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Abstract—Motion-compensated frame rate up-conversion (MC
-FRUC) is originally presented to increase the motion continuity
of low frame rate videos by periodically inserting new frames,
which improves the viewing experience. However, MC-FRUC can
also be exploited to fake high frame rate videos or splice two
videos with different frame rates for malicious purposes. A blind
forensics approach is proposed for the identification of various
MC-FRUC techniques. A theoretical model is firstly built for
residual signal, which is exploited as tampering trace for blind
forensics. The identification of various MC-FRUC techniques is
then converted into a problem of discriminating the differences
of residual signals among them. A pre-classifier is designed to
suppress the side effects of original frames and static interpolated
frames in candidate videos. Then, spatial and temporal Markov
statistics features (ST-MSF) are extracted from the residual
signals inside interpolated frames for MC-FRUC identification.
Five open MC-FRUC softwares and six representative MC-FRUC
techniques have been tested, and experimental results show that
the proposed approach can effectively locate interpolated frames
and further identify the adopted MC-FRUC technique for both
uncompressed videos and compressed videos with high perceptual
qualities.

Index Terms—Blind video forensics, Motion-compensated
frame rate up-conversion, Residual signal and Classification.

I. INTRODUCTION

W ITH the availability of inexpensive and portable video
capture devices such as mobile phones, digital video

is enriching our daily life. Meanwhile, the proliferation of
powerful video editing tools makes it much easier than ever
to produce faked videos without leaving any perceptible traces
[1]. The doctored videos are very difficult, if not impossible,
to be identified by naked eyes. This breaks our traditional
concept of “seeing is believing” and brings serious crises in
respect to public confidence. Video forensics, which attempts
to verify the trustworthiness of digital videos, has attracted
wide research interests in the field of information security.
Especially, passive forensics approaches [1]-[4], which detect
tampering traces without the aid of any prior axillary infor-
mation such as digital watermark or signature, are extensively
studied in recent years.

This work is supported in part by the National Natural Science Foundation
of China (61572183, 61379143, 61232016, 61501393, U1405254), and the
Specialized Research Fund for the Doctoral Program of Higher Education
(SRFDP) under grant 20120161110014.

X. Ding, G. Yang, L. Zhang, and Y. Li are with the School of Information
Science and Engineering, Hunan University, Changsha, 410082, China. (e-
mail: xianglingding@163.com; yanggaobo@hnu.edu.cn).

R. Li is with the School of Computer and Information Technology, Xinyang
Normal University, Xinyang, 464000, China. (e-mail: liran358@163.com).

X. Sun is with the School of Computer and Software, Nanjing University
of Information Science and Technology, Nangjing, 210044, China. (e-mail:
sunnudt@163.com).

Digital video can be regarded as a series of image frames.
Almost all potential image editing operations can be applied to
video frame. Thus, most image forensic methods are extended
to video forensics in a direct or indirect way [3]. However,
digital video has an extra temporal dimension. Video forgeries
include both intra-frame and inter-frame operations, which
are referred to as spatial-domain and temporal-domain forg-
eries, respectively. Frame-based manipulations such as frame
adding/deleting, group of pictures (GOPs) reorganization are
temporal forgeries specific to digital video. Until now, there are
some specific methods to detect inter-frame forgeries including
frame adding/deleting and frame duplication [5]-[9]. The clues
exploited to expose these inter-frame forgeries include optical
flow consistency [7], velocity field consistency [8] and Zernike
opponent chromaticity moments [9].

Frame rate up-conversion (FRUC) is another special frame-
based video manipulation, which interpolates new frames be-
tween two successive frames to increases the motion continuity
of low frame rate videos [10]. Though FRUC is originally
proposed to improve the visual quality of low frame rate
videos [11], it can also be used for malicious video forgeries.
First, since high bitrate videos are usually more preferred
over the Internet, FRUC might be used to fake high bitrate
videos from low bitrate ones by increasing their frame rates.
Second, two videos with different frame rates can be spliced
by up-converting the low frame rate video to match the higher
one. Frame repetition and frame averaging are two simple
FRUC approaches which disregard objects’motions. However,
they often lead to motion jerkiness and ghosting artifacts for
non-stationary videos, respectively [17]. In recent years, many
advanced FRUC approaches, which are also known as motion-
compensated FRUC (MC-FRUC), have been proposed by esti-
mating motions as close as possible to true motions [12]-[20].
Specifically, various assumptions and strategies are exploited
by MC-FRUC to achieve better motion estimation (ME) and
motion compensated interpolation (MCI). Thus, more natural
and realistic videos are obtained for non-stationary videos
without leaving any visible artifacts.

Until now, there are still few works reported for the blind
forensics of FRUC. Four existing works are summarized as
follows. Bestagini et al. [21] firstly designed a detector capable
of revealing the use of MC-FRUC method. The detector firstly
computes an estimated motion vector (MV) for each frame
from its neighboring frames, and further computes prediction
errors between estimated frame and original one, which leads
to a periodic signal. Then, the periodic signal is exploited
to infer original frame rate. However, it is claimed that it
can not locate interpolated frames. Bian et al. [22] presented
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a similarity-analysis-based detection approach. However, it
only reports the detection results of simple frame repetition.
Since MC-FRUC usually leads to edge discontinuity or over-
smoothing artifacts, we presented a MC-FRUC detection ap-
proach by exploiting the periodicity of edge-intensity [23].
After computing the edge intensities of each frame, an adaptive
threshold is defined by Kaufman adaptive moving average to
differentiate interpolated frames from original ones. Recently,
we proposed another blind MC-FRUC detection approach by
exploiting average texture variation [24]. It firstly computes a
curve of frame-level texture variation to indicate the existence
of MC-FRUC and infer original frame rate. Then, an adaptive
threshold is selected in a way similar to [23] to locate inter-
polated frames. These existing approaches achieve desirable
detection results, but still can not identify the adopted MC-
FRUC technique for suspicious videos. In practical forensics
cases, users may want to further identify the specific MC-
FRUC technique after knowing that a candidate video has been
up-converted. This is an essential step towards estimating the
key parameters of MC-FRUC techniques such as block size
involved in ME and MCI, which is actually an in-depth goal
of passive video forensics.

In this paper, we propose a blind forensics approach to iden-
tify the adopted MC-FRUC technique for suspicious videos.
By theoretically modelling residual signals caused by various
MC-FRUC techniques, we verify that residual signals mainly
occur in motion and texture-rich regions of non-static interpo-
lated frames and have different variances among various MC-
FRUC techniques. Consequently, the correlations of adjacent
pixels in interpolated frames are also disturbed to different
extents. Inspired by the strong ability of Markov statistics in
characterizing adjacent pixel correlation, spatial and temporal
Markov statistics features (ST-MSF) are designed to capture
the differences of residual signals. Then, an Error-Correcting
Output Code (ECOC) [25] framework on the basis of Ensem-
ble classifier [26] is adopted to identify the adopted MC-FRUC
technique. Since static interpolated frames and original frames
have less or null residual signals, a pre-classifier is designed
to select interpolated frames with prominent residual signals.
The contributions are three-folds: First, this is the first attempt
to identify the adopted MC-FRUC techniques in passive video
forensics. Second, residual signal is firstly exploited as forgery
trace to expose MC-FRUC, and thus the identification of MC-
FRUC techniques is converted into a problem of discriminating
the differences of residual signals inside interpolated frames.
Third, a pre-classifier, which includes Scene Change Detec-
tion (SCD), Static Scene Detection (SSD) and Multi-Loop
Detection Method (MLDM), is designed to improve detection
accuracy by suppressing the side effects of static interpolated
frames and original frames.

The rest of this paper is organized as follows. Section II
summarizes existing MC-FRUC techniques. Section III intro-
duces the concept of residual signal and discusses its possibil-
ity to be exploited as forgery trace for forensics. Section IV
presents the proposed blind forensics approach. Experimental
results are provided in Section V, and we conclude this paper
in Section VI. For ease of understanding, the acronyms and
notations in this paper are listed in Table I.

TABLE I: List of Acronyms and Notations.
MC-FRUC Motion-Compensated Frame Rate Up-Conversion

ST-MSF Spatial and Temporal Markov Statistics
ME Motion Estimation
MCI Motion Compensated Interpolation
MV Motion Vector

ECOC Error-Correcting Output Code
SCD Scene Change Detection
SSD Static Scene Detection

MLDM Multi-Loop Detection Method
OBMC Overlapped Block Motion Compensation
TFDM Temporal Frame Difference Matrix

STFDM Spatial and Temporal Frame Difference Matrix
MI Mutual Information
F 0 Available Original Frame
Fα Interpolated Frame
Fβ Absent Original Frame corresponding to Interpolated Frame
R Residual Signal
fps Frame Per Second
SR Success Rate

II. PRELIMINARIES OF MC-FRUC TECHNIQUES

A. Notation

Residual 
Signal+

(a) (b)

Absent 
Original 
Frame

Interpolated 
Frame

ME

MCI
MC-FRUC

1st time 1st time

2nd time 2nd time

3rd time 3rd time

Available 
Original 
Frame

Available 
Original 
Frame

Fig. 1: (a) Frame interpolated by MC-FRUC (α = 1
8 ) ; (b)

Residual signal.

Let F (x, y, t) ∈ Rm×n×k be a video sequence, where
(x, y) are spatial coordinates and t is temporal index, x ∈
[1, ...,m], y ∈ [1, ..., n], and t ∈ [0, ..., k − 1] [21]. Let
α be an up-conversion factor (0 < α < 1). That is, there
are ( 1

α − 1) new interpolated frames between two original
adjacent frames. Please note that these interpolated frames are
generated from their adjacent frames by various MC-FRUC
techniques. Thus, we assume that there exists an original frame
corresponding to each interpolated frame. Since this kind of
original frame does not actually exist, it is named as an absent
original frame. Let F 0(x, y, αt) denote an available original
frame, where αt is an integer instant. Let Fα(x, y, αt) be
an interpolated frame and F β(x, y, αt) be the absent original
frame corresponding to Fα(x, y, αt). In the rest of the paper,
we consider a block in the αtth frame to be interpolated,
where αt is a non-integer instant. Fig. 1(a) is an example
of interpolated frames generated by MC-FRUC with α = 1

8 .
Apparently, MC-FRUC operations are repeated three times to
generate seven interpolated frames, which are denoted by Pink,
Orange, and Blue colors, respectively. There are also seven
absent original frames corresponding to them.
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Fig. 2: The architecture of OBMC-based MC-FRUC. (Green, Red, Brown, and Blue denote reference blocks; Dashed box is
interpolated block)

Then, residual signal is referred to as the difference between
an interpolated frame and its absent original frame, as shown
in Fig.1(b). That is,

R(x, y, αt) =

{
F β(x, y, αt)− Fα(x, y, αt) αt is a noninteger

null otherwise
(1)

In brief, MC-FRUC is mathematically expressed as an
estimation Fα(x, y, αt) of absent original frame F β(x, y, αt)
by minimizing residual signal R(x, y, αt).

