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ABSTRACT

Seam carving is a content-aware multimedia retargeting technique to adaptively resize multimedia data for different display
sizes. However, it can also be used to remove objects from digital object or video for malicious purposes. In this paper, a
forensics hash-based tampering detection and localization approach is proposed for seam carving-based video retargeting.
It extracts the invariant Speeded-up Robust Feature points from every spatiotemporal image to represent the matching
surface, and the relative position change of the neighboring matching surface is used to build the forensic hash in a compact
and scalable way. Experimental results show that the proposed forensics approach can effectively estimate the exact amount
and rough locations of deleted seam carving surfaces. It achieves desirable detection performance even when there are
frames deleted. If the hash length is reasonably increased, it can estimate the rough location and exact amount of deleted
frames. Moreover, the built forensics hash is of good robustness, scalability, and compactness. Copyright © 2014 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

With the popularity of low-cost digital cameras, digi-
tal image and video are proliferating in our daily life.
However, the large availability of image/video editing soft-
ware tools makes their tampering extremely simple. Large
amounts of doctored images and videos are spread over
the Internet without obvious traces. Our traditional opin-
ion that seeing is believing is no longer true. This leads
to an increasing demand for automatic forgery detection
to determine the trustworthiness of candidate image and
video [1,2]. This is the so-called digital media forensics,
which is generally classified into two categories: active and
passive. Active forensic techniques use auxiliary data by
embedding digital watermark or extracting digital signa-
ture in advance, whereas passive or blind forgery detection
techniques simply uses the candidate image or video. The
idea behind passive forensics is that although digital forg-
eries may leave no visual clues, it is high likely that they
may disturb the underlying statistical properties or cause
some artifacts in various forms of inconsistencies [3].

In the 34th International Conference and Exhibition on
Computer Graphics and Interactive Techniques, seam carv-
ing was firstly presented for content-aware image resiz-
ing [4]. Because of its excellent performance, it has gained
researchers’ continuous attention [5,6]. It is incorporated
into the most popular image-editing software Photoshop
CS4 as an individual function, which is referred as content-
aware scaling. In recent years, seam carving has also been
extended to content-aware video retargeting by considering
both spatial and temporal coherence [7–9]. However, seam
carving can also be used for malicious tampering such as
object removal. Especially, the content-aware mechanism
of seam carving makes it preserve well the perceptually
important contents without leaving any visually noticeable
artifacts. This brings great difficulty for forensic analyst to
determine whether an image or video has undergone seam
carving. Figure 1 shows two examples of malicious object
removal from digital image. When an object is deleted
from a digital image, it might have a direct influence on the
content of the digital image that it conveys. Therefore, the
forensics of seam carving is a challenging but interesting
topic in the field of information security.
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Figure 1. Two examples of malicious object removal by content-aware video retargeting. (a) Example 1. (b) Example 2.

In the literature, there are a few forensic approaches
to detect the presence of seam carving. Sarkar et al.
proposed a machine learning-based framework to distin-
guish between seam-carved (or seam-inserted) and normal
images [10]. 324D Markov features, consisting of 2D
difference histograms in the block-based discrete cosine
transform domain, are used to train a classifier. It yields a
detection accuracy of 80% and 85% for seam carving and
seam insertion, respectively. Ryu et al. propose a detection
method for content-aware image resizing by exploiting the
energy bias of seam-carved images [11]. The correlation
between adjacent pixels is also analyzed to estimate the
inserted seams. These two forensic approaches can effec-
tively make binary decision about whether an image has
been resized by seam carving. However, it does not pro-
vide further information such as the amount or location of
seams deleted or added. This is in fact the inherent limi-
tation of passive forensics because it does not use any a
priori information or auxiliary data. To answer a broader
scope of forensic questions, a new concept of forensic hash
is introduced [12]. In essence, a forensic hash is the robust
features extracted from the original image but properly
designed and compressed for forensic purposes. In Lu’s
work [12], a very compact forensic hash of around 50 bytes
can reliably estimate both the amount and the location of
seam carving, and further enable accurate alignment and
tampering localization on a modified image.

