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As a popular image manipulation technique, object removal can be achieved by image-inpainting without
any noticeable traces, which poses huge challenges to passive image forensics. The existing detection
approach utilizes full search for block matching, resulting in high computational complexity. This paper
presents an efficient forgery detection algorithm for object removal by exemplar-based inpainting, which
integrates central pixel mapping (CPM), greatest zero-connectivity component labeling (GZCL) and frag-
ment splicing detection (FSD). CPM speeds up suspicious block search by efficiently matching those
blocks with similar hash values and then finding the suspicious pairs. To improve the detection precision,
GZCL is used to mark the tampered pixels in suspected block pairs. FSD is adopted to distinguish and
locate tampered regions from its best-match regions. Experimental results show that the proposed algo-
rithm can reduce up to 90% of the processing time and maintain a detection precision above 85% under
different kinds of object-removed images.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The prevalence of powerful image processing softwares and the
advancement in digital cameras have given rise to large amounts of
doctored images with no obvious traces, triggering a great demand
for automatic forgery detection algorithms that can identify the
trustworthiness of a candidate image [1]. Especially, passive image
forensics has attracted great research interests since it does not
require any auxiliary data such as watermarks or signatures
[2,3]. Up to present, there are extensive works for the passive
forensics of various tampering such as sub-sampling [4], double
jpeg compression [5] and median filtering [6].

For digital images, the manipulations of image objects including
object adding, removing or modifying are of the most attention
because these changes of objects will directly mislead the under-
standing and awareness of the image content. In general, image
object removal techniques can be grouped into two categories
[2]: copy-move and image inpainting. Copy-move is achieved by
copying a region from an image and then pasting it into the same
image with the intent of hiding undesired objects [3]. Due to its
simplicity, copy-move has become the most widely used method
for manipulating the semantics of an image. Recently, extensive
researches have been done on the passive forensics against copy-
move and a series of detection algorithms have been presented
[7–13].

In the past few years, image inpainting has made great progress
and is now playing an important role in contents correction and
image restoration. However, it can also be a useful tool for object
removal [2]. Inspired by real techniques for painting restoration,
image inpainting methods fill the holes left by object removal
through exploiting the information preserved in the surrounding
regions. Object removal achieved by image inpainting can preserve
texture and structure continuity [14]. As a result, it leaves no
obvious traces of tampering, which makes passive image forensics
extremely challenging. Up to now, little study has been done on
passive forensics for image inpainting, among which there are
three representative works. As a first attempt, Wu et al. [15] pro-
posed a passive forensics method to discriminate natural images
from inpainted images, which used zero-connectivity labeling to
yield matching degree of the blocks in suspicious regions and com-
puted the fuzzy memberships to identify the tampered regions by
a cut set. However, it is a semi-automated detection method which
requires to manually select a region of suspicion in advance.
Moreover, the algorithm seeks for suspicious blocks by means of
full search, resulting in high computation complexity. Later,
Bacchuwar and Ramakrishnan [16] devised an improved method
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based on the luminance component of the image and median com-
parison of the blocks in the region of suspicion. The improved
approach converted the image to YUV space and only the Y compo-
nent was used to search for suspicious blocks. Before calculating
matching degree of block pairs, the medians of blocks were com-
pared. If the difference was great enough, the calculation of match-
ing degree would be skipped. Though the simplified method can
reduce processing time to some extent, it is still a semi-automatic
approach. In order to overcome the shortcoming of abovemen-
tioned methods, Chang et al. [17] presented an automatic forgery
detection algorithm for exemplar-based inpainting images using
multi-region relation. In this method, zero-connectivity feature
was also used to search for suspicious blocks and vector filtering
was exploited to remove the false-alarmed blocks located in the
uniform background. Besides, three types of regions were pro-
duced according to the relationships among suspicious regions:
multi-link, single-link and self-link, while only the multi-link
regions were regarded as tampered. Furthermore, weight-
transformation based mapping approach was adopted to accelerate
the search of suspicious blocks. In spite of outperforming the
former two methods in terms of computational efficiency,
weight-transformation based mapping approach cannot optimize
load factor and search range simultaneously, which thereby con-
strains further improvement of search speed and detection accu-
racy. Therefore, we propose an improved passive forensics
method, which enables an optimization between the load factor
and the search range.