B. MC-FRUC techniques

MC-FRUC typically includes two key modules: ME and
MCI. ME is to estimate spatial displacement, i.e., MV, of the
same pixel in adjacent frames. MCI exploits the estimated
MVs to construct an interpolated frame. Thus, the strategies
of ME and MCI determine the performance of MC-FRUC,
which also differentiate various MC-FRUC techniques.

There are four classes of ME strategies for MC-FRUC:
(i) unidirectional ME (UME) [12], [13]; (ii) bidirectional
ME (BME) [14]-[16]; (iii) unidirectional and bidirectional
ME (UBME) [17]-[19]; and (iv) multiple hypotheses ME
(MHME) [20]. Since there are great differences among these
ME strategies, they will have distinct impacts on resultant
videos.

Existing MCI schemes can also be divided into several
categories: direct MCI (DMCI) [10], overlapped block motion
compensation (OBMC) [13], adaptive OBMC (AOBMC) [15],
dual weighted based joint OBMC (MCMP) [17], and direction-
select OBMC (DSME) [18], etc. Among them, OBMC is
the most popular MCI technique, which is originally used in
video encoder to alleviate blocking artifacts. For the OBMC-
based MC-FRUC, each interpolated block is synthesized as a
weighted average of reference blocks, as shown in Fig. 2. Let
V1, V2, V3 and V4 be four neighboring blocks. Their MVs are
(v1x, v1y), (v2x, v2y), (v3x, v3y) and (v4x, v4y), respectively.
Interpolated blocks in region A, B and C, which overlap with
four blocks (V1, V2, V3 and V4), two blocks (V3 and V4) or one
block V4, respectively. Each pixel of the interpolated block is
obtained by

Fα(x, y, αt) =

1
2

λ∑
i=1

ωi(x, y)
4∑

j=5−i
[F 0(x+ vjx, y + vjy, α(t− 1))

+F 0(x− vjx, y − vjy, α(t+ 1))]

(2)

where λ ∈ {1, 2, 4},
λ∑
i=1

ωi(x, y) = 1, and ωi(x, y) is the

weighting coefficient determined by the relative position (x, y)
within an interpolated block. Other MCI methods can be
regarded as the variations of OBMC with different weighting
mechanisms. For instance, when λ = 1 and ω1(x, y) = 1,
OBMC is turned into DMCI [10]. When it meets

ω
′

i(x, y) =
ΦVi

[vix,iy] · ωi(x, y)
4∑

λ=1

Φ
Vi

[vix+λ,iy+λ] · ωi+λ(x, y)

ΦVi
[vix,iy] =

SBAD[Vi, vix,jy]

SBAD[Vi, vix+λ,jy+λ]
,

where SBAD[Vi, vix,jy] is the sum of bilateral absolute dif-
ference for current block Vi. It is actually AOBMC [15]. Thus,
OBMC can serve as the unified form to represent existing MCI
methods (Please refer to [12]-[20] for details).

III. RESIDUAL SIGNAL AND ITS FORENSICS ROLE

Similar to block-based ME in video coding, there is also
an assumption for the ME involved in MC-FRUC that all the
pixels in an interpolated block share the same MV [10], [27].
However, it does not always hold because of non-translational
motion or non-rigid object itself. This will lead to residual
signal, which is quite similar to prediction residue in block-
based video coding. Actually, residual signal is the difference
of interpolated pixels when they are obtained by estimated MV
and true MV, respectively. In this section, we firstly model
residual signal, and then analyze its possibility as forgery clue
for the identification of MC-FRUC techniques. For explanatory
simplicity, we only consider 1-D signal, which can also be
extended to 2-D signal in a straightforward way.

A. Modeling of Residual Signal in an Unified Form

We assume that F 0(x, α(t− 1)) and Fα(x, αt) come from
the same underlying intensity function with MV vx,t−1 and
additive noise [10]. Similarly, Fα(x, αt) and F 0(x, α(t+ 1))
have the same MV vx,t+1 and additive noise. Thus, Fα(x, αt)
is correlated with F 0(x, α(t− 1)) and F 0(x, α(t+ 1)) as

Fα(x, αt) = F 0(x+ vx,t−1, α(t− 1)) +n(x, α(t− 1)) (12)

Fα(x, αt) = F 0(x− vx,t+1, α(t+ 1)) +n(x, α(t+ 1)) (13)
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where n(x, αν) is additive noise with zero mean and variance
σ2
αν , and αν ∈ [0, ..., k−1]. Besides, n(x, αν) is assumed to be

independent of Fα(x, αt), F 0(x, α(t−1)) and F 0(x, α(t+1))
[10].

First, let ξ be an arbitrary pixel within an interpolated block
Vi. N is the block size and its motion vector is vξ, 0 ≤ ξ ≤
N − 1. Thus, Fα(ξ, αt), F 0(ξ + vN/2, α(t− 1)) and F 0(ξ −
vN/2, α(t+1)) are the same except for their noise components.
If vξ keeps stable and temporal symmetry in whole block, it is
equal to vN/2, but in general this does not hold. By expanding
F 0(ξ+ vN/2, α(t− 1)), and F 0(ξ− vN/2, α(t+ 1)) with (1),
(3), and (4) and omitting higher order terms, the first-order
approximations of R(ξ, αt) between Fα(ξ, αt) and F β(ξ, αt)
can be expressed as

R(ξ, αt) = F β(ξ, αt)− Fα(ξ, αt)
≈ 1

2{(vξ − vN/2) ∂∂ξF
0(ξ + vN/2, α(t− 1))

+(vN/2 − vξ) ∂∂ξF
0(ξ − vN/2, α(t+ 1))

+n(ξ, α(t− 1)) + n(ξ, α(t+ 1))}

(3)

To simplify computation, we further assume that 1
2{n(ξ, α(t−

1)) + n(ξ, α(t + 1))} ≈ n(ξ, αt) [10]. The difference be-
tween motion at (ξ) and that at (N/2) follows distribution
of N(0, c2(ξ − N/2)2), where c is constant that represents
the amount of fluctuation of motion [27], [28]. Meanwhile,
∂
∂ξF

0(ξ + vN/2, α(t− 1)) and ∂
∂ξF

0(ξ − vN/2, α(t+ 1)) are
assumed to be statistically independent of vξ. Consequently,
the mean and variance of R(ξ, αt) can be expressed as

E[R(ξ, αt)] = 0, E[R2(ξ, αt)] = ~(ξ −N/2)2 + σ2
αt (4)

where ~ = 1
4 [c2ρ2

t−1 + c2ρ2
t+1 + 2c2ρt−1ρt+1ρt−1,t+1],

ρ2
t−1 = E

[(
∂
∂ξF

0(ξ +N/2, α(t− 1))
)2
]

,

ρ2
t+1 = E

[(
∂
∂ξF

0(ξ −N/2, α(t+ 1))
)2
]

,

and ρt−1,t+1 is the correlation coefficient between ∂
∂ξF

0(ξ +

N/2, α(t− 1)) and ∂
∂ξF

0(ξ −N/2, α(t+ 1)).
After modeling the residual signal in an interpolated block,

we further derive the residual signal of OBMC. Since OBMC
can serve as the unified form of existing MCI methods, the
derived results can be extended to other MCI methods.

Let V1 and V2 be two adjacent blocks in Fα(x, αt), and N/2
and 3N/2 be their center positions, respectively. ω1 and ω2 are

the shifted versions of weighting coefficient ω(ξ), which are
centered at N/2 and 3N/2, respectively [13]. ω(ξ) is defined
within [−N,N ]. For ξ ∈ [0, N ], it satisfies 0 ≤ ω(ξ) ≤ 1,

ω(ξ) + ω(N − ξ) = 1,
ω(−ξ) = ω(ξ).

For a pixel ξ ∈ [N/2, N ] in the block V1, its inter-
polated process by OBMC is firstly considered. When the
estimated and the true MVs of V1 and V2 are used, the
first-order approximations of residual signals are denoted by
R1(ξ, αt) and R2(ξ, αt), respectively. Since R1(ξ, αt) and
R2(ξ, αt) share the same derivations as R(ξ, αt), residual
signal ROBMC(ξ, αt) is also defined as the difference between
F β(ξ, αt) and Fα(ξ, αt).

ROBMC(ξ, αt) = F β(ξ, αt)− Fα(ξ, αt)
= ω1(ξ)R1(ξ, αt) + ω2(ξ)R2(ξ, αt)

(5)

R1(ξ, αt) ≈ 1
2{(vξ − vN/2)× ∂

∂ξF
0(ξ + vN/2, α(t− 1))

+(vN/2 − vξ)× ∂
∂ξF

0(ξ − vN/2, α(t+ 1))}
+n(ξ, αt)

R2(ξ, αt) ≈ 1
2{(vξ − v3N/2)× ∂

∂ξF
0(ξ + v3N/2, α(t− 1))

+(v3N/2 − vξ)× ∂
∂ξF

0(ξ − v3N/2, α(t+ 1))}
+n(ξ, αt)

(6)
Similar to the derivation of (6), the means and the variances

of R1(ξ, αt) and R2(ξ, αt) are derived as follows.