Image seam carving is extended to video retargeting
by considering the temporal coherence constrains. The
existing seam carving-based video retargeting (SCVR)
approaches [7–9] can also be exploited for malicious pur-
poses such as object removal. Although there are many
active and passive approaches for the detection of image
seam carving, no work is reported for the forensic anal-
ysis of SCVR. In this paper, we are motivated by the
works in [12,13] to present an active detection approach
for SCVR using the forensic hash. By analyzing the pos-
sible traces left by typical SCVR algorithms, a compact
and scalable forensic hash component is built to estimate
the amount and location of seams deleted or inserted. The
contributions of this work are twofold. First, because the
proposed forensic hash is an active approach, it can pro-

vide not only the binary decision about whether a video has
suffered from SCVR but also more information about the
SCVR tampering such as the amount and location of seams
involved in SCVR. Second, if the hash length is appro-
priately increased, it can also estimate the rough location
and exact amount of frame-based manipulation. To the best
of our knowledge, there are no similar works reported in
the literature.

The rest of the paper is organized as follows. Section 2
briefly introduces related work. In Section 3, the proposed
forensic hash approach is discussed in detail. Experimental
results and analysis are given in Section 4, and Section 5
concludes this paper.

2. RELATED WORK

2.1. Typical SCVR approaches

Seam carving is originally proposed for image resizing. A
seam is defined as an eight-connected path of low-energy
pixels crossing the image from top to bottom or from
left to right. A dynamic programming technique is used
to select the optimal seams in each direction, which are
defined as the seams with the lowest accumulated energy.
As shown in Figure 2, the energy map reflects the com-
bined importance of all the pixels along a seam. SCVR is
an extension of image seam carving by considering another
temporal dimension. Its basic principle is similar to image
seam carving, but SCVR is performed on a 3D video data,
with temporal dimension as the z-axis. The energy map
used is actually a combination of both the spatial and
temporal energies. To avoid the visual distortion or dis-
continuousness of video content such as jittery artifacts,
SCVR usually enforces both spatial and temporal coher-
ence constrains for the energy function. In the following,
three typical SCVR techniques are summarized.

The earliest SCVR technique is a straightforward exten-
sion of image seam carving to surface carving for digital
video [7]. As shown in Figure 3, this extension defines
2D surfaces to be removed from a 3D video cube. And a
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(a) The original image (b) energy map (c) accumulated energy (d) vertical seam

Figure 2. An example of seam carving for image resizing. (a) The original image. (b) Energy map. (c) Accumulated energy. (d) Vertical
seam.

(a) the seam in every frame (b) the spatio-temporal seam surface

Figure 3. An example of carving-based video retargeting. (a) The seam in every frame. (b) The spatiotemporal seam surface.

temporal coherence constrain is introduced into the defi-
nition of energy function. Let video sequence be {It}N

t=1 ,
where N is the number of video frames and t is the frame
index; the spatial and temporal energy function are defined
as follows:
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The global energy function is defined by a linear com-
bination of spatial and temporal energies. Apparently, ˛ 2
[0, 1] is a parameter that balances spatial and temporal
contributions.

Eglobal(i, j) = ˛Espatial(i, j) + (1 – ˛)Etemporal(i, j) (3)

Matthias et al. proposed a discontinuous seam-carving
scheme for video retargeting [8]. Different from geometri-
cally smooth and continuous seams, an appearance-based
temporal coherence is formulated to define temporally dis-
continuous seams. Moreover, a piecewise spatial seam
is introduced based on the variation in the gradient of
the intensity. For the retargeted video, more details are
preserved, and a better visual quality is achieved. Yang
Bo et al. proposed a matching-area-based SCVR tech-
nique [9]. The novel matching-area-based temporal energy
adjustment allows the seam to track the object it previously

carved and avoids carving the seam on different objects
in two consecutive frames to achieve better spatial and
temporal coherence.