This paper proposes an efficient passive forgery detection
method for object removal by exemplar-based inpainting using
central pixel mapping (CPM), greatest zero-connectivity compo-
nent labeling (GZCL) and fragment splicing detection (FSD). As
compares to the current state of the art [15–17], the contributions
of this paper are as follows: Firstly, CPM is proposed to speed up
suspicious block search, which assigns hash value for target block
according to the color information of central pixel and then
searches for the best-match block among those with similar hash
values. The hash values obtained from CPM can better represent
the color distributions of image blocks, producing a higher aggre-
gation of similar blocks, which further narrowing the search range.
Meanwhile, CPM generates one to one mapping between image
blocks and hash values, so that the load factor of the hash table
is more close to 1, thus the search efficiency is further improved.
Above all, CPM enhances search performance in terms of both load
factor and search range. Secondly, GZCL is adopted to mark the
tampered pixels in suspicious blocks. After searching the suspi-
cious blocks, the existing methods directly label all the pixels in
suspicious block as being tampered, which will lead to higher false
alarm and a jagged edge of the detected region. In order to improve
detection precision, GZCL takes advantage of the greatest zero-
connectivity component in the difference array and marks the
corresponding pixels within the suspicious block as being tam-
pered, through which not only a smoother edge is obtained but
also the false positive rate will be reduced. Thirdly, FSD is used
to distinguish tampered regions from reference regions and obtain
the final position of forgery. Most existing algorithms consider
both reference and tampered regions as being forged, which makes
the reference regions to be another reason of false alarm. In order
to solve this problem, FSD calculates the number of regions
matched with the target region and filters out those with less
matched regions, resulting in a higher detection precision.
Experimental results show that the proposed algorithm can reduce
90% of processing time and keep false alarm lower than 15%.

The rest of this paper is organized as follows: Section 2 briefly
introduces the image inpainting techniques, particularly exem-
plar-based inpainting. Section 3 describes the proposed detection
method. Section 4 focuses on the fast search algorithm based on
central pixel mapping. Section 5 presents the experimental results
and analysis. Finally, we conclude in Section 6.
2. Image inpainting

Image inpainting is a technique used for image restoration that
can recover the lost information in old photographs and remove
scratches in images. However, it could also be exploited to remove
image semantic objects for malicious motives. In this case, image
inpainting becomes a forgery manipulation. Before we go into
details about forensics against inpainting based object removal, it
is necessary to briefly introduce the principles of image inpainting
and analyze the possible traces left behind.

Based on their application in image restoration, inpainting tech-
niques can be mainly divided into two categories [14]. One is pixel-
based approaches [18–20], which are mainly focused on structural
repairing and used to repair small-scale defects (such as cracks,
and scratches). However, it will generate obvious blur when the
damaged region is large or the texture is rich. The other one is
exemplar-based approaches [21–23], which combine structure
recovery with texture repairing and can be used to restore larger
loss of information in the image. Criminisi’s algorithm [21] is
among the most popular exemplar-based inpainting approaches.
Many researchers have exploited the inpainting framework in
Criminisi’s algorithm due to its good visual effect. Therefore, we
take Criminisi’s algorithm as an example and introduce the princi-
ple of exemplar-based inpainting.

Before inpainting, users need to select target region to be
removed and filled, as shown in Fig. 1(a). The target region is indi-
cated by X, and its contour is denoted by @X and the source region,
U, may be defined as the entire image minus the target region.
Then the inpainting procedure is conducted as follows.

1. Compute the priorities of the points along @X and find the point
p with highest priority. Then, the block Wp centered at the point
p is selected as target block, as shown in Fig. 1(b).

2. Search for the reference block Wq which is most similar to Wp in
source region U, as shown in Fig. 1(c).

3. Fill the area to be inpainted in Wp using the corresponding pix-
els of Wq, and update the priorities among Wp as well as @X, as
shown in Fig. 1(d).

4. Repeat step 1 to step 3 until the target region is entirely filled.

By integrating texture synthesis with pixel-based approaches,
the algorithm performs well in terms of both perceptual quality
and efficiency. Subsequently, there are some improvements on
Criminisis algorithm, which mostly concentrate on improving
priority calculation and optimizing patch searching method
[22,23]. Liu and Caselles [22] proposed a novel inpainting method
based on multi-scale Graph Cuts, which ensured the continuity of
reconstruction at the boundary of the inpainted region as well as
visually coherent reconstruction inside the hole. Wang et al. [23]
introduced a regularized factor into the confidence term to lessen
descending effect, which significantly improved the filling order.
Meanwhile, for the condition when multiple candidates were
found during the best-match reference block searching, a two-
round search strategy based on a modified sum of squared differ-
ences (SSD) and normalized cross correlation (NCC) was proposed
to make the inpainting more robust to images with large removal
regions.

