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Referenceless Measure of Blocking Artifacts
by Tchebichef Kernel Analysis
Leida Li, Hancheng Zhu, Gaobo Yang, and Jiansheng Qian

Abstract—This letter presents a Referenceless quality Measure
of Blocking artifacts (RMB) using Tchebichef moments. It is based
on the observation that Tchebichef kernels with different orders
have varying abilities to capture blockiness. In a block manner,
high-odd-order moments are computed to score the blocking arti-
facts. The blockiness scores are further weighted to incorporate the
characteristic of Human Visual System (HVS), which is achieved
by classifying the blocks into smooth and textured. Experimental
results and comparisons demonstrate the advantage of the pro-
posed method.

Index Terms—Blocking artifact, image quality assessment,
Tchebichef moment.

I. INTRODUCTION

I MAGES are inevitably subject to degradations during
their acquisition and processing. Image quality assessment

(IQA) evaluates the quality of an image quantitatively. The
current IQA methods can be classified into full-reference (FR),
reduced-reference (RR) and no-reference (NR) metrics [1]. In
practice, NR metrics are more demanding, because a reference
image is not always available.
Blocking artifacts are mainly caused by block-DCT based

image compression. Wang et al. modeled the blocky image as
a non-blocky image interfered with a blocky signal [2]. Blocki-
ness was measured by estimating the power of the blocky signal.
Bovik et al.modeled the blocking artifact as a step function and
the blockiness score was obtained by estimating its magnitude
[3]. In [4], blockiness was estimated as the average differences
across block boundaries. Activity of the image was then incor-
porated to generate the quality score. Perra et al. adopted Sobel
operator to extract the edge map, and they measured the block-
iness by luminance variations [5]. In [6], blockiness was mea-
sured using the edge direction histogram. Liu et al. calculated
the blockiness by estimating local-pixel based distortion, com-
bined with a simplified visual masking model [7]. In [8], the
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difference image was computed, normalized and averaged, pro-
ducing a one-dimensional signal. Then Fourier transform was
adopted to analyze the periodic peaks. In [9], the boundaries
with blocking artifacts were detected using the pixel gradient
values on both sides of the block boundary. The quality score
was computed as log of average strength of blockiness over the
entire image.
If blocking artifacts occur, the intensity changes abruptly

across the block boundary and the same pixel value usually
spans along the entire boundary [9]. We find that Tchebichef
kernels with different orders have varying abilities to cap-
ture the blockiness. Based on the observation, we propose
a Referenceless Measure of Blocking artifacts (RMB) using
Tchebichef moments. The characteristic of human eyes is also
incorporated in the weighting stage. The simulation results
demonstrate that RMB outperforms the existing metrics.

II. TCHEBICHEF KERNEL ANALYSIS

A. Tchebichef Moment

The th order, N-point Tchebichef kernel is defined as [10]:

(1)
These kernels satisfy the following orthogonal condition:

(2)

with . The computation of
Tchebichef moments for an image ,
is based on a set of scaled Tchebichef kernels :

(3)

where , and

(4)

with

The Tchebichef moments up to the ( )th order can be ob-
tained by matrix multiplications:

(5)
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Fig. 1. Plot of the scaled Tchebichef kernels for .

where denotes the transpose, is the moment matrix, is
the image block. and are matrices defined by

(6)

B. Kernel Analysis

The Tchebichef moments with different orders have varying
abilities to capture the blockiness. This can be known from the
characteristics of the kernels. In fact, the scaled Tchebichef ker-
nels satisfy the following symmetry property [10]:

(7)