The three aforementioned SCVR techniques have their
own advantages and disadvantages. However, they share
some common similarities. First, because video sequence
is considered as a 3D array, they all achieve video re-
targeting by extending the definition of energy function.
Second, to avoid the visual distortions such as jittering,
the removal of optimal surfaces with the least energies in
the array is enforced with constrains of both temporal and
spatial coherence. Finally, because of the content-aware
mechanism in SCVR, the retargeted video can preserve the
content well. This implies that there must be some invariant
features before and after video retargeting. As a result, we
do not emphasize the specific tools and parameters used in
these SCVR techniques. Instead, we are motivated to make
use of the local invariant features, especially their relative
position change to construct the forensic hash.

2.2. Forensic hash approaches for image
resizing

The idea behind passive image forensics is to analyze the
detectable changes specific to image tampering [10,11] or
the intrinsic traces left by devices. It can only provide
a simple binary decision of authenticity, which is inad-
equate for the purpose of image forensics. To answer a
broader range of questions regarding the processing his-
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tory of image tampering, a novel conception of forensic
hash is recently proposed [12]. Later, Wang et al. pro-
pose an image forensic signature for content authenticity
analysis [13]. Discrete wavelet transform and adaptive
Harris operator are comprehensively used to extract image
feature points; then the statistics of feature point neigh-
borhood are used to construct forensic signature. Based
on this forensic signature, a search-based forensic analysis
method is proposed for analyzing the processed history of
the received image, including geometric transform estima-
tion, tampering detection, and tampering localization. It is
straightforward to understand that the concept of a foren-
sic signature in [13] is very similar to the forensic hash
in terms of functionality [12,14]. Moreover, it is also a
compact representation of robust features that are properly
selected from the original image.

In essence, the forensic hash is a robust feature repre-
sentation generated by properly selecting the local statis-
tics of robust feature points, which are extracted from
the original image as side information. Apparently, a key
issue for forensic hash construction is the selection of
robust features from the original image that are robust
to specific tampering. In addition, because the foren-
sic hash is required to be transmitted to the receiver as
a side information, its compactness and scalability are
also preferable.

3. PROPOSED FORENSIC HASH
APPROACH FOR SCVR

3.1. Construction of forensic hash

A scale-invariant feature transform (SIFT) is widely used
in computer vision because it is a stable and distinctive
feature. In the forensic hash scheme for image seam carv-
ing [12], SIFT feature points in an image are utilized to
build the forensic hash. Because a SIFT feature is invari-
ant to image translation, scaling, rotation, and illumination
change, it is partially robust to local geometric transform.
The scale and dominant orientation of a SIFT point can be
used to estimate geometric transforms such as rotation and
scaling. It is reported that a very compact forensic hash
of around 50 bytes can reliably estimate both the amount
and location of seams involved in seam carving and further
enable accurate alignment and tampering localization on a
tampered image.

Because digital video is actually a series of still images,
it can be naturally treated as a 3D cube, where each frame
is a surface in the cube. As shown in Figure 2, the seam
carving on 2D images is directly extended to the seam sur-
face in SCVR. Therefore, we are motivated to extend the
matching of feature points in [12] to feature surfaces for
the detection of SCVR. Specifically, the seam carving is
extended from a 1D path in a 2D image to a 2D surface in
3D video data. The relative displacement of stable feature
points between two matching surfaces is used to construct
the forensic hash for the estimation of seams involved in

SCVR. The construction of the forensic hash is detailed as
follows.