Although there are differences in ways of calculating priority
and searching for best-match block between Criminisi’s algorithm
and improved algorithms, filling the target block with its best-
match block will introduce abnormal similarity. However, there
exists large amount of irregular pieces in natural images, which



Fig. 1. Exemplar-based inpainting. (a) Specify target region X, (b) select target block Wp , (c) search for reference block Wq and (d) update priority and contour.
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share seemingly the same textured surface, but in fact are different
[15]. In the imaging process, these differences will result in
unequal pixel values. Therefore, the filling scheme of exemplar-
based inpainting cannot represent subtle differences in natural
scene, but lead to abnormal similarity between blocks, which pro-
vides clues for image forensics.
1 For interpretation of color in Figs. 3–5, 7, 8, 13 and 14, the reader is referred to the
web version of this article.
3. Forgery detection algorithm for exemplar-based image
inpainting

The purpose of the proposed method is to detect object removal
by exemplar-based image inpainting. According to the abnormal
similarity of block pairs described above, a passive forensics algo-
rithm based on CPM, GZCL and FSD is proposed. Fig. 2 shows the
framework of the proposed algorithm, which consists of four pro-
cedures: Firstly, zero-connectivity feature is applied to suspicious
block searching which is usually the most time-consuming part.
In order to improve search efficiency and maintain good detection
results, this paper presents a novel fast search algorithm based on
CPM. Secondly, GZCL is used to mark the tampered pixels in suspi-
cious blocks. Thirdly, vector filtering is adopted to remove the
false-detected regions in uniform background. Finally, FSD is
employed to filter out the reference regions and get the final loca-
tions of tampered regions.

3.1. Suspicious block searching based on zero-connectivity feature

In exemplar-based inpainting, the unknown part of the target
block is filled using the corresponding pixels of reference block,
resulting in a number of zeros connecting in the difference array
between target block and its reference block, that is, a zero is 8-
neighborhood connected with other zeros. This characteristic is
named as zero-connectivity feature [15]. Due to its simplicity
and effectiveness, zero-connectivity feature is also adopted in this
paper to search for suspicious blocks.

For each block Wp in the test image I where p is its upper left
point, we search for its reference block Wbq which is most similar

to Wp across the complement of Wp in the image U ¼ Wp, which
can be formulated as

Wbq ¼ arg max
Wq2U

nðWp;WqÞ ð1Þ

where nðWp;WqÞ is the matching degree of the block pair.
The matching degree is computed following four steps. Firstly,

one block is subtracted from another to get the absolute values
of differences for R; G and B components, which are denoted by
DR; DG and DB respectively. Then, DR; DG and DB are converted to
binary difference arrays DR; DG and DB respectively. Next, mathe-
matical ‘‘OR’’ is performed on DR; DG and DB producing the differ-
ence array Dpq. At last, the greatest zero-connectivity component
which contains the largest number of ‘‘0’’ is taken as the matching
degree of the block pair.
In order to find the zero-connectivity components in Dpq, an 8-
connectedness labeling method is used to extract zero-connectiv-
ity features. Fig. 3 illustrates how to compute the matching degree,
where Rp; Gp; Bp; Rq; Gq and Bq represent the R; G; B components
of target block and reference block respectively, while the zero-
connectivity components are labeled with green1 lines. Here, the
matching degree is 8.

When the matching degree between target block Wp and refer-
ence block Wbq meets Eq. (2), the pair of blocks will be determined

as suspicious, and the matching relationship between them will be
record as a similarity vector, which starts from Wp and points to
Wbq .

nðWp;WbqÞ
E2 P g ð2Þ

where E is the block length, g is a threshold decided by fussy mem-
bership (see details in [15]).

3.2. Greatest zero-connectivity component labeling

After suspicious block searching, the pixels within those blocks
need to be labeled to generate a group of suspicious regions. The
existing methods [15–17] adopt a whole block labeling (WBL)
strategy, where all pixels in suspicious blocks are marked as being
tampered. However, we observe that filling operation is only for
unknown portion of the target block during the inpainting process.
This means that a suspicious block contains both tampered pixels
and original pixels. This phenomenon is most pronounced on the
edge of the object removal region. Hence, WBL would mistake
original pixels as being tampered, thereby cause high false positive
rate and get jagged edges, which will definitely decrease the preci-
sion of forgery location.

In order to remove the false alarm caused by WBL and get a
more accurate location of suspicious region, this paper proposes
a new method based on GZCL. First, we find the greatest zero-con-
nectivity component in the difference array D

pbq obtained by suspi-

cious block searching. Then, for suspicious block Wp, the
corresponding pixels are marked as being tampered which share
the same position with the greatest zero-connectivity component,
as shown in Eq. (3):

labelðWpðx; yÞÞ ¼
tampered; D

pbqðx; yÞ 2 GZC

authetic; otherwise

(
ð3Þ

where ðx; yÞ is a point in the block, GZC refers to the greatest zero-
connectivity component.

Fig. 4 compares the results of GZCL and WBL, where Fig. 4(a) is
the mask of inpainting, Fig. 4(b) is the result of WBL and Fig. 4(c) is
the result of GZCL. It can be seen from Fig. 4(b) that WBL gets a



Fig. 2. Framework of the proposed algorithm.