Fig. 1 shows the scaled Tchebichef kernels up to the fifth order
for . It is easily known that is odd symmetric with
respect to if the order is odd. Similarly, it is
even symmetric if is even.
For an ideal blocking artifact, a constant pixel value usually

spans along the entire block boundary. According to the sym-
metry property, it is easy to know that in Eq. (5) the odd order
components of (for vertical boundary) or (for hori-
zontal boundary) are equal to zero. Therefore, the corresponding
odd order moments are all zeros. By comparison, the moments
deviate from zero greatly for a block without blockiness. As a re-
sult, odd order moments can capture the ideal blocking artifacts.
In practice, the blocking artifacts may not be ideal, so the

odd order moments are not exactly equal to zero. In order to
capture the blocking artifacts better, high order moments can be
used. This is because high order moments can capture more high
frequency components of an image [10], and blocking artifacts
are typically high frequency information.
Fig. 2 shows three image blocks extracted from the

“womanhat” image in LIVE database [12], and the ratios of
the summation of absolute 7th order moment values to the
summation of absolute all non-DC moment values (Eq. (11) in
Section III.B). It is observed that for ideal blockiness the ratio
is zero. Nonideal blockiness has bigger value and the block
without blockiness produces the biggest value. Therefore,
high-odd-order moments can capture the blocking artifacts.

III. BLOCKING ARTIFACT MEASURE

A. Target Block Classification

In JPEG compression, the blocks are quantized indepen-
dently, so blocking artifacts occur at the block boundaries. To
evaluate the blockiness, target blocks covering these boundaries
should be determined. For two horizontally adjacent coding

Fig. 2. Blocks with ideal, nonideal, no blockiness and ratios of the summation
of absolute 7th order moments to the summation of absolute all non-DC mo-
ments. (a) Ideal. (b) Nonideal. (c) No.

blocks, the target block ( ) covers the right half the left block
( ) and left half of the right block ( ). Similarly, the vertical
target block covers the bottom half of the upper block ( ) and
upper half of the bottom block ( ). The size of all blocks is

.
Human eyes are more sensitive to the blocking artifacts in

smooth areas. Therefore, it is reasonable to classify the target
blocks into smooth and textured, and assign different weights.
In this work, block classification is achieved using the sum of
square of all non-DC moment values (SSM) [11]:

(8)

where is a block, is its mean. A threshold, , is em-
ployed to perform the classification. If , the block
is classified as smooth, otherwise textured. In this letter, classi-
fication of a target block is based on its adjacent coding block.
The reason is that when there is a block artifact, even a smooth
block may produce high SSM value and lead to misclassifica-
tion. In implementation, a target block is classified as smooth/
textured if its left ( ) or upper ( ) coding block is classi-
fied as smooth/textured. Given an image, the number of smooth
blocks is denoted by , and that of textured blocks is denoted
by .

B. Blocking Artifact Score

For a target block, the Tchebichef moments up to the ( )th
order are first computed:

...
. . .

... (9)

Since the block size is , the highest order of the moment
is 14 ( ). The blocking artifact scores in horizontal and
vertical directions are defined by

(10)

(11)

where is index of the target block. The smaller and ,
the heavier the blocking artifacts. The reason is that for heavier
blocking artifacts, the numerator is smaller. For ideal blocking
artifacts, the numerator is exactly zero.
Another characteristic of Human Visual System (HVS)

should be considered, namely human eyes are only sensitive to
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visible blocking artifacts. As a result, a threshold is adopted to
process the initial blockiness scores:

(12)

where , is the blockiness visibility threshold. A
weighted sum is then calculated to obtain the overall blockiness
scores in horizontal and vertical directions:

(13)

(14)

where (0, 1), and . The blocking artifact
score for the whole image is then obtained by

(15)

Finally, a logarithmic function is employed to map the quality
score to the range (0, 1):

(16)

A small score indicates that the image is heavily contami-
nated by blocking artifacts, while a high score corresponds to
an image free of blocking artifacts.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

The performance of our method is evaluated on JPEG images
from four databases, including LIVE [12], MICT [13], IVC [14]
and CSIQ [15]. The block classification threshold is