First, the Speeded-up Robust Feature (SURF) is cho-
sen as the invariant local feature, instead of SIFT in [12].
Luo et al. made a lot of experimental comparisons among
SURF, SIFT, and principal component analysis SIFT [15].
It is claimed that SURF has better robustness and more
efficient processing speed, although it is inferior to SIFT
in terms of stability to rotation and illumination changes.
For digital video, processing, speed is usually a major con-
cern because of its huge data amount. Moreover, rotation
and illumination change are not the main concerns for the
detection of SCVR. Therefore, SURF is more suitable for
the detection of SCVR than SIFT because it can improve
detection efficiency.

As shown in Figure 4, all the pixels in the digital video
are treated as a 3D array, where X and Y are the horizon-
tal and vertical axes and Time is the temporal axis. All the
SURF points in single frame are used for surface match-
ing. Let X1 and X2 be two matching planes and N be the
interval between X1 and X2. For every plane, m SURF
points that are most stable are extracted for feature match-
ing. That is, these feature points are used as a feature set
for forensic hash construction. Apparently, the values of N
and m are closely related with the length of the forensic
hash. This will have a direct influence on forensic accu-
racy. In general, the bigger is N, the less planes are involved
in forensic analysis, and the worse is the forensic accu-
racy, but the smaller is the length of the forensic hash,
and vice versa. The bigger is m, the more SURF points
are involved in forensic analysis and the better will be the
forensic accuracy, but the bigger the length of the foren-
sic hash. Instead of a 128D vector for a SIFT descriptor,
a SURF descriptor is a 64D vector. To further decrease
the forensic hash length, the SURF descriptor is compactly
represented using visual word representation [12]. Only
the visual word ID is needed to be stored, rather than the
full descriptor.

Figure 5 shows the process of visual word represen-
tation. All the feature point descriptors are gathered and
quantized into discrete feature vectors. Every feature vec-
tor is mapped into visual words to build a vocabulary tree.
The vocabulary tree is shared by a data sender and a data
receiver, which can be used every detection after its gen-
eration. Apparently, this process of hash generation not
only keeps the local content of the seam surface but also
realizes the dimension reduction. The leads to the signif-
icant decrease of forensic hash length. The feature set Hi
for surface matching is expressed as Equation (8), which
compactly represents the content in a single frame.

Hi = {ID1, ID2, : : : IDi, : : : , IDk} (4)

where every ID is a visual word of corresponding feature
point descriptors and k is the number of feature points in
every matching surface.

In summary, the forensic hash generation involves the
following steps: first, the top-k stable SURF feature points
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Figure 4. An illustration of the matching surface.

Figure 5. The visual word representation of the forensic hash.

are selected, and their descriptors are hierarchically quan-
tized based on a pre-trained vocabulary tree to obtain the
visual word IDs; second, every point is represented by a
vector of five parameters: visual word ID, x and y positions
in a frame, its scale, and dominant orientation. Every visual
word IDi is denoted by (id, x, y, � , � ). For a vocabulary tree
with 1000 visual words and an image size of 1024� 1024,
each vector occupies about 50 bits.

3.2. Forensic estimation using forensic
hash

Let the size of the original video V be rows � cols. The
number of matching surfaces is M = dcols/Ne, where “d�e”
is the up round operator. Thus, the forensic hash will be
represented as follows:

Hi = {N, {H1, H2, : : : Hi, : : : , HM}} (5)

Let the size of the investigated video V 0 be rows0�cols0.
The feature point set Hi of the original video is matched
with every Y-time plane along the X-axis of V 0. That is,
the matching surface is obtained by matching those fea-
ture point set in V 0 with the hash Hi (i = 1, 2, : : : , M). As
shown in Figure 6, a red line is a plane in the Y-time, and
the red lines at the positions of x01, x02, and x03 in the inves-
tigated video are those planes matching the surfaces at x1,
x2, and x3 in the original video. That is, the extracted fea-
ture point sets are similar at the positions of x1 and x01, x2
and x02, and x3 and x03. If the amount of matched feature

points in the Y-time plane of investigated video exceeds a
predefined threshold, it is considered that this surface is a
matching surface in the Y-time with Hi. From Figure 6(a),
it can be observed that there are seams deleted between
x1 and x2 in the original video, which leads to the relative
displacement of investigated video. For seam adding, the
forensic process is similar except that the interval between
matching surfaces becomes bigger.