Fig. 3. Matching degree computation.

(a) (b) (c)

Fig. 4. Comparison between WBL and GZCL. (a) Inpainting mask, (b) result of WBL and (c) result of GZCL.
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jagged edge. Furthermore, the suspicious region is connected with
several mistakenly detected blocks (marked with a red circle). It is
clear that a more accurate and smoother edge is obtained by GZCL,
as shown in Fig. 4(c). Despite introducing some undetected true
positives, GZCL gains a better balance between recall and precision
(details are discussed in Section 5).
3.3. Vector filtering

Natural images may have some very similar blocks in the back-
ground, especially uniform regions such as the sky or lake, which
share high matching degree with its neighboring blocks and will
be easily marked as tampered in suspicious block searching. In this
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paper, vector filtering [17] is employed to reduce false alarm
caused by uniform background, which is based on an analysis for
the distribution of similarity vectors. Fig. 5 compares the results
with and without vector filtering, where Fig. 5(a) is the original
image with blue sky in the background. Large numbers of blocks
are detected in suspicious block searching, as shown in Fig. 5(b).
Obviously, uniform regions will interfere with the detection result.
Therefore, it is necessary to exclude authentic uniform regions
from suspicious regions.

Based on vector filtering, three kinds of image areas are defined
in this paper: uniform area, textural area and complex area. Each
one contains different distribution of similarity vectors. Uniform
area contains the similarity vectors with short length, while longer
similarity vectors lie in textural area and complex area does not
have any similarity vectors. Generally, the inpainted regions are
located in the textural area, where similarity vectors have rela-
tively longer length than those of a uniform area. Therefore, the
length of similarity vectors can be used to distinguish inpainted
regions from uniform regions. Fig. 5(c) shows the result of vector
filtering, where most of the false positives caused by uniform
regions are removed.
3.4. Fragment splicing detection

A rough location of tampered region can be obtained using the
three steps mentioned above. Nonetheless, there exists some refer-
ence regions that are falsely identified as being tampered due to
the fact that matching relationships between tampered regions
and its reference ones are founded during suspicious block search.
Therefore, reference regions have become another cause of false
alarm. In order to distinguish tampered regions from the reference
ones, this paper presents a method based on FSD to remove false
positives caused by reference regions, producing the final location
of forgery.

By analyzing exemplar-based inpainting, it is not difficult to
find that tampered regions are replicated by multiple reference
regions, in other words, more than one reference regions are
matched to a tampered region. More importantly, the reference
regions are distributed as scattered ‘‘fragments’’ and usually
matched to only one tampered region. Based on this characteristic,
we differentiate tampered regions from its reference ones accord-
ing to the number of regions matched with a target region. The
method is described as follows.

First of all, suspicious region Regioni is assigned with a unique
code, as shown in Eq. (4). Secondly, the similarity vectors are used
to find reference region Regionj which is best matched with Regioni,
then the code of Regioni is replaced with the code of Regionj, as
shown in Eq. (5). The replacement of region code will help count
the number of regions matched with a target region. Finally, suspi-
cious regions with less reference regions are filtered out, producing
the final position of tampered region.

CodeðRegioniðx; yÞÞ ¼ codei i 2 ½1; . . . ;N� ð4Þ
RepCodeðRegioniðx; yÞÞ ¼ CodeðRegionjðx; yÞÞ i; j 2 ½1; . . . ;N� ð5Þ

where ðx; yÞ is a pixel in the region, N is the number of suspicious
regions, RepCode refers to the replaced region code.

Fig. 6 illustrates the process of FSD. Fig. 6(a) shows the suspi-
cious regions, Fig. 6(b) uses different colors to represent the codes
of suspicious regions, Fig. 6(c) reveals the suspicious regions whose
codes are replaced with those of its reference regions and Fig. 6(d)
shows the final location of tampered region. Obviously, compared
with Fig. 6(a), detection accuracy of tampered regions improves
significantly.
4. Fast search algorithm based on central pixel mapping

In Section 3.1, we have briefly introduced the suspicious block
searching based on zero-connectivity features. However, the
searching process is very time-consuming. Given an image with
size M � N and a search window with size E� E, the matching

degree has to be computed ½ðM � Eþ 1ÞðN � Eþ 1Þ�2 times if full
search is adopted. Moreover, the time complexity of matching
degree computation is OðE2Þ. Obviously, the computation complex-
ity of full search is extremely high. Therefore, a fast search algo-
rithm is highly desired. To this end, several methods have been
proposed to speed up suspicious block searching [17,24]. In [24],
a randomized searching method was used to increase the
computational efficiency, but it may fall into the local optimiza-
tion. Then, Chang et al. [17] presented a weight transformation
based searching strategy which reduced the searching time and
maintained a relatively better detection accuracy. However, it
could not optimize load factor of hash table and search range
(detail definitions are in Sections 4.3.1 and 4.3.2) simultaneously,
thereby constrained further improvement of search speed and
detection accuracy. In order to enhance both load factor and search
range, this paper proposes a novel search algorithm based on CPM,
which transforms the color information of central pixel in target
block into a hash value and search for the best-match block in
those blocks with similar hash values.

