal sampling/sensing and
recovery paradigm in recent years. The CS theory holds that signals or images can be
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recovered from far fewer measurements than that suggested by the Nyquist sampling
theory, as long as they are sparse in some transform domains. A variety of applications of CS
have been developed for signal and image processing. An interesting example is the single-
pixel camera which directly acquires random linear projections of images by a digital
micromirror device (DMD) to conduct image sampling and compression at the same time
[6]. Thereafter, several important frameworks for CS image and video acquirement and
compression are presented and numerous approaches are developed to reconstruct the CS-
acquired images or videos via minimizing a ℓ0 or ℓ1 optimization problem [11, 21].

The quality of the reconstructed signals or images is determined by the number of
measurements and the sparsity of the signals in the transform domain. Therefore, the
main challenge of recovering signals with high quality is to seek an appropriate sparse
representation for signals, i.e. a transform domain in which signals are as sparse as
possible. The most commonly sparsifying transforms include discrete cosine transform
(DCT) [17], discrete wavelet transform (DWT) [10, 18], finite difference (total variation,
TV) [3, 19], etc. However, the image signal is typically non-stationary. There exists no
universal transform space in which all parts of the signal are sufficiently sparse. This
inspires us to seek adaptive basis schemes to achieve better recovery performance. In an
adaptive scheme, an orthogonal basis, also called dictionary here, is usually learned from
the reconstructed parts of signal or other side information for each part of the signal.
Then, the learned dictionary is adopted as the sparse representation basis to recover the
corresponding part of signal. Following this framework, a K-SVD [1] dictionary learning
(DL)-based image recovery method was presented in [16]. In [20], the K-SVD dictionary
learning and the CS image recovery were incorporated into a joint optimization mode
and optimized alternately using the split Bregman iteration-based technique [9]. In [7],
this integrated optimization method was extended into CS video recovery. Then, an
iterative forward–backward CS-based video decoding method was proposed in [12], in
which an adaptive basis was generated by Karhunen–Loeve transform (KLT). Inspired by
the fact that the pixels in a block of each frame can be well predicted by nearby blocks in
the adjacent frame(s), this method exploited motion estimation (ME) at the decoder side.
Specifically, overlapping blocks in the searching window of the adjacent already recon-
structed frame(s) were extracted to generate an adaptive basis by KL transform to
represent the block to be recovered. In these methods, their dictionaries are trained/
learned in the original pixel domain. Recently, a novel approach where the sparse basis is
learned from the multi-scale wavelet coefficients was reported in [15]. It claims that the
dictionary learned in the sparse transform domain leads to a superior recovery perfor-
mance to the pixel domain dictionary. Later, a gradient domain dictionary learning
method (GradDLRec) was presented for image recovery [13]. The representation dictio-
nary was learned in the spatial gradient domain, which achieves an excellent image
recovery performance. This study suggests that the sparser the training samples are, the
more representation capacity the learned dictionary will have.