E[R1(ξ, αt)] = 0, E[R2(ξ, αt)] = 0,
E[R1

2(ξ, αt)] = ~(ξ −N/2)2 + σ2
αt

E[R2
2(ξ, αt)] = ~(3N/2− ξ)2 + σ2

αt

(7)

Further, the cross-correlation of R1(ξ, αt) and R2(ξ, αt) is
given in (10), where ρv is the correlation coefficient between
(vξ − vN/2) and (vξ − v3N/2), and ρ1f , ρ2f , ρ3f and ρ4f are
respectively the correlation coefficients between
∂
∂ξF

0(ξ + vN/2, α(t− 1)) and ∂
∂ξF

0(ξ + v3N/2, α(t− 1)),
∂
∂ξF

0(ξ + vN/2, α(t− 1)) and ∂
∂ξF

0(ξ − v3N/2, α(t+ 1)),
∂
∂ξF

0(ξ − vN/2, α(t+ 1)) and ∂
∂ξF

0(ξ + v3N/2, α(t− 1)),
∂
∂ξF

0(ξ − vN/2, α(t+ 1)) and ∂
∂ξF

0(ξ − v3N/2, α(t+ 1)).
For a pixel ξ ∈ [0, N/2], it can be computed by using V1 and

the MV of its left neighboring block. Consequently, Equations
(7) and (10) are combined to derive (11).

E[R1(ξ, αt) ·R2(ξ, αt)]
= σ2

αt + 1
4E[{(vξ − vN/2) ∂∂ξF

0(ξ + vN/2, α(t− 1)) + (vN/2 − vξ) ∂∂ξF
0(ξ − vN/2, α(t+ 1))}

×{(vξ − v3N/2) ∂∂ξF
0(ξ + v3N/2, α(t− 1)) + (v3N/2 − vξ) ∂∂ξF

0(ξ − v3N/2, α(t+ 1))}]
= 1

4{ρvc
2(ξ −N/2)(3N/2− ξ)ρ1fρ

2
t−1
− ρvc2(ξ −N/2)(3N/2− ξ)ρ2fρt−1ρt+1

−ρvc2(ξ −N/2)(3N/2− ξ)ρ3fρt−1ρt+1 + ρvc
2(ξ −N/2)(3N/2− ξ)ρ4fρ

2
t−1
}+ σ2

αt

= 1
4ρvc

2(ξ −N/2)(3N/2− ξ)(ρ1fρ
2
t−1
− ρ2fρt−1ρt+1 − ρ3fρt−1ρt+1 + ρ4fρ

2
t−1

) + σ2
αt

(10)

E[ROBMC(ξ, αt)] = 0, and E[R2
OBMC

(ξ, αt)] = E[(ω1(ξ)R1(ξ, αt) + ω2(ξ)R2(ξ, αt))2]
= E[(ω1(ξ)R1(ξ, αt))2] + E[(ω2(ξ)R2(ξ, αt))2] + 2E[ω1(ξ)R1(ξ, αt)ω2(ξ)R2(ξ, αt)]
= ~ω2

1
(ξ)(ξ −N/2)2 + ~ω2

2
(ξ)(N − |ξ −N/2|)2 + σ2

αt

+2ω1(ξ)ω2(ξ)ρvc
2(ξ −N/2)(N − |ξ −N/2|)(ρ1fρ

2
t−1
− ρ2fρt−1ρt+1 − ρ3fρt−1ρt+1 + ρ4fρ

2
t−1

)

(11)
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B. Residual signal as the clue for MC-FRUC forensics

It is well-known that the ROBMC(ξ, αt) in interpolated
frames of a static scene or interpolated blocks in texture-
smooth region must be null because the whole block keeps
steady motion (i.e., c = 0 or vξ = vN/2). Thus, we need to
exclude the negative effect of static interpolated frames.

(b) EBME (c) AOBMC (d) Dual_ME

(e) MCMP (f) DS_ME (g) PFRUC (h) MSU

(i) MVTools (j) YUVsoft (k) Respeedr (l) MotionPerfect

(a) Original

(m) Green box of (e) (n) Green box of (f) (o) Green box of (g) (p) Green box of (h)

Fig. 3: The original 4th frame of “Football” sequence and
residual signals; (m)-(p) are highlighted versions of the marked
green boxes in (e)-(h), respectively.

TABLE II: Comparisons of eleven MC-FRUC techniques.
MC-FRUC Technical details
EBME [14] Extended BME + OBMC.

AOBMC [15] BME + AOBMC.
DualME [16] Dual ME + OBMC.
MCMP [17] Multi-channel mixed pattern UBME + DW-OBMC.
DSME [18] Direction-select UBME + DS-OBMC.

PFRUC [19] Hierarchical MVF construction + OBMC +
Particle-based motion trajectory calibration.

MSU Quarter pixel accuracy + Bilinear interpolation +
The same sharpness as the original ones.

MVTools2 Block-matching ME + Half a pixel precision +
Sharper Wiener interpolation + Pixel-based MC.

YUVsoft Half a pixel precision+ Motion adaptation +
Scene change detection.

Respeedr Frame-blending + key-frame technologies.
MotionPerfect MCI + Morphing algorithms.

For non-translational motion, non-rigid object and texture-
rich regions (i.e., vξ 6= vN/2), there must exist residual signals.
As shown in Fig. 3, the interpolated frames are obtained by
using the 3rd and 5th frame of “Football” sequence in CIF
format with eleven MC-FRUC techniques. They include six
most representative MC-FRUC techniques and five public-
available FRUC softwares1, summarized in Table II. Fig.3
(b)-(l) are the residual signals between interpolated frame
and the 4th frame, which are highlighted by using “hot”
color map. From it, we observe that the dark areas are those
relatively static regions and texture-smooth regions. There are

1Available on http://www.wondershare.com/multimedia-tips/slow-motion-
software.html.

also subtle variations in the bright regions, which correspond
to motion and texture-rich regions. Especially from the boxes
marked with Green, we observe from Fig.3 (m)-(p) that the
residual signals are also different from each other. Therefore,
we need to highlight motion and texture-rich regions of non-
static interpolated frames for blind forensics.
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Fig. 4: Laplace distributions of residual signals.

For various MC-FRUC methods, their residual signals have
different variances. Fig. 4 shows the distributions of residual
signals. From it, residual signals follow Laplace distributions
with different variances. This motivates us to exploit residual
signal as forgery trace to identify various MC-FRUC tech-
niques. However, the variance of residual signal can not be
directly employed to identify the adopted MC-FRUC method
because of the diversities of video content and the complexities
of motion and texture. Instead, residual signal should be
treated in a novel manner for blind forensics. Since the residual
signals caused by various MC-FRUC methods have different
variances, the inherent correlation among adjacent pixels in
motion and texture-rich regions will be inevitably destroyed
along temporal and spatial directions. Therefore, the Markov
features are adopted to capture this correlation in this paper,
the effectiveness of which will discussed in next Section.

IV. PROPOSED BLIND MC-FRUC FORENSICS SYSTEM

For blind forensics, the identification of tampering technique
is a deeper goal than simple binary decision on whether
a candidate video is forged or not. The proposed forensics
system makes the first attempt to identify the adopted MC-
FRUC technique, and its block diagram is shown in Fig.5.
There are three key components: spatial and temporal Markov
statistics feature (ST-MSF) extraction, pre-classifier and the
identification of MC-FRUC techniques. As claimed in previ-
ous section, various MC-FRUC techniques introduce distinct
residual signals, which destroy the inherent correlations among
adjacent pixels of interpolated frames to some extent. This
is a desirable property for the identification of MC-FRUC.
Since Markov statistics has been proved to be simple yet
effective in characterizing adjacent pixel correlation [29],
[30], [31], it is straightforward that our proposed ST-MSFs
are effective to model the differences of residual signals as
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Fig. 5: Overview of the proposed blind MC-FRUC forensics system.

well. However, if ST-MSFs are directly extracted from any
frame of a candidate video, the accuracy will be influenced
because there exists static interpolated frames without residual
signals. Therefore, a pre-classifier is proposed to exclude static
interpolated frames so as to improve the accuracy. Finally,
a multi-class classifier is exploited for the identification of
various MC-FRUC techniques.

A. ST-MSF Extraction and its Effectiveness Analysis

As claimed in Section III-B, motion and texture-rich regions
of non-static interpolated frames have prominent residual
signals. Therefore, they should be highlighted by suppressing
temporal and spatial redundancies of a candidate video.

1) Suppress spatial and temporal redundancies: Firstly, a
temporal frame difference matrix (TFDM) is defined among
three successive frames to suppress temporal redundancies.

TFDM(x, y, t) = 1
2 [(F (x, y, t)− F (x, y, t− 1))
+(F (x, y, t)− F (x, y, t+ 1))]

(12)

where t is the frame index. For the first and last frame of a
candidate video, their TFDMs are computed between the first
two frames and the last two frames, respectively.

Further, a spatial frame difference filter is defined to reduce
spatial redundancies.

STFDM↓(x, y, t) = TFDM(x, y, t)−TFDM(x+ 1, y, t) (13)

where STFDM↓(x, y, t) is the up-to-down spatial difference.
To measure the information redundancy between F(x, y, t)

and STFDM↓(x, y, t), mutual information (MI) is exploited
here because it is a basic concept in information theory which
measures the statistical dependence between two random vari-
ables [32].

MI(A,B) = H(A) +H(B)−H(A,B)

= H(A)−H(A|B)

where H(A) and H(B) are the entropies of A and B, respec-
tively. H(A,B) is the joint entropy, and H(A|B) is the condi-
tional entropy of A given B. For most videos2, MI(F (x, y−
1, t), F (x, y, t)) and H(F (x, y − 1, t)) are about 1.8350 and
4.8929, respectively; and MI(STFDM↓(x, y, t), F (x, y, t))
and H(STFDM↓(x, y, t)) are about 0.2015 and 3.1974,
respectively. Thus, when F (x, y, t) is known, the entropy of
F (x, y − 1, t) will decrease by 37.50%, but the entropy of

2from the online video Databases (http://media.xiph.org/video/derf/#)

STFDM↓(x, y, t) will decrease by 0.2015
3.1974 = 6.30%. That is,

the dependence between STFDM↓(x, y, t) and F (x, y, t) de-
creases to a fairly low level from the information theory point
of view [32]. Therefore, temporal and spatial redundancies are
effectively suppressed by STFDM, and thus residual signals
are highlighted within motion and texture-rich regions along
temporal and spatial directions.