4.1. Block mapping technique

The basic idea of block mapping is as follows. Firstly, a hash
function is constructed to extract color information of the blocks
in the image. In order to speed up the search process, matching
degree computation between target block and ‘‘alien’’ blocks,
which are entirely different from the target one, should be avoided,
and gathering blocks with similar color distribution is necessary.
As a result, the hash function also needs to follow this principle,
assigning similar hash values to similar image blocks. Secondly,
the blocks are mapped to a hash table according to their hash val-
ues. However, collision will appear when different blocks corre-
spond to the same hash value. To solve this problem, we store
the blocks with same hash value in the same list.

Fig. 7 shows the process of block mapping, where each textural
region is represented by a unique color, Value represents the hash
value and the dotted red arrows point to the storage location of the
blocks. It is not difficult to find that similar blocks are assigned
equal or similar hash values. After mapping, the search of suspi-
cious block consists of two steps: (1) locate the target block in
the hash table; (2) find the best-match block within those with
equal or similar hash values. Only the matching degrees among
similar blocks are calculated through block mapping, resulting in
reduced time complexity and increased search efficiency.

4.2. Central pixel mapping

The key to block mapping is the construction of hash function
which will directly affect the search efficiency. In [17], four kinds
of hash functions are discussed: equal number matrix trans-
formation, even number matrix transformation, odd number
matrix transformation, and prime number matrix transformation.
Among them, equal number matrix transformation is the best hash
function to extract color information from image blocks. However,
it tends to cause a collision which enlarges the load factor of the
hash table, while the others can deal with collision but fail to
gather the similar blocks together, which in turn expands the
search range. Therefore, the above-mentioned functions cannot
optimize load factor and search range simultaneously, which



(a) (b) (c)

Fig. 5. Vector filtering. (a) Original image, (b) suspicious block search and (c) result of vector filtering.

Fig. 6. Fragment splicing detection. (a) Suspicious regions, (b) assign codes for suspicious regions, (c) code replacement and (d) final detection result.

Fig. 7. Block mapping.
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constrains further improvement of search speed. In this paper, a
new hash function named central pixel mapping (CPM) is defined
to gather the blocks with equal value in the central pixel:

KeyWc
¼ RðcÞ þ GðcÞ � 28 þ BðcÞ � 216 ð6Þ

where c is the central pixel of target block, R, G, B represent for the
values in red, green and blue channel, respectively.

According to [21], the central pixel of target block is always
located at the edge of the region to be inpainted, which means that
there exist pixels to be filled in the 8-neighborhood of the central
pixel. Similarly, for forgery detection, when the search window has
the same size with the inpainting window, there must be tampered
pixels in the 8-neighborhood of central pixel. Moreover, the central
pixel is also tampered in the case that the search window is smaller
than the inpainting window. According to the filling mechanism of
exemplar-based inpainting, tampered pixels will share the same
values with the corresponding ones in the best-match block. That
is to say, the center position of the target block is the same as that
of its reference block. Therefore, the search for suspicious blocks
can be achieved by only checking the blocks with same central pix-
els, which verifies that CPM is a proper hash function.
Fig. 8 illustrates the principle of CPM, where ‘‘0’’ represents
original pixel, while ‘‘1’’ represents tampered pixel and the inpaint-
ing window is 9� 9. Fig. 8(a) shows the condition that the search
window has the same size with the inpainting window, where a
blue box marks the 8-neighborhood of central pixel, a red square
represents the central pixel of the block and the tampered pixels
within 8-neighborhood are labeled green. It is not difficult to find
that there exists tampered pixels in the 8-neighborhood of central
pixel. Fig. 8(b) shows the case that the search window is smaller
than inpainting window, where the search windows are marked
with purple and orange dashed boxes, while the central pixels
are represented by red squares. Clearly, the center position of a
suspicious block is tampered, which also implies that CPM will
not leave any suspicious blocks alone.

4.3. Analysis of CPM

Two features are considered for the construction of hash func-
tion: (1) load factor, which denotes the number of blocks repre-
sented by a hash value; (2) search range, which denotes the
number of hash values compared during the search processing.