In fact, there are two different conditions for seam
adding and deleting. One is that the seam surface is com-
pletely located between two matching surfaces, and the
other is that the seam surface passes through the matching
surface, as shown in Figure 6(a and b), respectively. For
the former condition as shown in Figure 6(a), the change
of seams between x1 and x2 is defined as follows:

�N =
�
x02 – x01

�
– N (6)

Apparently, if it satisfies �N > 0, then it implies that
there are some seam surfaces added. Otherwise, if it sat-
isfies �N < 0, then it implies that there are some seam
surfaces deleted. If �N = 0, it means that there is no seam
carving here. For the later condition, it is possible that there
are two matching surfaces x021 and x022 in the investigated
video with surface x2 in the original video. The change of
the last matching surface xlast is estimated as follows.

�N = (col – Xlast) –
�
col0 – X0last

�
(7)
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(a) seam surface locating between two (b) seam surface passing through the
matching surface matching surface

Figure 6. The detection of seam adding/deleting.

From Figure 6(b), it can be observed that there are some
amounts of feature points in the Y-time surfaces x021 and
x022, which are matched with those feature points of match-
ing surface at x2. Of course, it is also possible that only
one surface has some amounts of feature points. When
there is only one matching surface between x021 and x022,
the estimation method is similar to the condition shown in
Figure 6(a). When the surfaces in the positions of both x021
and x022 are matched with the surface x2, record the starting
frame index (x021start, x022start) and the ending frame index
(x021end, x022end) of feature points in the surfaces x021 and
x022, respectively. That is, record the frame indexes of the
first and last feature points in the feature point set. Then,
the seam surface is estimated as follows.

�N =

8̂̂
<
ˆ̂:

�
x021 – x01

�
– N t 2

�
t021start, t021end

�
�	

x022+x021
2



– x01

�
t021end ¤ t022start and t 2

�
t021end , t022start

�
�
x022 – x01

�
– N t 2

�
t022start, t022end

� (8)

However, when a surface in the investigated video
matching the surface x2 in the original video cannot be
found, it means that the position of x02 in Figure 6(a) or the
positions of x021 and x022 in Figure 6(b) do not exist. Then,
we can simply utilize the matching surface in position x03.
The number of seams added or deleted between x1 and x3
is estimated as follows.

�N =
�
x03 – x01

�
– 2N (9)

Thus, it guarantees the estimation of seam carving to
the greatest extent, even though the accuracy of estimation
range is lowered.

3.3. Performance analysis of the proposed
forensic hash

The proposed forensics hash approach is built using SURF
feature points. Because SURF features can be extracted in
real time, which guarantees that the computational com-
plexity of the proposed approach is well controlled. More-
over, SURF is robust to noise, compression, and image
blurring. This implies that desirable results can be achieved

even when there is some other changes to digital video
such as illumination change. In the feature-matching pro-
cess, k most stable SURF points are selected for surface
matching, instead of all the feature points or single point.
This guarantees the stability of forensic performance and
the compactness of the forensic hash.

In this paper, the forensic hash is represented by H =
{N, {H1, H2, � � � , Hi, � � � , HM}}, where N is the interval
between two neighboring matching surfaces. If N does
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not exceed 50, only 6 bits is required. For a vocabu-
lary tree with visual words of no more than 1000, only
10 bits is required to represent every ID in Hi. Conse-
quently, for a video sequence in Source Input Format
(360 � 240, 500 frames), when N equals 30 and the num-
ber of matching points is 50 for every matching surface on
average, the length of forensics will be 10,006 bits. This
is an acceptable length of the forensic hash, which proves
its compactness.