Motivating by the promising representation capacity of transform domain dictionary,
we propose a transform-domain dictionary learning method for CS video residual
reconstruction in this paper. Specifically, the residual domain dictionary learning is
incorporated into the multi-reference frame motion estimation and motion compensation
(ME/MC) residual recovery in an iterative manner. In each iteration, an adaptive
dictionary is firstly learned from the differences between previously reconstructed
frames by KLT. Then, the learned dictionary is exploited as the sparse basis to
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reconstruct the residual between the initial estimated frame image and its MC prediction
for a refined estimation. The main contributions of this paper are summarized as
follows: 1) A dictionary learning-based CS residual reconstruction scheme is presented;
2) The adaptive representation basis is proposed to learn in the temporal residual
domain from previous adjacent reconstructed frames by KLT. The residual CS video
recovery has shown empirically to achieve better performance than the straightforward
recovery and the TV minimization recovery [14]. Thus, a residual reconstruction
scheme is employed in this paper. But different from [14] where the fixed DCT basis
is employed, an adaptive dictionary is applied in our method. The DL process is some
like [12] where the dictionary is trained from nearby blocks in the adjacent frame(s) by
KLT, so as to exploit the inter-frame similarities and correlations among temporal
adjacent frames. However, the dictionary is learned in the residual domain to pursue a
sparser representation in this paper. That is, the proposed method exploits the non-local
similarity in the pixel domain explicitly by applying MC/ME-based residual CS recov-
ery and further exploits the correlation in the residual domain implicitly by using KLT
dictionary learning. The inter-frame differences (temporal residual) between current
frame and temporal adjacent reconstructed frame(s) are sparser than the image itself
and the infinite differences (gradient). Therefore, since the temporal correlations in the
pixel domain and the residual domain are exploited simultaneously, it is very promising
that the proposed residual domain dictionary learning can achieve a better CS recovery
performance. Moreover, to enhance the sparsity level of the representation, a multi-
frame reference ME/MC method is used in this paper. This leads to an even sparser
representation of signals than the pixel domain and other transform domains, which
naturally does benefits to a superior recovery performance. Experimental results on
common test sequences show that the proposed approach presents obvious advantages
over state-of-art methods.

The rest of this paper is organized as follows. Section 2 reviews some preliminaries of CS.
Then, the proposed method is detailed in Section 3. Experimental results are reported in
Section 4. Finally, conclusions are presented in Section 5.

2 Background

Suppose there exists a N dimensional real-valued signal x ∈ℜN, projecting the signal onto a
sensing basis Φ ∈ℜM ×N,i.e.

y ¼ Φx ð1Þ

where M < < N, we can acquire a M dimensional measurement vector y ∈ℜM. CS theory
states that, if the signal is sufficiently sparse in a transform basis Ψ ∈ℜN × N incoherent
with Φ, then x can be recovered from y by the optimization as (2), even though M < < N
[4, 5].

min sk k1 s:t: y ¼ Φx ¼ ΦΨs ð2Þ

where s are the coefficients of x in Ψ space, and ‖ ⋅ ‖1 represents the l1 norm. The ratio
R =M/N is defined as the sampling rate.
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For images and videos, since the dimensionality of the input signal is very large, a
huge amount of memory is demanded for storing the dense sensing matrix and the
computing cost is typically high. The block-based compressed sensing (BCS) [12] is
proposed to assuage the computational complexity and memory burden. In this frame-
work, a 2D sensing matrix is employed to acquire an image or a video sequence frame by
frame. Each image is partitioned into small non-overlapping blocks and each block is
acquired independently. Formally, given a same block sensing matrix ΦB for all the
blocks in an image, the whole-image sensing matrix Φ takes on a block-diagonal form as
(3) [8, 14].

Φ ¼
ΦB 0 ⋯ 0
0 ΦB ⋯ 0
⋮ ⋱ ⋮
0 0 ⋯ ΦB

2
664

3
775 ð3Þ

Thus, an image or a frame of a video sequence is acquired via yi =ΦBxi block by block,

where xi∈ℜB2
denotes the vectorized block i of the image, and ΦB∈ℜMB�B2

represents the
block sensing matrix. The block size is B × B and the sampling rate is MB/B

2.
For the BCS-acquired image, there are various strategies can be applied for its recovery. An

image can be reconstructed block by block or be reconstructed as a whole. For block-based
recovery, the whole-image sparse transform basis is block-diagonal when a same block-based
basis ΨB is applied for all the blocks in an image. This paper adopts this framework but applies an
adaptive scheme. That is, the block transform basis ΨB is adaptive for each block and therefore
different from each other, denoted as Ψi for block i as illustrated in (4). Here, NB =N/B

2 is the
number of blocks in a frame.