2) ST-MSF Extraction: Residual signals destroy the inher-
ent correlations among adjacent pixels. To differentiate the
residual signals caused by various MC-FRUC techniques, we
model such correlations with Markov chain, which are com-
puted from empirical probability transition matrices. Specif-
ically, the Markov features are extracted in spatial-temporal
domain, which are denoted as ST-MSF. The steps of ST-MSF
extraction are summarized as follows.

Step1: Compute TFDM(x, y, t) with (12) for each frame.
Step2: Compute STFDM(x, y, t) along eight directions.

Eight direction-specific quantities are denoted by superscripts
{←,→, ↓, ↑,↘,↖,↗,↙}, respectively. An example is the
up-to-down spatial difference STFDM↓(x, y, t) as (13), and
the other seven difference matrices are defined similarly.

Step3: Truncate STFDM↓(x, y, t) with a threshold T . If it
is bigger than T or smaller than −T , it will be replaced with
T or −T , respectively. The selection of T will be discussed
in Section V-B.

Step4: Model STFDM↓(x, y, t) with the first-order Markov
process along the vertical direction, and compute the empirical
matrices as follows.

M↓u,v,t =
1

m× n
∑
x

∑
y

Pr(STFDM↓(x+ 1, y, t) = u∣∣STFDM↓ (x, y, t) = v)

where u, v ∈ {−T, · · · , T}. If Pr(STFDM↓(x, y, t) = v) = 0,
then M↓u,v,t = 0. The empirical matrices of the rest seven
directions can be computed similarly.

Step5: Reduce feature dimensions. Specifically, four hor-
izontal or vertical matrices, and four diagonal matrices are
separately averaged to form two feature subsets [30], [31].
Thus, the ST-MSF of a frame is defined as

St1,...,s =
1

4
(M←t +M→t +M↑t +M↓t ) (14)

Sts+1,...,2s =
1

4
(M↗t +M↙t +M↘t +M↖t ) (15)

where Mt, St1,...,s, and Sts+1,...,2s have the same dimensions
of s = (2× T + 1)2.
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For a candidate video encoded with H.264/AVC or MPEG-
2 codec, I frames and motion predicted residues are com-
pressed by a lossy compression scheme. As pointed by [33],
with similar dimensionality, the feature sets extracted from
DCT domain are always better than those from pixel domain
for compressed videos. It is also well-known that once the
pixel values are modified, the corresponding coefficients in
frequency domain are inevitably changed. That is, though
residual signal is derived in pixel domain, it is also valid for
frequency domain. Therefore, the ST-MSFs are extracted from
DCT-domain for candidate compressed videos. There are two
additional steps to be firstly executed as follows.

Step1, Apply 8×8 block Discrete Cosine Transform on the
decoded Y components of a candidate encoded video, and the
corresponding DCT coefficient array is obtained.

Step2, Take absolute value of the DCT coefficients. Then,
the obtained arrays are used to replace frames in (12), and the
rest operations remain the same.

3) Effectiveness analysis of ST-MSF: As claimed in Sec-
tions II-B and III-B, the performance of MC-FRUC depends
on the strategies of ME and MCI, and the differences mainly
exist in motion and texture-rich regions of non-static inter-
polated frames. In the following, we discuss the differences
among various MC-FRUC techniques for these regions under
two cases.

In the first case, we assume that various MC-FRUC tech-
niques have the same MCI scheme but different searching
patterns of ME. From Fig. 2, this may lead to block V1 with
different MVs (v1x, v1y). That is, block V1 may come from
different blocks in the previous and current frames. As a result,
block V1 may exhibit differences among various MC-FRUC
techniques. Similarly, blocks V2, V3 and V4 also exhibit differ-
ences among various MC-FRUC techniques. Then, the same
MCI method is exploited to obtain each interpolated block
from them. Thus, there inevitably exists some differences
among interpolated blocks. In this case, the intra-frame and
inter-frame correlations also have differences among various
MC-FRUC techniques.

In the second case, we assume that various MC-FRUC tech-
niques have the same ME pattern but different MCI strategies.
Since they share the same ME pattern, blocks V1, V2, V3,
or V4 keep unchanged. However, the weighting coefficients
are different because of different MCI methods. That is, each
interpolated block is obtained by the same reference blocks
but averaged with different weighting coefficients. Thus, there
are also differences among various MC-FRUC techniques for
intra-frame and inter-frame correlations.

Actually, different MC-FRUC techniques may have distinct
ME and MCI strategies simultaneously. Thus, each interpolat-
ed block may have different reference blocks and weighting
coefficients. Fig. 6 shows the averaged ST-MSFs for eleven
MC-FRUC methods. From it, the shapes and intensities of
ST-MSFs are more or less different between original frames
and interpolated frames. This implies the changes of intra-
frame and inter-frame correlations. Furthermore, the shapes
and intensities of ST-MSFs are slightly different from each
other, especially in those regions marked with red boxes. This
verifies that the devised ST-MSFs are effective to expose

(b) EBME (c) AOBMC (d) Dual_ME

(e) MCMP (f) DS_ME (g) PFRUC (h) MSU

(i) MVTools (j) YUVsoft (k) Respeedar (l) MotionPerfect

(a) Original
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Fig. 6: Average ST-MSF of (a) original frame; (b)-(l) interpo-
lated frames; (m)-(p) highlighted regions that marked with red
boxes in (e)-(h).

interpolated frames and further identify the adopted MC-
FRUC technique.

B. Pre-classifier

A pre-classifier is designed to restrain the negative effects
of original frames and static interpolated frames by excluding
them from a candidate video. The reasons behind this are
two-folds. First, residual signals only exist inside interpolated
frames, and there are less residual signals in static interpolated
frames. Thus, interpolated frames with motion and rich-texture
should be firstly differentiated from original frames and static
interpolated frames. Second, the amount and positions of
interpolated frames are not fixed in up-converted videos due to
different up-conversion factors. Figure 7(a) is the flowchart of
the proposed pre-classifier, which includes three components:
Scene Change Detection (SCD), Static Scene Detection (SSD)
and Multi-Loop Detection Method (MLDM).

1) SCD: For video frames with rapid scene change, there
are prominent changes in motion regions, which might be
wrongly regarded as residual signals. Thus, the first frame of
a new scene and the last frame of previous scene might be
wrongly decided as an interpolated frames. However, they do
not contain any residual signals, which might lead to incorrect
identification of MC-FRUC technique. Actually, when video
frames with rapid scene change are up-converted by MC-
FRUC, the first frame of a new scene is usually replicated as an
interpolated frame to alleviate severe blocking artifacts. This
is the reason that SCD is involved in most commercial MC-
FRUC software. To avoid this kind of erroneous judgment,
the SCD approach [34] is adopted to divide a candidate video
into several scene segments. Meanwhile, when the structural
similarity index between the first two frames of each scene is
larger than 0.995 [22], the first frame is also labelled as an
interpolated frame.
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Fig. 7: Flowchart of (a) pre-classifier; (b) MLDM.

2) SSD: When an interpolated frame is obtained from two
successive static frames, its residual signal is null. This will
invalidate the following identification of MC-FRUC. Thus, if
the percentage of zero values in TFDM is more than 99.5%
for a frame, it is labelled as a static frame.

3) MLDM: After removing interpolated frames with null
residual signal by SCD and SSD, there might still exist some
original frames due to the diversities of up-conversion factors
and MC-FRUC technique. Thus, a MLDM scheme is presented
to choose true forgery frames. The flowchart of MLDM is
shown in Fig. 7(b). It is an iterative approach motivated
by the facts that interpolated frames must locate between
two reference frames and the intermediate frame of three-
successive detected frames is also an interpolated frame. The
steps of MLDM are summarized as follows.

Initialization: Let Γ, Ξ, and Ψ be the frame sets of
candidate video, detected interpolated frames in each loop,
and all the detected interpolated frames, respectively. Their
initial values are the whole frames of candidate video, ∅ and
∅, respectively. ∅ stands for an empty set.

Let Nup and Ts be the number of interpolated frames in
each loop and the duration time of the updated Γ, respectively.
Their initial values are 0.

Step1: Extract the ST-MSFs from training samples, which
are then trained to construct classification model by the
Ensemble classifier.

Step 2: Calculate the ST-MSFs of Γ. Then, Then, decision
results are obtained after the classification model is used to
test on these ST-MSFs by the Ensemble classifier.

Step 3: Update Γ as the scope of frames from the first de-
tected frame to the last one in the decision results. Intermediate
frames of each detected 3-successive frames are grouped into
Ξ, and its frame number is recorded in Nup, Ψ is modified to
be the union set of Ψ and Ξ, and Ts = dΣ updated Γ

f e, where
Σ stands for the numbers of set elements, f is the frame rate
of a candidate video, and d·e denotes the ceiling operator.

Step 4: If it meets Nup < Ts, goto step5; Else update Γ as
the difference set of Γ and Ξ; Goto Step2;

Step 5: Terminate and output the original frame rate as Σ Γ
T

fps where T = Σ(Γ+Ψ)
f , and the ST-MSFs of Ψ.

In summary, there are three key issues for MLDM in each
iteration: the scope of frames to be detected, how to choose
interpolated frames, and the condition of termination. For the
first issue, the whole frames of candidate video is used as
an initial estimate, and then it is updated as the scope of
frames which are involved from the first detected frame to
the last one in each loop. Thus, it covers all true interpolated
frames and their left and right adjacent frames. Meanwhile,
this can avoid early termination for spliced videos because the
proportion of up-converted video clips to the unaltered ones
may be fairly small. For the second issue, interpolated frames
are gradually selected by deciding the intermediate frame as
an interpolated frame in each slide window of three-successive
detected frames, in which only one frame overlaps with each
slide window. For the condition of termination, it is determined
by the repeated times of MC-FRUC operations. However, the
repeated times is unknown in practical forensics cases. Thus,
whether Nup is larger than Ts in each loop iteration is used
as an alternative. That is, when there is no interpolated frame
in an one-second video clip, MLDM is terminated.