4.3.1. Load factor
The measure function of load factor a is defined as follows:

a ¼ NB

NKey
ð7Þ

where NB is the number of image blocks and NKey is the number of
hash values. According to Eq. (7), the closer to 1 is the load factor,
the higher is percent of one-to-one mapping between target blocks
and hash values. In this case, less number of matching degree
computation is needed, thereby search efficiency is higher.

Table 1 lists the load factors after applying five kinds of block
mapping (equal numbers, even numbers, odd numbers, prime
numbers and CPM) to a standard test image named ‘‘Peppers’’. It
can be seen that prime numbers based method gains a load factor
closest to 1, which means that more than half of the blocks are
assigned unique hash values. However, it cannot very well repre-
sent the color distribution of target block. In addition, CPM pro-
duces a sub-optimal load factor in terms of the closeness to 1.



(a) (b)

Fig. 8. Principle of CPM. (a) Both search window and inpainting window are 9� 9
and (b) search window is 5� 5 and inpainting window is 9� 9.

Table 1
Load factors of hash function.

Hash functions Load factors

Prime numbers 1.61
Odd numbers 2.11
Even numbers 3.85
Equal numbers 117.19
CPM 2.05

Table 2
Performance of hash functions.

Hash functions Search range Conformity (%) Execution time (s)

Full search Whole image 100 7970
Equal numbers 30 90.65 411
Even numbers 300 90.58 382
Odd numbers 400 90.32 378
Prime numbers 500 90.46 403
CPM 1 91.33 67
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4.3.2. Search range
Generally, execution time is in proportional to the search range.

That is, the smaller the search range is, the less time it consumes.
However, we should take both search range and detection accuracy
into consideration because that a smaller search range may impact
the accuracy of forgery location. Here, we denote detection accu-
racy as the conformity between the detection result of block map-
ping and that of full search, as shown in Eq. (8). Then, the optimum
search range of each hash function is investigated. Similarly, the
test is applied on the image used in Section 4.3.1.

conformity ¼ RF \ RBMk k
RF

ð8Þ

where RF is detection result of full search, RBM is the result of block
mapping.

Fig. 9 shows the relation between search range and conformity
for five kinds of functions mentioned above. It can be seen that
CPM gets the minimum search range for a fixed conformity, which
is attributed to its highest degree of aggregation for similar blocks.
With respect to the prime number transformation, owing the load
factor closet to 1 makes the hash value irrelevant to the spatial
color distribution; hence, it needs more time and wider search
range to find the best-match block for the target one.

In summary, CPM can achieve a better tradeoff between load
factor and search range, which can improve the search efficiency
Fig. 9. Search range and conformity.
further. For the same image used in Section 4.3.1, Table 2 compares
search range, conformity and execution time of the four kinds of
hash functions in [17] and CPM. It can be concluded from Table 2
and Fig. 9 that the minimum execution time is achieved using
CPM which reduces more than 99% of the time compared with full
search and the conformity of CPM is higher than 90% with a very
small search range. Thus, CPM outperforms the other four hash
functions.

5. Experimental results

In this section, we first introduce the experimental setup and
evaluation metrics. Then, we evaluate the performance of the pro-
posed method by experiments and compare it with three represen-
tative methods [15–17].

5.1. Experimental setup

In our experiments, an image database composed of 30 images
is created from test images in [17] and general database presented
in [25], which is available at http://homepages.lboro.ac.uk/cogs/-
datasets/ucid/ucid.html. These images are stored in PNG/TIF for-
mat with size ranging from 252� 188 to 512� 384. In addition,
the contents of those images includes landscape, buildings, human,
animals, and so on, some of which are shown in Fig. 10. The pro-
posed algorithm is implemented on a laptop computer (Intel(R)
Core(TM) i5-2450M CPU @ 2.5 GHz CPU, 4.0 GB RAM) with Visual
Studio 2010 and OpenCV library 2.3.1. The experimental parame-
ters are set as follows: block size is 5� 5; g is 0.5. The inpainted
images are generated using the algorithm in [23] due to the rela-
tive better visual quality than existing methods when a large
object is removed. To evaluate the robustness and sensitivity of
our method, several experiments are conducted in the following
scenarios: (1) images with a single object removed without uni-
form background, (2) images with a single object removed with
uniform background and (3) images with multiple objects
removed. In addition, the proposed method is also applied to
copy-move forged images which are generated by Adobe
Photoshop CS4.

5.2. Evaluation metrics

To quantitatively evaluate the performance of the proposed
method, recall, precision and average block processing time
(ABPT) are defined as follows:

Recall ¼ Nr

Nr þ Nm
ð9Þ

Precision ¼ Nr

Nr þ Nf
ð10Þ

ABPT ¼ TI

NB
ð11Þ

http://homepages.lboro.ac.uk/cogs/datasets/ucid/ucid.html
http://homepages.lboro.ac.uk/cogs/datasets/ucid/ucid.html


Fig. 10. Test images.
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where Nr is the number of pixels correctly detected, Nm is the num-
ber of pixels missed, Nf is the number of false positives, Nr þ Nm is
the number of tampered pixels, Nr þ Nf indicates the total number
of pixels detected, TI is the total execution time of image I and NB

indicates the number of blocks in the image.
Table 3
Performance under single object removal without uniform background.