Ψ ¼
Ψ1 0 ⋯ 0
0 Ψ2 ⋯ 0
⋮ ⋱ ⋮
0 0 ⋯ ΨNB

2
664

3
775 ð4Þ

3 Proposed dictionary learning residual reconstruction method

In this effort, we propose to recover the BCS-acquired video sequence by reconstructing
the inter-frame residual iteratively using the dictionary learned adaptive basis. In the
proposed method, the adaptive dictionary is firstly learned from the differences between
the previously reconstructed frames via KLT. Then, the learned dictionary is applied as
the sparse basis to reconstruct the residual image. The residual image is the differences
between the initial estimated image and its MC image. The initial estimated image is
obtained via a standard straightforward CS recovery method in the first iteration. The
multi-frame reference ME is introduced for temporal similar block searching to get the
MC image.

The basic idea of the residual recovery comes from the traditional inter-frame coding.
In traditional video compression systems, ME/MC is applied at the encoder to make inter-
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frame predictions so as to exploit the temporal correlation in a sequence. This technology
gains a considerable coding performance improvement. Here, we incorporate DL and ME/
MC into the CS video recovery process to make a residual reconstruction at the decoding
side. Just as the conventional framework, several consecutive frames in a video sequence
are treated as a picture of group (GOP). The first frame of the GOP is defined as the key
frame and all the others in the GOP are regarded as non-key frames. The key frame is
directly reconstructed using a fixed basis, while all the non-key frames are recovered using
the dictionary learning-based residual reconstruction. The key frame and the previously
reconstructed non-key frames are employed as the reference frames for the current non-
key frame reconstruction.

A. KLT adaptive dictionary learning

The dictionary learning adaptive basis scheme is expected to alleviate the drawback of
the fixed basis scheme that a given transform domain might not be universally optimal
for all parts of the signal. In the proposed method, a block-based residual domain
adaptive basis is applied for the residual reconstruction. The residual reconstruction will
be discussed in next subsection. The adaptive basis for reconstruction is learned in the
residual domain via KLT. KLT is the minimum distortion transform in the sense of the
mean square error (MSE) measure and energy compaction. It catches as much energy as
possible in as few coefficients as possible. Naturally, it is expected to build a powerful
representational dictionary. Another reason for adopting KLT DL method is its simplicity
and efficiency. In fact, KLT has been demonstrated to be a powerful and efficient CS
dictionary learning method [12].

In the proposed method, the residual domain dictionary is trained from the samples of
the inter-frame differences. The initial samples are built from the previously reconstruct-
ed reference frames. Specifically, all the blocks with the same size as the current block in
the searching widows are firstly extracted as the reference blocks in a sliding manner.
The multi-reference frames searching scheme is adopted in this paper. For the current
block i, the searching window is defined as a square W ×W region centered at the block i
in each reference frame. Then, the differences between the inter-frame corresponding
blocks are treated as initial atoms for dictionary learning. Before dictionary learning, all
the reference frames are extended symmetrically to make the searching windows for the
boundary blocks not cross the border.

After that, the KLT basis Ψi for the current block i, is generated by the eigenvectors of the
correlation matrix of the atoms. The correlation matrix can be estimated by the average of the
atoms, i.e.

R ¼ 1

K

XK

j¼1

d jd j
T ð5Þ

where R represents the correlation matrix of the atoms, dj denotes the j-th atom, dj
T

denotes its transpose, and K is the number of the atoms which equals (W − B + 1)2. Then,
the KLT basis Ψi for block i, is formed by the eigenvectors of R. By the singular value
decomposition (SVD) of correlation matrix, we can get R =UΣUT. Where U is the
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eigenvector matrix and UT is its transpose, while Σ is the diagonal matrix of the
eigenvalue. Then, the eigenvector matrix gives the gradient KLT representation basis
for the block i, i.e. Ψi =U.