Another performance metrics of the forensic hash is
its scalability. Apparently, the length of the forensic hash
is controlled by two key parameters, that is, the inter-
val N between two matching surfaces and the number
of matching points k in every matching surface. More-
over, the frame index of feature points can be recorded
to estimate the frame-based manipulation such as frame
adding and deleting. That is, the forensic hash will be
Hi = {(ID1, t1), (ID2, t2), � � � , (IDi, ti), � � � , (IDk, tk)},
where ti represents the frame index of feature
points in the whole video sequence. The forensic
process is summarized as follows. Let t1 and t2 be the
frame index of two neighboring frames without feature
points in the original video and t01 and t02 be the frame
indexes of the matching surface in the investigated video.
The relative distances of feature points in the original

and investigated videos are d = t2 – t1 and d0 = t02 – t01,
respectively. The relative displacement of video frames
will be �D = d0 – d. Apparently, if �D is larger than
zero (a positive number), it implies that there is frame
adding. Otherwise, if �D is less than zero, it means that
there is frame deleting. Furthermore, the spatial resolution
might be changed during video transmission because of
video transcoding, which will have influences on video
forensics. Therefore, we can consider adding the scaling
information into feature points. If the scaling informa-
tion is kept in the construction of the forensic hash, it
can be used to restore the original video using a scaling
transform. This will benefit the forensics.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

4.1. Experimental setup

In order to prove the performance of the proposed
approach, experiments are performed on a PC with Intel
Core2 2.7 GHz CPU, 2 GB RAM, Windows XP. The test
video sequences including Indoors and Car park are cho-
sen from the forensic analysis library of the University
of Surrey, UK [16]. These sequences are in Source Input

(a) the original video (b) scaling factor: 90% (c) scaling factor: 80% (d) scaling factor: 70%

Figure 7. An example of resized videos by different seam carving-based video retargeting algorithms. (a) The original video. (b) Scaling
factor: 90%. (c) Scaling factor: 80%. (d) Scaling factor: 70%.

2108 Security Comm. Networks 2015; 8:2102–2113 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



W. Fei et al. Manuscript submitted for review

Format (360 � 240, 500 frames). They are manipulated by
three typical SCVR schemes [7–9]. These SCVR schemes
are briefly introduced in Section 2.1. The scaling factors
for SCVR are 90%, 80%, and 70%, respectively. Note that
object removal is also achieved during video resizing by
SCVR. As shown in Figure 7, the object, that is, the lad-
der, is removed from the video. To keep the feature points
stable, the response value of feature points is no less than
0.05 when extracting the forensic hash.

The forensic hash generated from the ground truth is
matched with that of the tampered video after SCVR, so
as to estimate the positions and number of seams involved
in SCVR. The performance metrics used for evaluation are
the correct detection rate Pr and false detection rate Pf .
They are defined as follows.

Pr =

P
i

min
�
�N –� QN

�

�Ntotal
(10)

Pf =

P
i

max
�
�N –� QN, 0

�

�Ntotal
(11)

where�N is the amount of actually deleted seams in every
frame,� QN is the number of detected seams that are deleted
in every frame, i is the total number of video frames, and
�Ntotal is the total number of deleted seams in all the
frames.

4.2. Experimental results and comparison

The detection results are summarized in Table I. From the
experimental results, it can be observed that the correct
detection rate Pr decreases with the decrease of interval
N between matching surfaces. This is mainly because the
estimated position increases with the decrease of span,

and a small span implies a more accurate estimation of
seam positions. Thus, the possibility of false estimation is
increased. Furthermore, the correct detection rate of the
rescaled video by the method in [7] is better than those of
the scaled video by the methods in [8,9]. The reason is that
the seams between successive frames in [7] are smoother
than those in [8,9]. For example, for the methods in [8,9],
there might be seams deleted in the range [10, 40] of the
X-axis in the 10th frame, and the seams might occur within
the range [100, 140] for the 50th frame. This implies that
there are discontinuities of seams among frames. However,
the proposed approach achieved desirable detection perfor-
mance for those video by three typical SCVR algorithms.
On average, the correct detection rate is higher than 90%.
Moreover, the false detection rate is quite slight especially
when the scaling factor is small. Figure 8 illustrates the
detection conditions to those videos suffering from differ-
ent SCVR algorithms when the span N between matching
surface is 40. A line in it is the position of matching sur-
face, and the curve is the positions of all the seams in the
current frame. From this figure, it is apparent that there is
a possibility of false detection.