Method Recall (%) Precision (%) ABPT (us)

Wu’s method [15] 98.00 35.34 30,400
Bacchuwar’s method [16] 98.37 40.18 12,400
Chang’s method [17] 99.58 91.29 1540
Proposed method 98.52 97.83 252
5.3. Forgery detection against exemplar-based inpainting

5.3.1. Single object removal without uniform background
Fig. 11 shows the detection result for the tampered image with

a single object removed, where Fig. 11(a) is the original image
taken from [17], Fig. 11(b) is the inpainting mask, Fig. 11(c) is
the inpainted image and Fig. 11(d)–(f) are detection results of
Wu’s method [15], Chang’s method [17] and the proposed algo-
rithm, respectively. It can be seen from Fig. 11(d) that the tam-
pered regions contain many false alarms. This is because Wu
et al. only uses suspicious block searching and does not take into
Fig. 11. Single object removal without uniform background. (a) Original image from [17],
Chang’s method [17] and (f) result of the proposed method.
account the interference of reference regions. Meanwhile, it is
not hard to infer from Fig. 11(e) and (f) that Chang’s method pro-
duces a jagged edge due to the whole blocking labeling, while
the edge obtained by our method is much smoother and more
accurate with the help of GZCL.

Table 3 compares recall rate, precision, and ABPT of our work,
Wu’s, Bacchuwar’s and Chang’s in Fig. 11(c). Compared with
Wu’s method, the proposed algorithm has reduced execution time
(b) inpainting mask, (c) inpainted Image, (d) result of Wu’s method [15], (e) result of



Table 4
Performance under single object removal with uniform background.

Method Recall
(%)

Precision
(%)

ABPT
(us)

Time decreasing rate
(%)

Chang’s method
[17]

99.21 70.64 4348 85.70
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by at least 90% due to CPM. Moreover, the time efficiency of our
method is also higher than Bacchuwar’s and Chang’s method.
Even though the recall rate is slightly declined when compared
to Chang’s method, significant improvements have been made in
precision and ABPT, which is a better balance of these three
indicators.
Proposed method 96.63 94.20 610 97.10
5.3.2. Single object removal with uniform background
This experiment shows the performance of forgery detection

when the test images contain uniform backgrounds. Fig. 12(a) is
the original image taken from [17], Fig. 12(b) is the inpainting
mask, Fig. 12(c) is the inpainted image, Fig. 12(d) shows the suspi-
cious regions before vector filtering, Fig. 12(e) shows the suspi-
cious regions with uniform vector filtering, Fig. 12(f) is the result
of FSD, while Fig. 12(g)–(h) are the final results of Chang’s method
[17] and the proposed algorithm, respectively. Fig. 12(d) implies
that suspicious block search is heavily affected by the uniform
background. In Fig. 12(e), most of false alarms caused by the uni-
form regions are removed by vector filtering. Fig. 12(f) indicates
that the forged region outstands from other regions through FSD.
Finally, from Fig. 12(g) and (h), it can be easily seen that Chang’s
method introduced more false positives than the proposed
algorithm.

In this section, only the performances of our work and Chang’s
are compared because no discussion about object removal under
uniform background was made in [15,16]. Similarly, Table 4 ana-
lyzes the recall rate, precision, ABPT and time decreasing rate of
the two methods. Obviously, the proposed method gain higher
time efficiency and precision than Chang’s. However, compared
with the time indicators in Table 3, the ABPT of two methods has
enlarged when the test image contains a uniform background.
Due to the similar texture pattern in uniform regions, the load fac-
tor of the hash table obtained by block mapping is increased,
thereby decreasing the speedup. Nevertheless, there are more
influences towards Chang’s method where the hash function gen-
erates more collisions. Additionally, the uniform background also
decreases the precision of forgery region detection.
5.3.3. Forgery detection against multiple objects removal
In this experiment, the performance of the detection against

multiple objects removal is verified. Fig. 13(a)–(c) show the
Fig. 12. Single object removal with uniform background. (a) Original image from [17], (b)
of vector filtering, (f) result of fragment splicing detection, (g) result of Chang’s method
original image along with its corresponding actual inpainted
regions, inpainting results respectively, while Fig. 13(d)–(e) are
the intermediate results of the proposed method and Fig. 13(f)–
(g) are final detection results of Chang’s method and the presented
algorithm. In Fig. 13(f), Chang’s method introduces many false
alarms around the edge of the object removal region. Although
Chang et al. adopt multi-region relation technique to deal with
the regions mistakenly detected, but the false areas connected with
the tampered regions (marked with red circles) cannot be
removed, decreasing the precision rate. But with the use of GZCL,
the proposed algorithm can make the false positives less likely
melt with the tampered region, thereby improving the detection
accuracy, as shown in Fig. 13(g).