Actually, MLDM is an inverse process of generating inter-
polated frames. Figure 1(a) is also an example of MLDM with
three loops, where the first, second and third loop correspond
to select those interpolated frames generated in the third,
second and first time of MC-FRUC operation, respectively.

C. The identification strategy

After pre-classification, ST-MSFs are extracted from those
detected interpolated-frames for the identification of various
MC-FRUC techniques. In this paper, an Error-Correcting
Output Code (ECOC) strategy [25] based on Ensemble clas-
sifier [26] with its default settings is exploited to turn a
multi-class problem into binary sub-problems because the
Ensemble classifier compromises well between computational
complexity and detection accuracy, and the ECOC strategy
is an excellent multi-class categorization tool as well. In the
experiments, there are eleven MC-FRUC techniques. Thus, a
twelve-class (including the original video without MC-FRUC
as a special class) classifier is designed, and a strategy of
pairwise coupling [35] is adopted. For the ECOC strategy, a
discrete decomposition matrix (codematrix) is firstly defined
for the twelve-class classification problem. Then, this problem
is decomposed into N = 11 × 12/2 = 66 binary sub-
problems, i.e., dichotomies, according to the sequence of
0s and 1s of columns of the codematrix. After training the
Ensemble classifier on these dichotomies, the ST-MSFs from
pre-classifier are tested to output a binary vector. The final type
is assigned to the class with the smallest Hamming distance
between this vector and the codewords.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

To verify the proposed approach3, a series of experiments
are done on a personal computer (64-bit AMD A8-5500 CPU

3The source codes are publicly available at https://drive.google.com/
open?id=0Bw98LY740lfsMGQzckJpSllhT1k
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3.2GHz, 8.0GB RAM) with MATLAB R2014a Until now,
there is still no open video database for MC-FRUC forgery de-
tection and identification. Thus, we build a test video database
by ourselves. Table III reports the used parameters. Fifteen
videos in CIF format (352× 288) and Ten videos in HD720p
format (1280× 720) are selected4, which have different con-
tents, diverse motion and texture complexities. These original
videos are in YUV4:2:0 format and their original frame rate
(fps1) is 15 fps. Nine specified target frame rates (fps2)
are employed here. According to the repeated times of MC-
FRUC operations, nine target frame-rates are divided into three
classes: once (20fps, 24fps, 25fps, 30fps); twice(36fps,
45fps, 60fps) and thrice (90fps, 120fps). Eleven MC-FRUC
techniques and software are summarized in Table II. Please
note that to achieve a low up-conversion factor, videos are
repeatedly conducted with multiple MC-FRUC operations, as
shown in Fig. 1(a). Meanwhile, optimized parameters are
adopted for these MC-FRUC techniques to obtain desirable
resultant videos. Please note that open tools YUVsoft and
MSU only support integer FRUC. To prove the robustness of
the proposed detector against lossy compression, JM18.65 and
MPEG-2 codec6 are used to encode these video sequences with
the configurations summarized in the last two rows of Table
III. For H.264/AVC codec, three configurations (conf1, conf2,
and conf3)are used under different QPs or GOP lengths. Two
similar configurations (conf4, and conf5) are adopted for
MPEG2 codec.

TABLE III: List of parameters used to build the dataset.
Name Values

Videos

CIF: Akiyo, Bowing, Bus, Coastguard, Container,
Flower, Football, Hall, Highway, Mobile,
Mother-daughter, News, Silent, Tempete, Waterfall.

HD720p: Ducks take off, Fourpeople, In to tree,
Johnny, Mobcal, Old town cross, Park joy, Parkrun,
Shields, Stockholm.

MC-FRUC See Table II.
fps1(fps) 15.
fps2(fps) once: 20, 24, 25,30; twice: 36, 45, 60; thrice: 90, 120.

H.264

conf1: QP 12; GOP 11, 17, 24, 30.
conf2: GOP 8; QP 12, 30, 42.
conf3: GOP 8; QP 12, 14, ..., 22.

MPEG2
conf4: Q Scales 8; GOP: 5,10.
conf5: GOP 10; Q Scales: 2, 4, 6.

TABLE IV: The Tampered video datasets and parameters
Name Important parameters
DB1 CIF videos; All fps2; Uncompressed.
Fast Bowing, Bus, Coastguard, Container, Flower, Football,

Highway, Mobile, Silent, Tempete, Waterfall; fps2: 30.
Static Akiyo, Hall, bridge-close, bridge-far; fps2: 30.
DB2 CIF videos; fps2: 30, 60 and 120; H.264: conf1 and conf2;

MPEG2: conf4 and conf5.
DB3 CIF videos; fps2: 30, 60 and 120; H.264: conf3.
DB4 CIF videos; fps2: 30; Uncompressed;

FRUC methods: OBMC [13] and MHME [20].
DB5 HD720 videos; fps2:30, 60, and 120; Uncompressed;

H.264: conf2; MPEG2: conf4.

4from the online video Databases (http://media.xiph.org/video/derf/#)
5Available on http://iphome.hhi.de/suehring/tml/
6Available on http://www.mpeg.org/MPEG/video

The tampered video datasets and their parameters are sum-
marized in Table IV. For each original CIF video, the first
tampered dataset, which is denoted as DB1, is constructed by
directly up-converting it to each target frame rate with eleven
MC-FRUC techniques, respectively. Since there are nine target
frame rates, this dataset contains nine subsets. For example,
one of the subsets is DB1 with fps2 = 30fps. Next, DB1
with fps2 = 30fps is further divided into two subsets to
verify the performance improvement by SSD. The first subset
originates from four YUV sequences with static scene, which
is denoted as Static. The second subset originates from eleven
YUV videos with fast motions, denoted as Fast.

Then, DB1 with fps2 = 30fps, 60fps and 120fps are
encoded with different configurations. That is, conf1 and
conf2 for H.264/AVC, whereas conf4 and conf5 for MPEG2.
We denote this tampered dataset as DB2. Moreover, the trend
of accuracy is further verified when estimating the original
frame-rate with H.264/AVC (conf3) under different QPs for
these subsets, denoted as DB3.

To assess the generalization ability of MC-FRUC iden-
tification, the original CIF videos are further up-converted
with fps2=30fps by two unknown MC-FRUC techniques
including OBMC [13] and MHME [20]. The tampered dataset
is denoted as DB4. Note that OBMC is a simplified version
of AOBMC without adaptive weighting mechanism, whereas
MHME is an advanced MC-FRUC technique which exploits
multiple hypothesis Bayesian to produce more realistic videos.

Ten HD720p videos are also up-converted with fps2 in-
cluding 30fps, 60fps and 120fps. Then, two encoding con-
figurations (conf2 for H.264/AVC and conf4 for MPEG2)
are adopted to encode these up-converted videos. We denote
this whole HD720p tampered videos including uncompressed
videos and compressed videos as DB5. Please note that since
YUVsoft is limited to spatial resolution of 720×576, YUVsoft
is not used here.

In each group of experiments, the ST-MSF features are
extracted from pixel domain when candidate videos are un-
compressed, otherwise directly from DCT domain. And, the
Ensemble classifier [26] with its default settings is used for
classification. Videos are randomly divided into two cate-
gories: 50% for training and the rest 50% for testing. The
training and testing are repeated for 10 times, and the average
results are reported as final detection accuracies.

Comparisons are made among the proposed approach and
three state-of-the-art approaches including P. Bestagini et al.
[21], Yao et al. [23] and Xia et al. [24]. Interpolated frames
and original frames are denoted as positive samples (Sp) and
negative samples (Sn), respectively. A widely-accepted metric
F1 [33], [36], which focuses on positive samples, is adopted
for performance evaluation.

F1 =

{
(γ2+1)·Precision × Recall
γ2·Precision + Recall if Σ Stp > 0

0 if Σ Stp = 0
(16)

where

Precision =
Σ Stp

Σ Stp + Σ Sfp
, Recall =

Σ Stp
Σ Sp
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and γ controls the balance between Precision and Recall.
Normally, γ is set to 1. Stp and Sfp are true positive and
false positive samples, respectively.

A threshold Th is used to judge whether the proposed
approach successfully estimates original frame rate or not.
If it meets F1 ≥ Th, the original frame rate is successfully
estimated. If the estimated frame rate fluctuates about 5%
around the true one, it is regarded that the original frame rate is
correctly estimated [22]. Since F1 ≥ Th means Th/(2−Th) ≤
Recall ≤ 1 and 0 ≤ |Sfp| / |Stp| ≤ 2/Th− 1/Recall− 1, Th
is calculated to be 94%. Thus, the success rate (SR) of frame
rate estimation is defined as follows.

SR =

K∑
i=1

δF1(i)≥Th

K
(17)

where K is the amount of videos in an evaluation dataset, and
if F1(i) ≥ Th, δ(·) equals 1 or else 0.

B. Choice of Truncated Threshold T

For the proposed method, there is only one parameter, name-
ly truncated threshold T , to be determined. The dimensionality
of the devised ST-MSF is 2× (2× T + 1)2, which is directly
determined by T . If T is too small, the correlations between
adjacent pixels in motion and texture-rich regions, which are

TABLE V: Experiment results with different threshold T .
T Dimensionality F1(%)
1 18 90.95
2 50 93.29
3 98 96.49
4 162 96.65
5 242 96.71
6 338 97.03

captured by the Markov process, might be insufficient to dis-
tinguish interpolated frames from original ones. On contrary, a
too big T means a very high dimensionality of feature vectors,
leading to intensive computational costs. Actually, the choice
of T is a trade-off between the value of F1 and computational
complexity.

To assess the influence of T , some experiments are con-
ducted on the subset of DB1 with fps2 = 30fps. Table V
reports the experiment results. As we expect, the value of F1

also increases with the increment of T . Moreover, there is no
dramatic rise of F1 when T is increased from 3 to 6. Thus,
T=3 is adopted in the following experiments.