As described above, the adaptive representation basis is generated directly using a
KL linear transform and only once SVD decomposition is needed for each block.
Therefore, the complexity for the KLT adaptive basis learning is Ο(N3) per block.
Here, N is the number of training samples. While for K-SVD, learning the adaptive
basis is an optimization problem to be solved in an iterative manner. For each
iteration of the optimization process in K-SVD, a basis pursuit is needed in the
sparse coding stage to get the sparse representation for each training sample. And a
subsequent SVD decomposition should be applied to update each column of the
dictionary in the codebook optimization stage. The computational complexity of this
is naturally far higher than that of KLT.

B. ME/MC based residual reconstruction

For the current reconstructing block i, if its vectorized value is xi and the value of its motion
compensation block is xmc

i
, then the residual between them is xi

r = xi − ximc. However, at the
decoding side, we only have the measurement yi of the block, which is a random projection of
xi. We can only estimate the residual in the sensing domain. Suppose we have the MC block xmc

i

via ME, then the projection in the sensing domain of the residual yi
r can be approximated as

follows:

yri ¼ ΦBxri ¼ ΦB xi−xmci
� �

≈ΦBxi−ΦBxmci ¼ yi−ΦBxmci
ð6Þ

The MC block xmc
i

is the most matching block for the current block in the
searching window of the previously constructed reference frames. The searching
window is defined as the same as that in the previous subsection. For more accurate
estimation, a multi-reference frame ME is employed in the proposed method. Multiple
previously constructed frames in the GOP are regarded as the reference frames for
searching. The value of the current frame reconstructed in the previous iteration is
employed as an initial estimation of the current frame for matching. Note that, ME is
not applied in the first iteration since there is no initial estimation for the current
frame in the first iteration. A weighted average over the reference frames is employed
as the MC frame. Since the residual xi

r of the current block is sparse in the transform
domain Ψi for the current block, it can be reconstructed by solving the following
optimization problem:

x̂ri ¼ min
xri

sri
�� ��

1
s:t: yri ¼ ΦBxri ¼ ΦBΨ isri ð7Þ

where xi
r denotes the residual of the current block and si

r is its representation
coefficients in the adaptive transforming space Ψi. Then, the current block can be
estimated by (8).

xi ¼ x̂ri þ xmci ð8Þ
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As discussed above, the proposed residual domain dictionary learning CS video (RDDL-
CSV) recovery algorithm for the non-key frames reconstruction can be summarized as
Algorithm 1.

4 Experimental results

In this section, we evaluate the performance of the proposed method. The 2D DCT straight-
forward reconstruction DCT-BCS [8], and the MC-BCS-SPL [14] are chosen as benchmarks
for performance comparison. In addition, a differential pulse code modulation (DPCM)
reconstruction (DPCM-BCS) is implemented for evaluating the gain of the performance of
the residual reconstruction. All these methods utilize the block-based smooth projected
Landweber (SPL) algorithm [2, 8] for reconstruction, due to its simplicity and high efficiency.
The GOP size (the number of frames in a GOP) and the block size are all set to 8 and 16,
respectively. The integer pixel full-search motion estimation is applied in both MC-BCS-SPL
and the proposed method for simplicity. The size of the searching window is set to 32. Five
CIF (352x288) sequences, including Paris, Foreman, Mother and daughter, Tempete, and
Mobile are involved for testing. For each sequence, a total of 128 frames are tested. Inspired
by the experimental observations in [8], we deploy different sampling rates for the key frame
and non-key frames. The sampling rates of the key frame are fixed at 0.3, 0.4, 0.5, 0.6, and 0.7
for the overall sampling rates of 0.05, 0.10, 0.15, 0.20, and 0.25, respectively. Accordingly,
lower sampling rates are adopted for the non-key frames encoding.