, and the blockiness visibility threshold is . The
optimal weights are set to . The classification
threshold is determined based on literature [11]. In [11], with

set to 4000, 300 image blocks are classified into plane,
edge and texture with promising results. In this letter, the blocks
are classified into smooth and textured, a higher threshold is
adopted so that smooth blocks can be steadily obtained. The
visibility threshold and the optimal weights are determined by
experiments.
To evaluate the overall performance of the proposed

method, Pearson linear correlation coefficient (CC) and
root-mean-square error (RMSE) are used to evaluate the
prediction accuracy, while Spearman rank-order correlation
coefficient (SROCC) is used to evaluate the prediction mono-
tonicity. These criterions are computed between the predicted
scores and the subjective scores, where nonlinear fitting is first
conducted to bring them on the same scale [16]. For compar-
ison, the results of eight popular no-reference blocking artifact
metrics are also provided, i.e., algorithms [2] to [9].

B. Performance Evaluation

Fig. 3 shows the nonlinearly fitted curve between the subjec-
tive scores and the predicted scores on LIVE database, where
the subjective scores are measured using the Difference Mean
Opinion Score (DMOS). It is clear that the predicted scores are
highly correlated with the subjective ratings.

Fig. 3. Scatter plot between DMOS and predicted scores on LIVE database.

TABLE I
COMPARISONS OF CC, RMSE AND SROCC ON LIVE DATABASE

Based on the nonlinear fitting, CC, RMSE and SROCC are
computed. Table I lists the experimental results on LIVE data-
base. It is clear that RMB performs better than all the compared
methods, in terms of all three criterions. The performances
of Bovik’s, Wang’s [4], Liu’s, Chen’s and Lee’s metrics are
competitive, and they outperform Wang’s [2], Perra’s and Pan’s
metrics.
In order to evaluate the statistical significance of each

metric’s performance relative to RMB, F-test is performed on
the prediction errors between the predicted scores and subjec-
tive scores [16]. Since F-test is performed on the prediction
errors, it can be used to judge if a compared metric has sta-
tistically larger (or smaller) prediction error than RMB. The
F-score between a compared metric and RMB is defined as:

(17)

where denotes the variance of the prediction errors between
the subjective scores and the quality scores predicted by a com-
paredmetric, denotes the variance of the prediction errors
between the subjective scores and the quality scores predicted
by RMB. Fig. 4 shows the results of F statistics. The variance
of the predicted errors of RMB is smaller than those of all com-
pared methods.
Table II lists the simulation results on other three databases,

where the two best results are marked in boldface. Wang’s
method [4] and RMB rank the top two for all databases. For
MICT and CSIQ, they perform competitively. For IVC, Wang’s
method [4] performs better. Except for Wang’s method [4], our
method outperforms the other seven metrics, indicating that the
results are very satisfactory.
Finally, a summary of the statistical performance of each

metric relative to RMB is listed in Table III. This is obtained
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Fig. 4. F statistics of the compared metrics against RMB on LIVE.

TABLE II
SIMULATION RESULTS ON MICT, IVC AND CSIQ

TABLE III
SUMMARY OF THE PERFORMANCE BETWEEN RMB AND OTHER METRICS

1, RMB Performs Statistically Better;–, RMB

Performs Statistically Competitive.

by comparing F-score with a threshold ( ), which is
determined based on the number of predicted errors and a
confidence level. If ( ), RMB
performs statistically better (statistically worse). In this study,
the confidence level is 99%.

It is known from Table III that RMB performs statistically
the best in LIVE databases. In MICT, Bovik’s, Wang’s [4] and
RMB perform statistically competitive, and they outperform the
other metrics. In IVC, four methods are competitive to RMB.
In CSIQ, Wang’s [4] and Lee’s methods perform statistically
competitive to RMB. To sum up, the statistical performance of
RMB is the best, followed by Wang’s [4], Bovik’s and Lee’s
methods.

V. CONCLUSION

Orthogonal moments are effective in image analysis. We find
that high-odd-order Tchebichef kernels can capture the blocking
artifacts in images. Based on this observation, we propose a
no-reference quality metric of blocking artifact. The character-
istics of HVS are also incorporated in the weighting stage. Ex-
tensive experiments demonstrate that the proposed method out-
performs state-of-the-arts.
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