C. Exposing single MC-FRUC operation

For our earlier works including Yao et al. [23] and Xia
et al. [24], we follow the same parameters to obtain their

TABLE VI: The F1 on tampered dataset DB1.(%)

MC-FRUC Forensics
methods

fps2(fps)
20 24 25 30 36 45 60 90 120

EBME

[23] 68.42 64.66 66.84 60.29 75.54 85.42 88.26 83.94 80.48
[24] 62.48 69.77 67.61 69.49 57.67 58.97 61.64 58.43 55.89
ours 97.52 99.64 99.16 99.44 99.67 99.45 100.00 100.00 100.00

AOBMC

[23] 65.78 60.22 61.13 60.17 76.23 82.87 87.55 80.94 79.66
[24] 65.22 68.15 63.09 70.65 57.39 62.35 62.59 59.32 57.12
ours 99.87 99.91 100.00 99.91 100.00 100.00 100.00 100.00 99.95

DualME

[23] 58.69 60.38 61.13 59.64 75.81 80.62 84.52 81.23 76.89
[24] 62.53 70.48 68.88 71.38 66.75 62.54 64.41 60.02 58.28
ours 89.45 90.92 89.99 90.15 92.39 94.42 95.22 95.89 98.04

MCMP

[23] 61.88 62.26 66.20 60.30 77.03 84.55 89.14 85.22 81.24
[24] 61.44 63.33 62.23 68.48 52.69 57.06 60.07 56.56 54.74
ours 98.64 99.46 99.24 99.81 99.80 99.85 99.88 100.00 100.00

DSME

[23] 53.60 59.13 58.44 59.89 75.27 82.97 85.84 80.68 78.39
[24] 64.77 70.95 69.69 71.54 50.51 56.14 63.60 60.49 57.84
ours 99.33 99.46 99.92 99.86 99.93 99.90 100.00 100.00 100.00

PFRUC

[23] 56.75 60.31 59.81 60.26 70.71 82.23 88.62 85.73 80.58
[24] 61.27 66.59 63.50 68.93 55.68 58.79 60.75 57.57 54.97
ours 97.40 97.98 97.88 98.17 98.29 99.35 99.97 99.95 100.00

MSU

[23] - - - 62.14 - 84.98 88.20 80.79 78.01
[24] - - - 72.64 - 62.80 65.78 60.93 58.84
ours - - - 95.55 - 100.00 96.90 100.00 98.12

MVTools2

[23] 60.08 63.51 61.42 61.64 76.72 83.57 87.69 83.55 76.56
[24] 66.36 70.79 69.47 74.24 54.28 65.85 66.39 60.98 56.73
ours 94.33 95.22 94.73 97.84 97.78 97.69 98.34 98.15 98.87

YUVsoft

[23] - - - 64.34 - 83.14 88.11 77.93 76.19
[24] - - - 73.15 - 63.20 66.33 55.22 52.25
ours - - - 94.30 - 95.35 97.67 97.81 97.85

Respeedr

[23] 63.22 61.25 63.81 62.74 74.67 82.30 94.05 87.48 83.72
[24] 64.33 72.69 68.15 71.56 53.02 66.44 73.51 64.12 61.38
ours 92.78 93.64 93.66 93.80 94.93 95.90 96.88 96.90 96.92

MotionPerfect

[23] 56.06 62.75 55.32 61.94 74.86 83.69 88.78 78.26 77.54
[24] 67.81 75.83 72.22 74.87 53.53 64.05 66.38 58.34 55.43
ours 92.19 92.82 92.41 92.53 94.53 95.00 95.96 96.67 96.84

Average

[23] 60.50 61.61 61.57 61.21 75.20 83.30 88.25 82.34 79.02
[24] 64.02 69.84 67.20 71.54 55.72 61.65 64.68 59.27 56.68
ours 95.61 96.67 96.22 96.49 97.48 97.90 98.26 98.67 98.78
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experimental results. For the approach by P. Bestagini et al.
[21], it can estimate original frame rate, but can not localize
interpolated frames [37]. Thus, our approach is only compared
with method [21] in terms of SR. To comprehensively evaluate
the performance, several groups of experiments are conducted.

1) Localization accuracy of interpolated frame for uncom-
pressed tampered videos: Comparisons are made among the
proposed approach and existing methods [23], [24] for DB1
tampered dataset. Table VI reports the average localization
accuracies of interpolated frame, in which “-” means the
test sequences are not constructed by MSU and YUVsoft.
From it, the proposed pre-classifier achieves the best perfor-
mance. Meanwhile, we also observe that with the increase
of repeated times of MC-FRUC operations, the accuracies
of the proposed pre-classifier increase steadily, whereas the
accuracies of method [23] firstly increase and then decrease.
For method [24], the accuracies get worse. The reasons behind
this are summarized as follows. First, residual signals inside
interpolated frames are accumulated, which are beneficial for
the proposed pre-classifier. Second, when there are much more
interpolated frames than original ones, the periodicity of edge
intensity [23] and average texture variation [24] might be
destroyed, leading to poor localization performance. Third,
existing methods [23], [24] do not consider the possible rapid
scene change and consecutive static scene, but this case is
specially treated by our approach, which will be discussed in
next subsection. Forth, the localization accuracy of method
[24] depends on whether the estimated frame-rate completely
matches the original one. However, when the target frame-rate
is greater than 30fps, there exists the fluctuation of estimated
frame-rate around the original one. This gradually degrades
the localization accuracies of interpolated frames.

2) Localization accuracy of interpolated frame against
lossy compression with different configurations: Experimental
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Fig. 8: The F1 on subset of DB2 under conf2 and conf4. (a)
with fps2=60fps; (b)with fps2=120fps.

results on the dataset DB2 are reported in Fig. 8 and Table VII.
The results of method [24] are not reported here because they
are not as well as method [23]. With the increase of QP, GOP
length or Q scale, the proposed pre-classifier has a gradual
degradation of detection accuracy due to the following reasons:
(i) for compressed videos, motion and texture-rich regions
become smoother, which inevitably has side effects on residual
signals; (ii) From ME and MC points of view, there are some
similarities among MC-FRUC, H.264/AVC and MPEG-2 com-
pression. Thus, it is more difficult to discriminate interpolated
frames from original frames when they are highly compressed.
However, the F1 values of method [23] have small fluctuation
for the robustness of edge-detector. Furthermore, the estimated
interpolated-frames are not always correct, which inevitably
does harm to the estimation of original frame rate and further
identification of various MC-FRUC approaches.

The proposed pre-classifier still achieves better performance
for compressed videos with different configurations and dif-
ferent fps2 in most cases. With the increment of fps2, it
achieves similar trend of location accuracy with uncompressed
videos. For the tampered dataset encoded with configuration

TABLE VII: The F1 on the subset of DB2 with (fps2 = 30fps).(%)

MC-FRUC Forensics
methods

H.264 MPEG2
conf1 : QP=12 conf2 : GOP=8 conf4 : Q scale=8 conf5 : GOP=10

GOP11 GOP17 GOP24 GOP30 QP12 QP30 QP42 GOP5 GOP10 Q scale2 Q scale4 Q scale6

EBME
[23] 59.48 59.09 57.96 58.20 60.82 60.53 57.02 60.18 60.75 60.19 62.88 58.66
ours 90.64 90.51 90.21 90.09 90.76 65.14 57.08 84.81 77.03 87.85 85.74 84.35

AOBMC
[23] 59.08 59.46 57.78 57.89 60.70 60.04 56.62 60.05 60.72 59.76 61.95 58.64
ours 91.37 91.25 90.75 90.11 91.50 68.81 61.03 89.59 83.48 89.30 87.44 86.84

DualME
[23] 58.88 58.36 57.01 57.16 59.62 58.74 55.69 59.56 60.22 58.71 61.40 57.63
ours 93.31 92.84 91.84 91.07 93.69 75.23 62.92 78.84 72.98 80.27 75.50 73.12

MCMP
[23] 58.66 58.12 57.03 57.20 61.01 61.16 57.56 59.87 60.56 59.89 61.70 58.64
ours 90.59 90.43 90.15 89.71 90.82 63.66 55.60 84.92 77.63 85.44 81.52 83.53

DSME
[23] 58.34 57.88 56.67 56.93 60.03 59.21 56.57 59.81 60.51 59.04 62.80 58.85
ours 92.45 92.32 91.83 91.35 92.74 68.78 58.81 84.93 80.04 88.88 85.94 84.23

PFRUC
[23] 59.70 60.25 59.15 59.16 60.93 60.84 57.55 60.07 60.75 59.75 62.35 58.41
ours 96.05 95.73 95.23 94.47 96.10 75.78 65.94 89.99 84.47 89.45 87.21 85.06

MSU
[23] 62.75 62.59 63.44 61.75 62.27 61.09 57.22 62.14 62.95 64.11 63.57 61.95
ours 81.60 81.11 80.45 79.47 82.19 62.52 58.09 84.40 79.79 83.36 82.15 81.01

MVTools2
[23] 62.69 62.31 61.91 61.22 62.10 60.73 57.56 62.16 62.82 63.94 63.55 62.35
ours 92.48 91.97 91.53 90.93 92.75 61.29 61.35 82.49 77.29 82.92 82.76 79.15

YUVsoft
[23] 63.98 63.29 62.75 62.04 63.36 60.56 56.65 64.37 65.60 64.18 63.14 63.08
ours 89.17 88.81 87.37 86.93 89.49 66.34 62.03 83.23 76.78 81.26 79.41 78.78

Respeedr
[23] 63.89 63.37 62.42 61.70 63.45 59.66 56.74 63.24 64.37 64.28 63.61 62.87
ours 88.97 88.78 87.88 86.97 89.55 62.90 58.59 83.48 78.45 83.11 82.07 80.50

MotionPerfect
[23] 63.15 62.78 62.12 61.30 62.83 60.55 56.91 62.11 63.03 63.41 62.79 61.98
ours 87.47 86.94 85.95 84.56 87.83 62.69 57.58 87.40 86.23 90.62 89.83 88.18

Average
[23] 60.96 60.68 59.84 59.50 61.56 60.28 56.92 61.23 62.03 61.57 62.70 60.28
ours 90.37 90.06 89.38 88.70 90.67 66.65 59.91 84.92 79.74 85.68 83.60 82.25
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conf1, when the GOP value is the same, the F1 values are on
average 25% higher than method [23]. In the case of conf2, the
difference is also significant when the QP value is relatively
small. However, the difference dramatically reduces with the
increase of QP value. In the cases of conf4 or conf5 (encoded
with MPEG-2 codec), the F1 values are on average 10.93%
higher than method [23]. Thus, our proposed pre-classifier
degrades faster than method [23] when the strength of lossy
compression increases. Meanwhile, the performance increase
of our proposed method is less than method [23] when fps2
increases from 30fps to 60fps. Thus, there still exist some
results of method [23] are better than ours in the case of
fps2=60fps encoded by H.264 with QP30 or MPEG-2 with
GOP10, which can be seen from Fig. 8(a).