In the following, we detect the video with 5% of frames
deleted. The results are summarized in Table II. It can
be observed that there is only a slight decrease of cor-
rect detection rate when some frames are deleted from the
investigated video. In other words, the frame deletion does
not have an obvious influence on the detection of seams by
different SCVR methods. Figure 9 is the detection perfor-
mance via a receiver operating characteristic (ROC) curve
when the spans between the matching surface are different.
The left is the result when there is simply SCVR, whereas
the right is the result when there are simultaneously SCVR
and frame deleting. The ROC curve reflects the total actual
positives (TPR = true positive rate) versus the total actual
negatives (FPR = false positive rate) for every estimated

Table I. Detection accuracy of tampered video by different seam carving-based video retargeting algorithms.

N

50 40 30 20

Scaling factor (%) Pr (%) Pf (%) Pr (%) Pf (%) Pr (%) Pf (%) Pr (%) Pf (%)

90

Method [7] 98.3 2.17 97.5 3.53 96.8 4.22 95.2 5.97
Method [8] 98.2 2.32 96.4 3.87 95.2 6.72 90.8 9.39
Method [9] 98.2 2.24 97.2 3.61 95.3 5.31 91.2 9.34
Average 98.2 2.24 97.0 3.67 95.8 5.42 92.4 8.23

80

Method [7] 97.9 3.54 95.4 5.72 95.1 6.74 90.3 12.78
Method [8] 95.7 4.77 92.6 8.81 90.8 9.75 86.4 14.03
Method [9] 96.5 4.39 93.5 8.17 91.9 9.10 87.6 13.46
Average 96.7 4.23 93.8 7.57 92.6 8.53 88.1 13.42

70

Method [7] 95.5 6.82 92.0 9.61 89.1 11.48 86.4 15.02
Method [8] 92.9 7.22 89.3 10.03 87.6 13.09 84.3 18.17
Method [9] 93.8 7.10 90.1 10.76 88.2 12.69 84.7 17.39
Average 94.1 7.05 90.5 10.13 88.3 12.42 85.1 16.86
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(a) original video (b) resized video with scaling factor 90% (c) matching surface

Figure 8. The detection results of a tampered video by different seam carving-based video retargeting algorithms. From top to
bottom, they are the detection results of [7–9], respectively. (a) Original video. (b) Resized video with scaling factor 90%. (c) Matching

surface.

Table II. The detection performance of seams in the tampered video by different seam carving-based video retargeting algorithms.

N

50 40 30 20

Scaling factor (%) Pr (%) Pf (%) Pr (%) Pf (%) Pr (%) Pf (%) Pr (%) Pf (%)

90

Method [7] 98.1 2.36 97.1 4.30 96.2 4.78 94.6 7.03
Method [8] 97.6 2.39 96.8 4.45 93.8 6.31 90.7 10.25
Method [9] 97.7 2.48 97.1 4.31 94.7 5.84 90.9 10.34
Average 97.8 2.41 97.0 4.35 94.9 5.64 92.1 9.21

80

Method [7] 96.4 4.79 94.2 6.99 93.1 7.39 89.1 12.92
Method [8] 94.6 7.05 91.8 10.00 89.7 10.87 87.2 13.93
Method [9] 95.7 5.65 92.0 8.93 90.5 10.52 87.5 13.58
Average 95.6 5.83 92.7 8.64 91.1 9.59 87.9 13.48