Figure 1 shows the reconstructed images of the 69th frame of the sequence Mother
and daughter recovered using different methods at sampling rate 0.15. Note that, since
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the quality of reconstruction can vary due to the sensing matrix Φ, two same random
row-orthogonal sensing matrices for the key frame and non-key frames are used for
encoding in all the methods. The distortions of images measured in peak signal noise
ratio (PSNR) and structural similarity index measurement (SSIM) are also given in
Fig. 1. As illustrated in Fig. 1, the proposed method achieves more competitive
performance than other methods both in the objective quality and visual-quality. The
reconstruction of the proposed DLRR method has quite well quality whose PSNR is up
to 35.33 dB with SSIM 0.9173. It is about 0.6 dB in PSNR or 0.004 in SSIM higher
than the reconstruction of MC-DCT-SPL and about 3.5 dB in PSNR or 0.05 in SSIM
higher than DCT-BCS which achieves a comparable reconstruction performance to TV
as shown in [8].

Figure 2 presents the recovery rate-distortion (R-D) curves for Forman and Mother
and daughter using different methods at various sampling rate. Note that, only the
reconstruction performance of the grayscale component of the image is evaluated in
terms of the average PSNR over all the 128 testing frames. The results indicate that the
difference and the residual reconstruction methods outperform the straightforward recon-
struction method DCT-BCS-SPL for the temporal correlation in the video sequence is
taken into account. Furthermore, MC-BCS-SPL and the proposed method where ME/MC
is deployed yield a significant improvement over DPCM-BCS. However, MC-BCS-SPL
is observed getting a much lower performance than other methods at the sampling rate

(a) DCT-BCS [16], PSNR: 331.93 dB, SSIM: 0.8670 (b) DPCM-BCS, PSNR: 33.66 dB, SSIM: 0.8996

(c) MC-DCT-SPL [17],  PSNR: 34.76 dB, SSIM: 0.9131 (d) RDDL-CSV, PSNR: 35.33 dB, SSIM: 0.9173

Fig. 1 Reconstructions of the 69th frame of Mother and daughter at sampling rate 0.15

10090 Multimed Tools Appl (2017) 76:10083–10096

Author's personal copy



0.05. It is mainly because this method employs the adjacent reconstructed frame as the
reference frame for MC and a fixed basis for recovery. At low sampling rates, the quality
of the reference frame is relative poor and the fixed basis is not sufficiently sparse for
recovery from very few measurements. In contrast, the proposed method demonstrates

Table 1 Reconstruction performance (in PSNR) for various methods at different sampling rates

Sampling rate DCT-BCS [8] DPCM-BCS MC-BCS -SPL [14] RDDL-CSV

Paris 0.05 18.25 22.03 18.64 22.38

0.10 19.84 23.22 23.44 23.63

0.15 20.79 24.55 25.09 25.09

0.20 21.87 25.79 26.46 26.50

0.25 22.68 27.02 27.84 27.96

Foreman 0.05 23.70 25.13 22.25 26.29

0.10 26.00 26.65 27.85 28.13

0.15 27.55 27.84 29.45 29.82

0.20 29.03 29.04 30.90 31.58

0.25 30.26 30.27 32.37 33.19

Mother and daughter 0.05 27.95 32.87 24.43 33.71

0.10 30.30 34.20 34.58 35.28

0.15 31.95 35.51 36.21 36.82

0.20 33.55 36.68 37.58 38.30

0.25 34.80 37.83 38.80 39.73

Tempete 0.05 20.02 22.44 20.16 23.23

0.10 21.53 23.30 23.71 24.13

0.15 22.62 24.12 24.66 25.00

0.20 23.59 24.88 25.45 25.83

0.25 24.36 25.62 26.19 26.71

Mobile 0.05 16.64 17.54 16.35 18.12

0.10 17.73 18.03 18.60 18.73

0.15 18.59 18.68 19.40 19.57

0.20 19.46 19.29 20.10 20.45

0.25 20.19 19.95 20.66 21.51

22

24

26

28

30

32

34

0.05 0.1 0.15 0.2 0.25

Sampling rate

P
S

N
R

DCT-BCS [20]
DPCM-BCS
MC-BCS-SPL[19]
RDDL-CSV

24

26

28

30

32

34

36

38

40

0.05 0.1 0.15 0.2 0.25

Sampling rate

P
S

N
R

DCT-BCS[20]
DPCM-BCS
MC-BCS-SPL[19]
RDDL-CSV

(a) Foreman (b) Mother and daughter 

Fig. 2 R-D curves for Forman and Mother and daughter using different methods
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desirable performances at various sampling rates. It is natural for the proposed method to
yield higher-quality reconstruction.