This experiment is only carried on Chang’s and our work
because methods of [15,16] only consider the single object
removal. Take Fig. 13(c) as a test image, Table 5 demonstrates
the performance of our work and Chang’s. In spite of slightly lower
recall rate than Chang’s method, the proposed algorithm has
obvious advantages that ABPT is one fifth of Chang’s and detection
precision is enhanced by 20%.

In order to demonstrate the universality and superiority of the
proposed algorithm, two comprehensive experiments are
designed: evaluation for the average performance of single object
removal and the test on the whole database. In these two experi-
ments, average values of recall rates, precision, ABPT and time
decreasing rates are computed and denoted by ARec, APre,
AABPT and ATDR, respectively. Table 6 demonstrates that our
method achieves the highest detection precision and the least
execution time when dealing with single object removal.
Meanwhile, it can be concluded from Table 7 that the proposed
algorithm cannot only outperform the state-of-the-art method in
terms of the overall time efficiency, but also improve the average
detection precision above 85% while maintaining a high recall rate.
inpainting mask, (c) inpainted image, (d) result of suspicious block search, (e) result
and (h) result of proposed algorithm.



(a) (b) (c) (d)

(e) (f) (g)

Fig. 13. Forgery detection against multiple objects removal. (a) Original image, (b) inpainting mask, (c) inpainted images, (d) result of suspicious block search, (e) result of
fragment splicing detection, (f) result of Chang’s method and (g) result of proposed algorithm.

Table 5
Performance under multiple objects removed.

Method Recall
(%)

Precision
(%)

ABPT
(us)

Time decreasing rate
(%)

Chang’s method
[17]

98.89 71.76 2725 91.04

Proposed method 96.00 91.02 513 97.76

Table 6
The average performance of single objet removal.

Method ARec (%) APre (%) AABPT (us)

Wu’s method [15] 96.45 39.08 30,677
Bacchuwar’s method [16] 97.02 43.68 12,271
Chang’s method [17] 99.63 86.11 1663
Proposed method 97.20 96.72 301

Table 7
The overall performance on the database.

Method ARec (%) APre (%) AABPT (us) ATDR

Chang’s method [17] 98.76 77.33 2984 91.18
Proposed method 96.67 93.13 468 98.46

Fig. 14. Forgery detection against copy-move. (a) Original image from [17], (b) copy re
original image from [25], (f) copy region and paste region of (e), (g) forged image of (e)
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5.4. Forgery detection against copy-move

Our method is still efficient for copy-move forgery without
rotation and zooming, which is a simple and widely used object
removal manipulation. Fig. 14 demonstrates the results of forgery
detection, where the first column shows the original images taken
from [17,25], second column indicates the copy and paste regions
by blue and red curves respectively, third column exhibits the tam-
pered images, and the last column presents the results of the pro-
posed approach. Comparing the second column with the last
gion and paste region of (a), (c) forged image of (a), (d) detection result of (c), (e)
, (g) detection result of (h).
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column, it is clear that the proposed method can exactly locate the
forged areas.

6. Conclusions

A novel passive forgery detection algorithm for object removal
by exemplar-based inpainting is proposed based on CPM, GZCL
and FSD. CPM reveals the relationship between inpainted blocks
and the referenced ones, accelerating the suspicious block search
in terms of load factor and search range. GZCL and vector filtering
are used to get the location of suspicious regions. Moreover, the
adoption of FSD technique accurately identifies the forged regions
from suspicious regions. Our experiments show that the proposed
algorithm reduces more than 90% of the processing time when
compared with the traditional algorithms, while it maintains a pre-
cision above 85%. Besides, our method also performs well when
detecting copy-move forged images.

However, there are still some limitations in this work. First, an
assumption is made that the tampered images are generated by
the exemplar-based image inpainting. Thus, the proposed
approach is incapable of detecting object removal achieved by
other techniques like image seam carving. Second, since the exem-
plar-based inpainting is in nature to fill the gap by searching simi-
lar patches within an image, the proposed approach depends on
the similarities of patches for tampering detection. If the forged
region is further processed by some post-processing techniques
like re-compression, low-pass filtering and blurring, the proposed
approach may fail. Because post-processing can also be regarded
as a forgery operation, this is actually a detection of multiple for-
gery operations. The ambiguous processing artifacts left by them
should be separated if possible. In the future, we will further inves-
tigate this issue.
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