70

Method [7] 94.2 7.14 90.8 11.89 88.7 12.41 84.1 17.48
Method [8] 92.8 7.92 89.7 11.97 86.4 14.77 85.6 18.91
Method [9] 92.7 8.34 89.6 12.34 87.4 14.55 84.0 17.48
Average 93.2 7.80 90.0 12.07 87.5 13.91 84.6 17.96
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(a) Without frame-based operation (b) With frame deleting

Figure 9. The receiver operating characteristic curve when the interval N is different. (a) Without frame-based operation. (b) With
frame deleting.

(a) location of frame deleting with a lot of redundant information

(b) location of frame deleting with less redundant information

(c) rough locating of frame deleting

Figure 10. The estimation of frame index for frame deleting.
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seam. The results reported are the average results for all
the seams in every frame with different scaling factors.
In Figure 9(a), the TPR is bigger than 90% for different
spans when the FPR is 10%. This implies that the pro-
posed forensic hash achieves satisfactory detection results.
Figure 9(b) reports the detection results of the tampered
video by both SCVR algorithms and frame deleting. It also
shows that the detection performance decreases slightly
when some frames are deleted.

If the frame index is added into the forensic hash, the
index and position of the frame deleted or added can be
estimated. To verify this, three groups of experiments are
conducted. The first is to store the frame index information
for all the feature points. The second is to partially store the
frame index of feature points. That is, if the frame number
is the same for different feature points in the same match-
ing surface, just keep the frame number of one feature
point. The third is to just store non-repetitive informa-
tion. That is, only one different frame number information
for all the matching surfaces is stored, and the feature
points that keep their frame number are randomly selected.
Figure 10 shows the experimental results of frame num-
ber estimation when some frames are added or deleted.
The solid points represent the feature points in the original
video, whereas the hollow points are the feature points in
the investigated video. The lines between the solid points
and hollow points imply that these points are matched with
each other. The horizontal axis is the corresponding frame
number of feature points. From the experimental results
shown in Figure 10(a, b), it can be observed that there
are five frames deleted between the 5th and 23rd frames
of the original video. In Figure 10(c), there are also five
frames deleted between the 5th and 30th frames. Although
the detection results are the same in Figure 10(a, b), there
are much more redundant information in Figure 10(a) than
in Figure 10(b). For Figure 10(c), although the exact num-
ber and rough position of the deleted frames are correct,
its accuracy is decreased because the range of the deleted
frames is wider than that reported in Figure 10(a, b). From
the preceding analysis, we can conclude that the proposed
forensic approach can accurately estimate the number of
deleted frames if the frame index is kept in the forensic
hash. Moreover, the accuracy of estimation depends on the
number and distributions of feature points in the Y-time
surface. If there are more non-repetitive feature points, it
will achieve higher accuracy of the estimated range for
those deleted frames. However, the length of the foren-
sic hash will also be bigger. For frame adding, similar
results are also obtained, which are omitted here owing to
space restrictions.

5. CONCLUSIONS

In this paper, a detection approach is proposed for SCVR
using a forensic hash. It extracts the SURF points every
several frames to build the forensic hash. The change of
the relative position between two matching surfaces is used
to detect the possible seam carving in SCVR. We com-

prehensively consider the robustness and compactness of
the forensic hash and the forensic accuracy. Experimen-
tal results show that the number and positions of seams
deleted or added by SCVR can be accurately estimated.
Moreover, the proposed forensic hash approach is scal-
able. If the frame index is recorded into the forensic hash,
it is also possible to estimate frame-based manipulation.
For future research, because all the existing forensic hash
approaches including the proposed approach are tampering
specific, it will be much better if some theoretical support
can be developed for the construction of the forensic hash.
Furthermore, considering that digital videos usually suffer
from several kinds of tampering, we will attempt to model
the tampering process by a complex processing chain and
estimate the full processing history.
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