In summary, no matter interpolated frames come from un-
compressed videos or compressed videos with high perceptual
quality, our proposed pre-classifier achieves more desirable
location accuracy than existing works.

TABLE VIII: SRs on tampered CIF video Dataset(%).

MC-FRUC Forensics
method

Uncom-
pressed

H.264: conf2 MPEG2: conf4
QP12 QP30 QP42 GOP5 GOP10

EBME
[21] 84.33 72.22 55.56 44.45 61.11 55.55
[24] 93.33 80.66 76.66 66.66 78.67 75.11
ours 100.00 88.67 - - - -

AOBMC
[21] 86.66 55.55 61.11 44.45 50.00 38.89
[24] 92.66 76.33 74.66 65.33 73.56 68.67
ours 100.00 84.33 - - 23.80 -

DualME
[21] 85.33 33.34 38.89 33.33 33.33 33.34
[24] 87.55 85.66 80.66 73.33 82.67 79.67
ours 94.00 92.33 - - - -

MCMP
[21] 86.66 72.22 61.11 50.00 66.66 61.11
[24] 95.00 88.45 81.23 71.66 83.33 78.45
ours 100.00 92.22 - - - -

DSME
[21] 88.66 83.33 66.67 44.44 66.67 55.56
[24] 98.50 78.66 75.33 70.56 76.67 74.56
ours 100.00 85.33 - - - -

PFRUC
[21] 80.45 72.22 72.22 61.11 83.33 72.22
[24] 94.66 89.50 80.33 75.33 85.33 78.54
ours 100.00 100.00 - - 16.67 -

MSU
[21] 90.54 44.44 50.00 38.89 50.00 38.89
[24] 96.70 82.00 76.33 69.67 78.45 74.56
ours 100.00 84.33 - - - -

MVTools2
[21] 95.45 33.33 50.00 22.22 38.89 33.33
[24] 93.30 83.33 80.45 75.56 81.33 77.67
ours 96.00 88.67 - - - -

YUVsoft
[21] 93.33 66.67 55.56 50.00 66.67 66.67
[24] 97.50 83.33 78.56 68.56 79.67 79.67
ours 100.00 85.66 - - - -

Respeedr
[21] 94.54 38.54 33.33 16.67 41.67 33.33
[24] 95.66 76.66 70.33 66.67 73.56 69.67
ours 96.54 84.82 - - - -

Motion
Perfect

[21] 92.56 66.67 55.56 38.89 44.45 38.89
[24] 88.50 82.33 78.66 65.33 79.67 77.45
ours 94.66 85.56 - - - -

Average
[21] 90.65 62.25 49.50 45.46 54.80 47.98
[24] 93.94 82.81 77.56 70.24 79.36 75.82
ours 98.29 88.36 - - 3.68 -

3) SRs of estimating original frame rate: In this experi-
ment, the subset of DB2 with two configurations conf2 and
conf4 are evaluated. Then, the average SRs of estimating
original frame rate are compared among existing methods
[21], [24] and the proposed pre-classifier. The average SRs
are summarized in Table VIII. Apparently, our proposed pre-
classifier outperforms existing methods [21], [24] for both
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Fig. 9: SRs on DB3 and changes of SSIM.

uncompressed videos and compressed videos with QP12.
Except for the above-mentioned cases, our proposed method
fails to estimate the original frame-rate, which are marked
with “-” in Tabel VIII. Further, we evaluate the performance
for the dataset DB3 and simultaneously calculate the struc-
tural similarity index (SSIM) between compressed videos and
original videos. The results are shown in Fig.9. From it,
when the QP value increases, the average SR of our proposed
method decreases dramatically and became zero when QP=22.
Meanwhile, we observe that SSIM also decreases from 0.9946
for QP12 to 0.9521 for QP22. This implies that lossy video
compression degrades perceptual video quality and weakens
the residual signals left by various MC-FRUC techniques as
well, leading to the decrease of F1 values and the decrease of
SRs. Besides, the SSIMs for MPEG-2 with GOP5 and GOP10
are 0.9424 and 0.9395, respectively. It is reasonable to infer
that their average SRs are also less than that of QP22 because
the perceptual video quality in both cases are worse than
QP22. Therefore, we conclude that from the degradation of
perceptual video quality point of view, our proposed method
fails to estimate the original frame-rate for H.264 with QP30
and QP42, and MPEG-2 with GOP5 and GOP10. Actually, the
average SRs of our proposed pre-classifier seriously depends
on the values of F1, and their average F1 values are below
94% in these cases. The reasons have been discussed in above
subsection. Please note that though the proposed pre-classifier
fails to estimate original frame rate in some cases, suspicious
videos can still be decided as the up-converted ones since there
are lots of correctly located interpolated-frames.

Moreover, from Table VIII, the average SRs of method [24]
are about 75% because it focuses on estimating original frame-
rate, in which some pre-processing or post-processing such as
high-pass filter and threshold decision are adopted to improve
the SRs. From the results of method [24], the estimated frame-
rates fluctuate about ±1 or ±2 frames around the original
frame-rate, leading to worse localization accuracy. Method
[21] achieves the worse performance, and the reasons are two-
folds: (i) when the up-converted videos are highly compressed,
the prediction errors become more serious resulting in incor-
rect periodical signal; (ii) when candidate videos are produced
by multiple times of MC-FRUC operations, especially for
fps2=60fps and 120 fps, there is aliasing artifact of the
estimated frame rate.
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4) Performance improvement by excluding static interpolat-
ed frames with SSD: The Static and Fast datasets are chosen
for experiments. Before excluding static interpolated frames,
SSD is firstly used to label static original frames in the original
videos of Static. Unfortunately, though there are abundant
static scene in Static, no frames satisfy the requirements of
SSD. That is, no frames are labelled as static original frames.
Then, SSD is employed to select static interpolated frames
from the Static and Fast datasets, and the detection results
are reported in Table IX. From it, we observe that there are
some static interpolated frames in these datasets, even in the
Fast. Besides, we also observe that commercial MC-FRUC
software avoid the emergence of abundant static interpolated
frames. Please note that DualME is an executable software.
Maybe because it has post-processing operation, there are less
static interpolated frames as well.

TABLE IX: Performance improvement (%) by SSD
MC-FRUC Static Fast

Numbers Improvement Numbers Improvement
EBME 281 7.38 3 0.24

AOBMC 267 6.41 3 0.13
DualME 1 0.06 0 0.00
MCMP 53 3.65 5 0.32
DSME 11 1.14 2 0.23
PFRUC 74 5.1 42 1.79
MSU 0 0.00 0 0.00

MVTools2 0 0.00 0 0.00
YUVsoft 2 0.45 0 0.00
Respeedr 2 0.21 0 0.00

MotionPerfect 7 0.54 0 0.00

To evaluate the interference of static interpolated frames on
the F1 values, the proposed pre-classifier is tested on these
datasets by using SSD or not, respectively. Then, we calculate
the differences of theirs F1 values. The experimental results
are listed in Table IX. From it, the improvements vary from
0.06% to 7.38% for the Static dataset. Meanwhile, there is
subtle improvement for the Fast dataset.

D. Identification of various MC-FRUC techniques

1) Identification accuracy of known MC-FRUC techniques:
The subset of DB1 with fps2=30fps, 60fps, and 120fps
and the subset of DB2 with configurations including conf2

for H.264/AVC, and conf4 for MPEG2 are chosen for exper-
iments. Meanwhile, “mixed” means the mixture of tampered
datasets with fps2=30fps, 60fps and 120fps. Since there are
eleven known MC-FRUC operations involved, this experiment
is a 12-class (including original videos as a special class)
classification problem.

Table X reports the average identification accuracies, which
are the elements of confusion matrix along diagonal direction.
Apparently, the accuracies also increase with the increment of
repeated times of FRUC operations. Especially, the accuracies
are quite desirable for uncompressed videos and compressed
videos with QP12. Meanwhile, we notice that the accuracies
are relatively low for videos with slow motion or less texture.
Actually, this is in accordance with our expectation. On one
hand, MC-FRUC can achieve much better results for videos
with slow motion or less texture. On the other hand, there are
less residual signals in the tampered videos, and the differences
of residual signals are very subtle among various MC-FRUC
techniques. For highly compressed videos, the accuracies drop
significantly. By experiments, we found the reason behind this
is the incorrect classification of original frames as interpolated
frames in the pre-classifier stage. This verifies the importance
of a low false positive rate of the proposed pre-classifier, as
discussed in Section IV-B. In addition, the loss of accuracy is
also caused by strong compression, since it smoothes motion
and texture-rich regions.