In addition, it is also observed from Fig. 2 that the proposed method offers a higher
PSNR and SSIM gain over other methods at higher sampling rates without considering the
sampling rate of 0.05. In fact, the similar results are achieved for other sequences. Detailed
reconstruction performance comparative results in term of PSNR on five test sequences are
summarized in Table 1. It is indicated in Table 1 that for all test sequences the proposed
method achieves a superior reconstruction performance to all other methods. For some
sequences (Mother and daughter, Mobile), a PSNR gain of near 1.0 dB over the current
leading method MC-BCS-SPL is exhibited at the sampling rate 0.25. Meanwhile, Table 2
lists the reconstruction performance measured in SSIM to evaluate the objective quality of
the reconstructed image. It also demonstrates our method outperform compared methods
in terms of SSIM of the reconstructed image. That is, the proposed CS recovery method
achieves not only the subjective quality but also objective quality. This benefits from the
multi-frame reference MC/ME and the adaptive basis representation. Since the non-local
similarity and the temporal correlation in the pixel domain and in the residual domain are
both exploited, not only the prediction of our approach is more accurate but the

Table 2 Reconstruction performance (in SSIM) for various methods at different sampling rates

Sampling rate DCT-BCS [12] DPCM-BCS MC-BCS -SPL [15] RDDL-CSV

Paris 0.05 0.4602 0.6862 0.5647 0.7089

0.10 0.5611 0.7371 0.7415 0.7629

0.15 0.6211 0.7865 0.8004 0.8147

0.20 0.6736 0.8273 0.8436 0.8567

0.25 0.7140 0.8602 0.8781 0.8892

Foreman 0.05 0.7082 0.7188 0.6068 0.7531

0.10 0.7698 0.7473 0.7917 0.8027

0.15 0.8088 0.7742 0.8286 0.8432

0.20 0.8421 0.8000 0.8565 0.8761

0.25 0.8670 0.8230 0.8801 0.9007

Mother and daughter 0.05 0.7820 0.8818 0.6779 0.8979

0.10 0.8351 0.9006 0.9056 0.9174

0.15 0.8675 0.9176 0.9262 0.9348

0.20 0.8928 0.9310 0.9401 0.9486

0.25 0.9118 0.9418 0.9509 0.9588

Tempete 0.05 0.4485 0.6465 0.5400 0.6829

0.10 0.5553 0.6902 0.7008 0.7288

0.15 0.6287 0.7300 0.7478 0.7706

0.20 0.6871 0.7616 0.7806 0.8043

0.25 0.7311 0.7872 0.8061 0.8331

Mobile 0.05 0.3132 0.3985 0.3253 0.4321

0.10 0.4001 0.4434 0.4658 0.4876

0.15 0.4674 0.4907 0.5231 0.5535

0.20 0.5313 0.5293 0.5665 0.6129

0.25 0.5823 0.5656 0.6082 0.6749
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representation ability of the basis is more powerful than those used in other methods.
Therefore, a desirable performance is achieved.

5 Conclusion

In this paper, we propose a dictionary learning-based residual reconstruction method for CS video
recovery. In our method, a sparse representation basis is firstly learned from the inter-frame
differences (residual domain) by KLT. Then, a multi-frame reference ME/MC-based residual
reconstruction is performed employing the learned adaptive basis. Since the non-local similarity in
the image and the temporal correlation in the residual domain are extensively exploited to enhance
the sparsity, a significant performance gain is achieved over the other CS video straightforward
and residual recovery methods. Experimental results show that our method outperforms the
current mainstream CS video reconstruction methods in the recovery performance.
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