Table XI and XII show the accuracies for “mixed” tam-
pered Dataset including uncompressed videos and compressed
videos with QP12, respectively. From them, the proposed
approach can effectively identify the adopted MC-FRUC tech-
nique for tampered videos either uncompressed or compressed
with QP12. However, if two MC-FRUC techniques have only
slight differences in motion search pattern or weighted average
mechanism, it is extremely difficult to distinguish them by
inspecting residual signal. This is a limitation for the proposed

TABLE X: The average identification accuracies (%) along the diagonal direction in the corresponding confusion matrices.
Status Uncompressed QP12 QP30 QP42 GOP5 GOP10
fps2 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed
Accuracy 86.93 87.39 88.17 81.27 67.20 67.90 74.23 70.29 38.80 44.52 50.96 44.76 30.30 33.04 43.44 39.85 45.83 53.11 62.21 54.61 40.59 50.12 58.24 51.65

TABLE XI: Confusion matrix on “mixed” tampered Dataset under uncompressed status. The asterisks “∗” denote that the
corresponding values are below 1%

Classified as
MC-FRUC Respeedr YUVsoft MotionPerfect MVTools MSU dualME DSME AOBMC EBME PFRUC MCMP Pristine
Respeedr 77.25 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
YUVsoft ∗ 67.95 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MotionPerfect ∗ ∗ 78.24 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
MVTools ∗ ∗ ∗ 88.31 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MSU ∗ ∗ ∗ ∗ 60.76 ∗ ∗ ∗ ∗ ∗ ∗ ∗
dualME ∗ ∗ ∗ ∗ ∗ 91.74 ∗ ∗ ∗ ∗ ∗ ∗
DSME ∗ ∗ ∗ ∗ ∗ ∗ 95.06 ∗ ∗ ∗ ∗ ∗

AOBMC ∗ ∗ ∗ ∗ ∗ ∗ ∗ 74.37 ∗ ∗ ∗ ∗
EBME ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 83.11 ∗ ∗ ∗
PFRUC ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 96.06 2.32 ∗
MCMP ∗ ∗ ∗ 7.52 ∗ ∗ 4.64 23.46 11.17 1.99 71.93 11.17
Pristine ∗ 33.64 22.35 5.75 40.61 9.84 1.88 3.76 ∗ 3.54 27.33 90.42
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TABLE XII: Confusion matrix on “mixed” tampered Dataset under compressed QP12 status. The asterisks “∗” denote that the
corresponding values are below 1%

Classified as
MC-FRUC Respeedr YUVsoft MotionPerfect MVTools MSU dualME DSME AOBMC EBME PFRUC MCMP Compressed Pristine
Respeedr 71.53 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
YUVsoft ∗ 53.4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MotionPerfect ∗ ∗ 65.67 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
MVTools ∗ ∗ ∗ 74.63 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MSU ∗ ∗ ∗ ∗ 52.85 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
dualME ∗ ∗ ∗ ∗ ∗ 91.54 ∗ ∗ ∗ ∗ ∗ ∗ ∗
DSME ∗ ∗ ∗ ∗ ∗ ∗ 66.45 ∗ ∗ ∗ ∗ ∗ ∗

AOBMC ∗ ∗ ∗ ∗ ∗ ∗ ∗ 59.15 ∗ ∗ ∗ ∗ ∗
EBME ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 63.79 ∗ ∗ ∗ ∗
PFRUC ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 76.18 ∗ ∗ ∗
MCMP ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 58.04 3.98 ∗

Compressed 5.97 42.23 30.18 22.22 46.43 7.62 30.07 37.70 27.08 37.70 37.70 83.25 4.2
Pristine ∗ 5.85 5.63 4.64 8.29 2.32 4.97 4.64 10.61 2.87 5.74 14.26 97.29

TABLE XIII: Test results for unknown MC-FRUC. The asterisks “∗” denote that the corresponding values are below 1%
Classified as

unknown
MC-FRUC Respeedr YUVsoft MotionPerfect MVTools MSU dualME DSME AOBMC EBME PFRUC MCMP Pristine

OBMC [13] ∗ ∗ ∗ ∗ ∗ 12.12 9.31 62.12 10.52 3.25 2.68 ∗
MHME [20] 18.45 25.72 21.06 26.36 7.16 ∗ ∗ ∗ ∗ ∗ ∗ 1.25

approach.

2) Identification of unknown MC-FRUC techniques: To
assess the generalization ability of the proposed forensics
system, it is also used to identify the additional dataset DB4.
Specifically, the forgery videos produced by OBMC [13] and
MHME [20] are not used in the training stage, but they
are used in the testing stage. That is, the classifier has not
any information about two unknown MC-FRUC techniques.
The subset of DB1 with fps2=30fps is used for training.
Table XIII reports the experimental results. For those tampered
videos by MHME, the proposed system can effectively decide
that they are forgery videos, even though they are identified
as open MC-FRUC software produced. For candidate videos
produced by OBMC, they are effectively detected as the
up-converted ones, and their types are also assigned to the
OBMC-based technique. Especially, most videos are identified
as the type of AOBMC.

The proposed system can correctly detect the samples of
unknown MC-FRUC technique as the forgery ones, but it still
can not identify the unknown MC-FRUC method with totally
different ME or MCI strategies as a new type. This is the so-
called open-set recognition problem [38], in which the testing
sample corresponds to a new class that is not included in the
training stage. Recently, a few approaches [38], [39], [40] have
been proposed based on the Extreme Value Theory (EVT).

In this paper, the newest algorithm [40] is used to identify
unknown MC-FRUC technique. We firstly take the ST-MSF
features and their labels of train videos from the DB1 with
fps2=30fps as training samples, and the ST-MSF features
and their labels of DB4 as testing samples. Next, the EVT is
used to model the tail distributions of matched reconstruction
errors and the sum of non-matched reconstruction errors so
as to simplify the open set recognition problem into a two
hypothesis testing problem. Then, the reconstruction errors of
a test sample are calculated and the confidence scores based
on the two tail distributions are fused to identify the type of
test samples. The detection accuracies of OBMC and MHME
are 63.59% and 76.44%, respectively.

E. Evaluation on HD720p tampered video dataset

The proposed forensics system is further evaluated on tam-
pered dataset DB5. Table XIV shows the average accuracies of
locating interpolated frames, and Table XV reports the average
identification accuracies. From them, the performance is much
better than that of tampered CIF Dataset, but they have similar
variation trends. With the increase of repeated times of MC-
FRUC operations, the localization and identification accura-
cies increase steadily. Actually, with the increase of spatial
resolution, there are more residual signals inside interpolated
frames, even when the tampered video are highly compressed.

TABLE XIV: The F1on tampered HD720p video Dataset

MC-FRUC
Uncompressed

conf2 conf4
QP12 QP30 QP42 GOP5 GOP10

30fps 60fps 120fps mixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed
EBME 99.58 100.00 100.00 99.93 99.98 99.81 100.00 99.87 95.95 99.26 100.00 98.78 76.55 88.29 98.35 90.31 97.78 99.91 99.60 99.64 97.47 99.25 99.84 99.31
AOBMC 100.00 100.00 99.84 100.00 99.43 100.00 100.00 99.84 95.48 99.63 100.00 97.89 75.59 89.43 99.69 90.75 98.61 99.91 99.90 99.80 99.17 99.81 99.85 99.54
Dual ME 87.07 97.66 100.00 95.39 92.22 98.59 100.00 96.37 95.45 99.72 100.00 98.27 92.51 99.45 100.00 97.47 85.46 93.35 99.84 94.62 83.54 91.07 99.60 93.40
MCMP 99.72 100.00 100.00 99.93 99.72 99.72 100.00 99.31 95.84 99.07 99.76 98.23 72.28 90.55 97.52 89.16 98.08 99.91 99.84 99.11 97.37 99.35 99.52 99.18
DS ME 99.86 100.00 100.00 99.87 98.75 100.00 100.00 99.93 97.50 99.72 99.92 98.88 77.64 92.83 99.92 91.82 99.58 99.91 99.91 99.93 99.16 99.82 99.84 99.74
PFRUC 98.18 100.00 100.00 99.57 100.00 100.00 100.00 99.93 96.45 99.16 99.92 99.34 81.01 92.48 99.44 91.83 99.58 99.54 99.85 99.87 99.86 99.35 99.80 99.80
MSU 98.06 99.91 99.76 98.49 97.44 99.72 100.00 98.68 95.80 97.29 99.52 97.28 91.67 87.72 92.84 82.95 94.27 99.91 99.60 98.31 94.42 99.53 99.28 97.86
MVTools2 95.66 97.17 100.00 98.61 96.61 97.04 100.00 98.51 95.51 96.07 100.00 97.64 94.41 91.22 100.00 95.28 96.28 94.57 99.52 97.45 95.68 95.76 99.76 96.65
Respeedr 100.00 100.00 100.00 98.95 99.45 100.00 100.00 99.80 91.77 99.45 100.00 98.05 73.40 92.81 99.12 91.00 97.07 99.17 99.36 98.05 97.49 98.03 98.85 97.89
Motion
Perfect 98.18 100.00 99.84 100.00 98.19 99.34 99.92 99.19 96.64 98.78 98.96 97.34 81.01 85.47 92.28 82.53 92.32 99.72 99.76 99.11 95.35 99.54 98.88 98.62

Average 97.64 99.46 99.94 99.08 98.18 99.42 99.99 99.14 95.64 98.82 99.81 98.17 81.61 91.03 97.92 90.31 95.90 98.59 99.72 98.59 95.95 98.15 99.52 98.20
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TABLE XV: The average identification accuracies (%) along the diagonal direction in the corresponding confusion matrices.
Status Uncompressed QP12 QP30 QP42 GOP5 GOP10
fps2 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed 30fps 60fps 120fpsmixed
Accuracy 97.69 98.23 97.98 95.45 90.74 95.45 97.54 93.08 76.27 87.27 94.69 85.24 53.36 64.97 89.35 70.37 77.08 84.26 93.98 85.95 77.78 85.34 92.23 84.78

Moreover, we observe that the proposed pre-classifier achieves
desirable results, in which most accuracies are above 95%.
Thus, the proposed pre-classifier has higher SRs on the DB5
because when it meets F1 ≥ 94%, the original frame-rate is
successfully estimated, as discussed in Section V-A.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, interpolated frame generated by MC-FRUC is
mathematically modeled as the sum of absent original frame
and residual signal. The identification of various MC-FRUC
techniques is thus converted into the problem of identifying the
differences of residual signals among them. To this end, a two-
stage blind forensics system is proposed for the identification
of MC-FRUC techniques. Firstly, a pre-classifier is proposed
to choose interpolated frames with prominent residual signals.
Seondly, ST-MSFs are extracted as feature vectors for multi-
class classification. Experimental results have shown that for
up-converted videos both in uncompressed format and com-
pressed with high perceptual quality, the proposed system can
not only effectively locate interpolated frames, but also iden-
tify the adopted MC-FRUC technique. Meanwhile, it is more
effective to detect interpolated frames obtained by repeated
MC-FRUC operations. We believe the proposed approach is
a positive step towards estimating key parameters in some
specific MC-FRUC technique for deeper blind forensics. In
future work, we will investigate the EVT and more discrimina-
tive classifier [41]-[43] to better address the open-set scenario.
Furthermore, how to improve the identification robustness for
highly compressed videos is worthy of investigation.
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